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Abstract
The numerical resolution of wave scattering problems by open curves

leads to ill-conditioned linear systems which are difficult to precondition
due to the geometrical singularities at the edges. We introduce two new
preconditioners to tackle this problem respectively for Dirichlet or Neu-
mann boundary data, that take the form of square roots of local oper-
ators. We describe an adapted analytical setting to analyze them and
demonstrate the efficiency of this method on several numerical examples.
A complete new pseudo-differential calculus suited to the study of such
operators is postponed to the second part of this work.

1 Introduction
For the resolution of wave scattering problems in the framework of boundary
element methods with first-kind integral equations, two desirable features are:
(i) Fast convergence in terms of the mesh size,

(ii) Availability of a preconditioner for the resulting linear system.
The situation is very different depending on the regularity of the geometry of
the domain under consideration. In the case of smooth geometries, the standard
Galerkin method with a uniform mesh and piecewise polynomial functions of
degree p enjoys optimal rates of convergence in terms of the mesh-size h. Namely,
the error in energy norm converges in O(hp−σ), σ being the pseudo-differential
order of the underlying operator [36]. On the other hand, the construction of
efficient preconditioners for such geometries has received considerable attention
since two decades. Among the possible strategies are the so-called pseudo-
differential preconditionners [3–5, 11, 18, 39]. Roughly speaking, if the original
problem is written in the abstract form

Lu = f , (1)
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where L is a linear operator, the strategy consists in left multiplying equation
(1) by an operator K and solve

KLu = Kf (2)

where K is chosen so that the product KL is a compact perturbation of the
identity. Following [38], a Galerkin approximation of K provides an efficient
preconditioner for the linear system, whose condition number becomes indepen-
dent of the mesh size. Several strategies, depending on the problem to solve
(e.g. Helmholtz or Maxwell equations) have been studied in the literature to
propose such operators K, that often turn out to be very effective in practice,
when numerical applications are considered. Among those, we would like to em-
phasize the viewpoint first proposed in [3,4], where, for Helmholtz equation, the
authors consider integral formulations of the problem that involve the Dirichlet-
Neumann map Λ which leads to well-conditioned systems after discretization.
Combined with the approximation of Λ suggested in [5] under the form of the
square root operator

Λ ∼
√
−∆Γ − k2 , (3)

where ∆Γ stands for the Laplace-Beltrami operator on the surface Γ, the method
(called GCSIE) yields a very impressive reduction of the number of iterations
in the iterative resolution of the system.

In contrast, when the domain contains geometrical singularities, the two re-
quirements (i) and (ii) are not easily fulfilled for two reasons. First, the exact so-
lutions of the integral equations are themselves singular (see for example [14] and
references therein), leading to poor rates of convergence in the classical Galerkin
method. Second, the preconditioning strategies mentioned above become inap-
plicable due to the singularities, and inefficient in practice. Existing theories for
pseudo-differential calculus on singular geometries (see e.g. [27, 33, 34]) do not
seem to be able to provide simple replacements for this context. In the literature,
those two issues are mostly tackled separately. Regarding the order of conver-
gence, possible approaches include the addition of special singular functions to
the trial space [12, 40], mesh refinement [16], and a combination of the latter
with an increase of the polynomial order near the singularity [31]. On the other
hand, many recent contributions have tackled the question of preconditioning
for some particular singular geometries, in 2D or 3D such as [10, 18–20, 32]. In
most of these works, weighted versions of the usual integral operators are intro-
duced, which enjoy better mapping properties than the standard ones, and the
analysis is obtained “by hand” without any explicit use of pseudo-differential
calculus, lacking genericity.

The aim of this work is to address all those questions and provide the reader
with a complete and generic theory that solves the problems mentioned above.

Namely, we consider here the numerical resolution of Laplace and Helmholtz
scattering problems by open curves in the plane. We introduce a piecewise
affine Galerkin method for the weighted layer potentials, with optimal orders of
convergence and suitable preconditioners for the resulting linear systems, thus
providing a method with both features (i) and (ii).

Our contribution is split in two parts, which have been thought with the
following complementary roles:

- This first part provides a self-contained description of the method and its
implementation, together with an exposition of the numerical results,
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- The second part [7] contains the whole theoretical analysis of the method.
In particular the suitable pseudo-differential calculus on open curves is
introduced there.

Preliminary analytical results, that show the optimality of the approach for
Laplace problems, are nevertheless included in the first part of the work.

The paper is organized as follows: in the first section, we introduce some
notation and set up the problem. In the second section, we treat the case
of the Laplace equation, where it is possible to derive explicit inverses of the
weighted layer potentials in terms of square roots of local operators. We then
state generalizations of those results to non-zero frequencies and non-flat arcs
in the third section. In the last section, we show the efficiency of this approach
on several numerical examples.

2 Scattering by an open curve
Let Γ be a smooth non-intersecting bounded open curve in R2, and let k ≥ 0
the wave number. We seek a solution of the Helmholtz equation

−∆u− k2u = 0, in R2 \ Γ (4)

when one considers furthermore Dirichlet or Neumann boundary conditions,
namely

u = uD, on Γ (5)

or
∂u

∂n
= uN on Γ (6)

respectively. In order for the problem to be well posed, we also need to impose
suitable decay at infinity, given by the Sommerfeld condition

∂u

∂r
− iku = o

(
1√
r

)
(7)

with r = |x| for x ∈ R2 . Notice that in equation (6), n stands for a smooth
unit vector normal to Γ.
Existence and uniqueness of solutions to the previous problems are guaranteed
by the following proposition.

Proposition 1. [28, 40, 41]. Assume uD ∈ H1/2(Γ), and uN ∈ H−1/2(Γ).
Then problems (4,5,7) and (4,6,7) both possess a unique solution u ∈ H1

loc(R2 \
Γ), which is of class C∞ outside Γ.

For the definition of Sobolev spaces on smooth open curves, we follow [25] by
considering any smooth closed curve Γ̃ containing Γ, and defining

Hs(Γ) =
{
U|Γ

∣∣ U ∈ Hs(Γ̃)
}
.

This definition does not depend on the particular choice of the closed curve Γ̃
containing Γ. Moreover, we also define

H̃s(Γ) =
{
u ∈ Hs(Γ)

∣∣ ũ ∈ Hs(Γ̃)
}
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where ũ denotes the extension by zero of u on Γ̃.
The solution to (4,5,7) and (4,6,7) can be furthermore expressed in terms of

the Green function associated to the problem
G0(z) = − 1

2π ln |z| , if k = 0,

Gk(z) = i

4H0(k|z|), if k > 0,
(8)

where H0 is the Hankel function of the first kind. The expressions involve the
so-called single-layer, double-layer and hypersingular potentials that we recall
now. The single-layer potential is defined by

∀x /∈ Γ, Skλ(x) =
∫

Γ
Gk(x− y)λ(y)dσ(y) (9)

and the solution u of the Dirichlet problem (4,5,7) can be expressed as

u = Skλ (10)

where λ ∈ H̃−1/2(Γ) is the unique solution to

Skλ = uD . (11)

Here, Sk := γSk, where γ is the trace operator on Γ. The operator Sk maps
continuously H̃−1/2(Γ) to H1/2(Γ) [41, Theorem 1.8].
Similarly, we introduce the double layer potential Dk defined by

Dkµ(x) =
∫

Γ
n(y) · ∇Gk(x− y)µ(y)dσ(y)

for any smooth function µ defined on Γ. The normal derivative of Dkµ is
continuous across Γ, allowing us to define the hypersingular operator Nk =
∂nDk. This latter operator admits the representation for x ∈ Γ

(Nkµ)(x) = lim
ε→0+

∫
Γ
n(y) · ∇Gk(x+ εn(x)− y)µ(y)dσ(y). (12)

The kernel of this operator has a non-integrable singularity, but numerical cal-
culations are made possible by the following formula, valid for smooth functions
µ and ν that vanish at the extremities of Γ:

〈Nkµ, ν〉 =
∫

Γ×Γ
Gk(x− y)µ′(x)ν′(y)

−k2Gk(x, y)µ(x)ν(y)n(x) · n(y)dσ(x)dσ(y) . (13)

The operator Nk maps H̃1/2(Γ) to H−1/2(Γ) continuously [41, Theorem 1.4]
and the solution u to the Neumann problem (4,6,7) can be written as

u = Dkµ (14)

where µ ∈ H̃1/2(Γ) solves
Nkµ = uN . (15)

It is known that the jumps λ and µ are singular near the edges of the arc Γ.
Their respective asymptotics are given by the following proposition.
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Proposition 2. [28,40,41]. Near the edges of the arc Γ, λ is unbounded:

λ(x) = O

(
1√

d(x, ∂Γ)

)
,

while µ is locally given by

µ(x) = C
√
d(x, ∂Γ) + ψ.

where ψ ∈ H̃3/2(Γ) and C is a constant.

In both cases (Dirichlet or Neumann problems) numerical approximations
of the solution can be sought by a suitable discretization of the equations (11)
and (15) respectively. This amounts to solve linear systems which turn out to
be ill-conditioned in practice, and the aim of the paper is to provide the reader
with a formalism that enables to give preconditioned version of them.

3 Laplace equation on a flat segment
We first restrict our attention to the case where Γ is the segment

Γ = [−1, 1]× {0} ,

and the wavenumber k = 0, by considering the equations

S0λ = uD and N0µ = uN .

These problems have already been considered thoroughly in the literature, both
in terms of analytical and numerical properties (see for instance [10,21]). How-
ever, to the best of our knowledge, the natural inverses in terms of square roots
of local operators have remained unnoticed. In order to derive suitable pre-
conditonners for such equations and their corresponding expressions, we need
to introduce the following analytical setting. As it is well known, Chebyshev
polynomials of first and second kind play an important role.

3.1 Analytical setting
We introduce the Chebyshev polynomials of first and second kinds [24], respec-
tively given by

Tn(x) = cos(n arccos(x)), Un(x) = sin((n+ 1) arccos(x))√
1− x2

and we call ω the operator ω : u(x) 7→ ω(x)u(x) with ω(x) =
√

1− x2. We also
denote by ∂x the derivation operator. The Chebyshev polynomials satisfy the
ordinary differential equations

(1− x2)∂xxTn − x∂xTn + n2Tn = 0

and
(1− x2)∂xxUn − 3x∂xUn + n(n+ 2)Un = 0
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which can be rewritten under the form

(ω∂x)2Tn = −n2Tn , (16)
(∂xω)2Un = −(n+ 1)2Un . (17)

(Notice that by (∂xω)f we mean ∂x(ωf).) Both Tn and Un are polynomials of
degree n, and form orthogonal families respectively of the Hilbert spaces

L2
1
ω

:=
{
u ∈ L1

loc(−1, 1)
∣∣∣∣ ∫ 1

−1

f2(x)√
1− x2

dx < +∞
}

and
L2
ω :=

{
u ∈ L1

loc(−1, 1)
∣∣∣∣ ∫ 1

−1
f2(x)

√
1− x2dx < +∞

}
.

We denote by (·, ·) 1
ω
and (·, ·)ω the inner products of L2

1
ω
and L2

ω,

(u, v) 1
ω

:= 1
π

∫ 1

−1

u(x)v(x)
ω(x) dx , (u, v)ω := 1

π

∫ 1

−1
u(x)v(x)ω(x)dx .

The Chebyshev polynomials satisfy

(Tn, Tm) 1
ω

=

 0 if n 6= m
1 if m = n = 0
1/2 otherwise

(18)

and
(Un, Um)ω =

{
0 if n 6= m
1/2 otherwise (19)

which provides us with the so-called Fourier-Chebyshev decomposition. Any
u ∈ L2

1
ω
can be decomposed through the first kind Chebyshev series

u(x) =
+∞∑
n=0

ûnTn(x) (20)

where the Fourier-Chebyshev coefficients ûn are given by ûn :=
(un, Tn) 1

ω

(Tn, Tn) 1
ω

.

Similarly, any function v ∈ L2
ω can be decomposed along the (Un)n≥0 as

v(x) =
+∞∑
n=0

v̌nUn(x)

where the coefficients v̌n are given by v̌n :=
(v, Un)ω

(Un, Un)ω
. Those properties can

be used to define Sobolev-like spaces.

Definition 1. For all s ≥ 0, we define

T s =
{
u ∈ L2

1
ω

∣∣∣∣∣
+∞∑
n=0

(1 + n2)s |ûn|2 < +∞
}
.
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Endowed with the scalar product

(u, v)T s = û0v̂0 + 1
2

+∞∑
n=1

(1 + n2)sûnv̂n,

T s is a Hilbert space for all s ≥ 0. Similarly, we set

Us =
{
u ∈ L2

ω

∣∣∣∣∣
+∞∑
n=0

(1 + n2)s |ǔn|2
}
,

which is a Hilbert space for the scalar product

(u, v)Us = 1
2

+∞∑
n=0

(1 + (n+ 1)2)sǔnv̌n .

One can extend the definition of T s ad Us for s ∈ R, in which case they
form interpolating scales of Hilbert space, see [7] for details. For s = ± 1

2 , those
spaces have been analyzed (with different notation) e.g. in [20] and satisfy

T−1/2 = ωH̃−1/2(−1, 1), T 1/2 = H1/2(−1, 1) , (21)

U−1/2 = H−1/2(−1, 1), U1/2 = 1
ω
H̃1/2(−1, 1) . (22)

Denoting by T∞ = ∩s≥0T
s and similarly for U∞, it is shown in [7] that

Lemma 1.
T∞ = U∞ = C∞([−1, 1]) .

3.2 Single layer equation
In the case of Dirichlet condition, we seek a solution to the equation S0λ = g,
with λ ∈ H̃−1/2(Γ), that is

− 1
2π

∫ 1

−1
log |x− y|λ(y)dy = g(x), ∀x ∈ (−1, 1) . (23)

This equation is sometimes called “Symm’s integral equation” and its reso-
lution has received a lot of attention in the 1990’s. Numerical methods, using
both the collocation and Galerkin paradigms have been presented and ana-
lyzed [6, 37,44–46].

Our analysis lies on the following formula. (For a proof, see for example [24]
Theorem 9.2. Note that this is also the main ingredient in several connected
works, such as [10] and [21].)

Lemma 2. For all n ∈ N, we have

− 1
2π

∫ 1

−1

ln |x− y|√
1− y2

Tn(y)dy = σnTn(x)
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where

σn =


ln(2)

2 if n = 0,

1
2n otherwise.

Using the decomposition of g and of the logarithmic kernel on the basis (Tn)n,
we see that the solution λ to equation (23) admits the following expansion

λ(x) = 1√
1− x2

+∞∑
n=0

ĝn
σn
Tn(x) . (24)

We deduce the following well-known fact (e.g. [14])

Corollary 1. If the data g is in C∞([−1, 1]), the solution λ to the equation

S0λ = g

is of the form
λ(x) = α(x)√

1− x2

with α ∈ C∞([−1, 1]).

Proof. Let α(x) =
√

1− x2 λ(x) where λ is the solution of S0λ = g. By
Lemma 1, if g ∈ C∞([−1, 1]), then g ∈ T∞, and by equation (24),

α̂n = ĝn
σn

,

from which we deduce that α also belongs to T∞ = C∞([−1, 1]).

Following [10], we introduce the weighted single layer operator as the operator
that appears in Lemma 2.

Definition 2. Let S0,ω be the weighted single layer operator defined by

S0,ω : α ∈ C∞([−1, 1]) −→ − 1
2π

∫ 1

−1

ln |x− y|
ω(y) α(y)dy .

To obtain the solution of (23), we thus solve

S0,ωα = uD , (25)

and let λ = α
ω , which indeed belongs to H̃−1/2 by (21). From the previous con-

siderations, the inverse for S0,ω can be derived by building an operator R such
that RTn = 1

σn
Tn. It turns out that such an operator R has been characterized

in [20,42], through explicit variational forms in closed forms (see also the recent
paper [19] for the case of the unit disk in R3).

Here, we give an alternative form for the operator R, that we will then
generalize for a non-zero frequency.
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Theorem 1. For any s, the operator −(ω∂x)2 + 1
ln(2)2π0 is bicontinuous from

T s+2 to T s and

S2
0,ω = 1

4

(
−(ω∂x)2 + 1

ln(2)2π0

)−1
.

Corollary 2. The operator S0,ω being non negative, its inverse can thus be
equivalently expressed as

S−1
0,ω = R := 2

√
−(ω∂x)2 + 1

ln(2)2π0

where the square root of the operator is defined using standard spectral theory.
Proof. We simply notice that for all n ∈ N, (ω∂x)2Tn = −n2Tn. Therefore(

−(ω∂x)2 + 1
ln(2)2π0

)
Tn =

{
n2Tn if n 6= 0

1
ln(2)2 otherwise

= 1
4σ2

n

Tn .

Since the operator
√
−(ω∂x)2 + 1

ln(2)2π0 is the inverse of S0,ω, in particular,
it can be used as an efficient preconditioner for the weighted integral equation
(25).

3.3 Hypersingular equation
We now turn our attention to the equation

N0µ = g . (26)

Similarly to the previous section and following [10], we consider the weighted
version of the hypersingular operator N0,ω := N0ω defined by

N0,ωµ = lim
ε→0

∫ 1

−1
n(y) · ∇G(x+ εn(x)− y)

√
1− y2dy .

We can get the solution to equation (26) by solving

N0,ωβ = uN (27)

and letting µ = ωβ. We now show that N0,ω can be analyzed using this time
the spaces Us.
Lemma 3. For any β, β′, one has

〈N0,ωβ, β
′〉ω = 〈S0,ωω∂xωβ, ω∂xωβ

′〉 1
ω
.

Proof. We use the well-known integration by part formula

〈N0u, v〉 = 〈S0∂xu, ∂xv〉 ,

valid when u and v are regular enough and vanish at the extremities of the
segment. For a smooth β, we thus have

〈N0(ωβ), (ωβ′)〉 = 〈S0∂x(ωβ), ∂x(ωβ′)〉

which obviously implies the claimed identity.
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Lemma 4. For all n ∈ N, we have

N0,ωUn = n+ 1
2 Un.

Proof. From the identity ∂xTn+1 = (n+ 1)Un and Equation (16) we obtain

ω∂xωUn = −(n+ 1)Tn+1.

Therefore, by Lemma 3

〈N0,ωUm, Un〉ω = (n+ 1)(m+ 1) 〈S0,ωTm+1, Tn+1〉 1
ω

= δm=n
n+ 1

2 . (28)

Moreover, the identity −(∂xω)2Un = (n+1)2Un leads to the following result,
that expresses again the operator Nω as a square root operator.

Theorem 2.
N0,ω = 1

2
√
−(∂xω)2 . (29)

4 Helmholtz equation
In this section, we aim at generalizing the preceding analysis to the case of
Helmholtz equation on R2 \ Γ with Γ = [−1, 1]× {0}, based on the explicit for-
mulas presented in the previous section. Recall the definition of the single layer
and hypersingular operators, Sk and Nk, given in (9) and (12), and the integral
equations (11) and (15) for the Dirichlet and Neumann problems respectively.
As before, let Sk,ω := Sk

1
ω and Nk,ω := Nkω. The following commutation holds:

Theorem 3.

Sk,ω
[
−(ω∂x)2 − k2ω2] =

[
−(ω∂x)2 − k2ω2]Sk,ω,

Proof. Since (ω∂x)2 is self adjoint and symmetric (with respect to the bilinear
form (·, ·) 1

ω
), we have

(
Sk,ω(ω∂x)2u

)
(x) =

∫ 1

−1

(ωy∂y)2 [Gk(x− y)]u(y)
ω(y) dy,

where we use the notation ωy and ∂y to emphasize the dependence in the variable
y. Thus,

((
Sk,ω(ω∂x)2 − (ω∂x)2Sk,ω

)
u
)

(x) =
∫ 1

−1

Dk(x, y)u(y)
ω(y) dy,

whereDk(x, y) :=
[
(ωy∂y)2 − (ωx∂x)2] [Gk(x− y)]. A simple computation leads

to
Dk(x, y) = ∂xxGk(x− y)(ω2

y − ω2
x) + ∂xGk(x− y)(y + x).
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Since Gk is a solution of the Helmholtz equation, we have for all (x 6= y) ∈ R2

∂xGk(x− y) = (y − x)(∂xxGk(x− y) + k2G(x− y)),

thus

Dk(x, y) = ∂xxGk(x− y)
(
ω2
y − ω2

x + y2 − x2)+ k2(y2 − x2)Gk(x− y).

A careful analysis shows that no Dirac mass appears in the previous formula.
Note that y2 − x2 = ω2

x − ω2
y so the first term vanishes and we find

Sk,ω(ω∂x)2 − (ω∂x)2Sk,ω = k2 (ω2Sk,ω − Sk,ωω2)
as claimed.

There also holds the following identity:

Nk,ω
[
−(∂xω)2 − k2ω2] =

[
−(∂xω)2 − k2ω2]Nk,ω ,

however, the proof of this commutation is quite heavy. We chose to not include
it in the present work for the sake of conciseness.

Those commutations imply that the operators Sk,ω and Nk,ω share the same
eigenvectors as, respectively,

[
−(ω∂x)2 − k2ω2] and

[
−(∂xω)2 − k2ω2]. The

eigenfunctions of the operator
[
−(ω∂x)2 − k2ω2] thus provide us with a diagonal

basis for Sk,ω. They are the solutions to the differential equation

(1− x2)∂xxy − x∂xy − k2ω2y = λy .

Once we set x = cos θ, ỹ(θ) = y(x), q = k2

4 , a = λ + 2q, ỹ is a solution of the
standard Mathieu equation

ỹ′′ + (a− 2q cos(2θ))ỹ = 0 . (30)

There exists a discrete set of values a2n(q) for which this equation possesses even
and 2π periodic solutions, which are known as the Mathieu cosine functions,
and usually denoted by cen. Here, we use the notation cekn to emphasize the
dependency in the parameter k =

√
2q of those functions. The normalization is

taken as ∫ π

−π
cekn(θ)2dθ = π.

The Mathieu cosine functions also satisfy∫ π

−π
cekn(θ)cekm(θ)dθ = πδm,n

so that any even 2π periodic function in L2(−π, π) can be expanded along the
functions cekn, with the coefficients obtained by orthonormal projection. Setting

T kn := cekn(arccos(x)),

in analogy to the zero-frequency case, we have[
−(ω∂x)2 − k2ω2]T kn = λ2

n,kT
k
n .
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For large n, using the general results from the theory of Hill’s equations (see
e.g. [43, eqs. (21), (28) and (29)]), we have the following asymptotic formula for
λn,k:

λ2
n,k = n2 − k4

16n2 + o
(
n−2) .

The first commutation established in Theorem 3 implies that Mathieu cosine
functions are also the eigenfunctions of the single-layer operator. (An equivalent
statement is given in [9, Thm 4.2], if we allow the degenerate case µ = 0.)

A similar analysis can be applied to the hypersingular operator. The eigen-
functions of

[
−(∂xω)2 − k2ω2] are given by

Ukn := sekn(arccos(x))
ω(x)

where sekn are the so-called Mathieu sine functions, which also satisfy the Math-
ieu differential equation (30), but with the condition that they are 2π periodic
and odd functions.

All the previous considerations highly suggest the following theorem:

Theorem 4. There exists a compact operator K from T s to T s+2 such that[
−(ω∂x)2 − k2ω2]S2

k,ω = Id
4 +K,

and a compact operator K ′ from Us to Us−2 such that

N2
k,ω =

[
−(∂xω)2 − k2ω2]+K ′.

The proof of this theorem, requires the introduction of additional analytic
tools that are out of the scope of this introductory paper. It is thus omitted in
the present work and given in full details in [7]. Nevertheless, Theorem 4 gives
a generalization to Helmholtz equation of the result obtained precedingly for
Laplace equation, namely, the operator

[
−(ω∂x)2 − k2ω2]1/2 is expected to be

a good preconditioner for Sk,ω, as well as
[
−(∂xω)2 − k2ω2]−1/2 for Nk,ω.

Finally, we note that in the more general case of a C∞ non-intersecting open
curve Γ and non-zero frequency k, the previous result extends, replacing ∂x by
∂τ the tangential derivative on Γ, Sk,ω and Nk,ω respectively by Sk,ωΓ := Sk

1
ωΓ

,
and Nk,ωΓ := NkωΓ, and ω by ωΓ. Here ωΓ is defined by ωΓ(x) = |Γ|

2 ω(r(x)),
where |Γ| is the length of the curve and r : [−1, 1] → Γ is a parametrization of
the curve such that for all x, |∂xr(x)| = |Γ|

2 .

5 Numerical results
5.1 Galerkin setting
To solve numerically the integral equations presented earlier, various methods
have been described and analyzed in the literature. The standard discretization
on a uniform mesh with piecewise polynomial trial functions leads to very poor
rates of convergence (see for example [36, Chap. 4]). Several strategies have been
developed to remedy this problem. One can for example enrich the trial space
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with special singular functions, refine the mesh near the segment tips (h-BEM)
or increase the polynomial order in the trial space (p-BEM). The combination
of the last two methods, known as h-p BEM, can achieve an exponential rate
of convergence with respect to the dimension of the trial space, see [31] and
references therein. Spectral methods, involving trigonometric polynomials have
also been analyzed for example in [10], and some results exist for piecewise linear
functions in the colocation setting [13].

Here, we describe a simple Galerkin setting, suited to the spaces T s and Us.
We use piecewise affine functions defined on a non-uniform mesh, which is refined
towards the edges of the curve. More precisely, let−1 = x0 < x1 < · · · < xN = 1
and let θi := arccos(xi). We choose the points xi such that (θi)0≤i≤N are
equispaced, that is to say θi = ih with h = π/N . The nodes of the mesh are
then set to Xi = r(xi), where r is a smooth parametrization of the curve Γ.
This turns out to be analogous to a graded mesh with a grading parameter
equal to 2 which means that, near the edge, the width of the i − th interval is
approximately (ih)2. Notice that it is known that this modification alone, i.e.
using the h-BEM method with a polynomial order p = 1, is not sufficient to get
an optimal rate of convergence. Indeed, it can be shown that it only leads to a
convergence rate in O(h) for the L2 norm (cf. [31, Theorem 1.3]) instead of the
expected O(h2) behavior.

The key ingredient, beside the graded mesh, to recover optimal convergence
is to use a weighted L2 scalar product (with weight 1

ω or ω depending on the
considered equation), in order to assemble the operators in their natural spaces.
We state here the orders of convergence that one gets with this new method,
and refer again the reader to [7] for proofs. We also restrict our presentation
to the case where Γ = [−1, 1] × {0} and k = 0, the general case being then
obtained by standard perturbation arguments.

Dirichlet problem. For the resolution of the single-layer equation (23) we
use a variational formulation of (25) to compute an approximation αh of α.
Namely, let Vh the Galerkin space of (discontinuous) piecewise affine functions
defined on the mesh (xi)0≤i≤N defined above, and αh the unique solution in Vh
to

(S0,ωαh, α
′
h) 1

ω
= (uD, α′h) 1

ω
, ∀α′h ∈ Vh .

We then compute λh = αh

ω . Using the notation C to denote any constant that
does not depend on the relevant parameters, we then have

Theorem 5. (see [7]). If the data uD is in T s+1 for some −1/2 ≤ s ≤ 2, then
there holds:

‖λ− λh‖H̃−1/2 ≤ Chs+1/2 ‖ωλ‖T s ≤ Chs+1/2 ‖uD‖T s+1 .

In particular, when uD is smooth, the solution α = ωλ belongs to T∞, and
we get the optimal rate of convergence of the error in O(h5/2).

Neumann problem. For the numerical resolution of (26), we use a varia-
tional form for equation (27) to compute an approximation βh of β, and solve it
using a Galerkin method with continuous piecewise affine functions. Introduc-
ing Wh the space of continuous piecewise affine functions on the mesh defined
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by the points (xi)0≤i≤N , we denote by βh the unique solution in Wh to the
variational equation:

(Nωβh, β′h)ω = (uN , β′h)ω , ∀β′h ∈Wh. (31)

Then, the proposed approximation for µ, given by µh = ωβh, satisfies the
following error estimate.

Theorem 6. (see [7]). If uN ∈ Us−1, for some 1
2 ≤ s ≤ 2, there holds

‖µ− µh‖H̃1/2 ≤ Chs−
1
2

∥∥∥µ
ω

∥∥∥
Us
≤ Chs− 1

2 ‖uN‖Us−1 .

Numerical validation. In addition to the energy norm, estimates in the local
weighted L2 norms can be derived from the previous, namely:

∀s ∈ [0, 2] , ‖α− αh‖ 1
ω
≤ Chs ‖α‖T s

for the Dirichlet problem and

∀s ∈ [0, 2] , ‖β − βh‖ω ≤ Ch
s ‖β‖Us

∀s ∈ [1, 2] , ‖β − βh‖U1 ≤ Chs−1 ‖β‖Us

for the Neumann problem. We verify those rates numerically. For the Dirichlet
problem, we solve two test cases S0,ωα1 = u1 and S0,ωα2 = u2 having the
explicit solutions α1(x) = ω(x) and α2 = ω(x)3, for adequately chosen rhs u1
and u2. One can check that α1 ∈ T s for s < 3

2 and α1 /∈ T 3/2, while α2 ∈ T 2.
The L2

1
ω
error is plotted in Figure 1 in each case as a function of the mesh size

h. We find that the expected rates O(h3/2) and O(h2) predicted by the theory
are precisely recovered in practice.

Similarly, for the Neumann case, we solve a a test case N0,ωβ = uN where
the solution β is explicit. We take uN = U2 the second Chebyshev polynomial
of the second kind. The corresponding solution β is proportional to U2 and thus
belongs to U∞. The theory therefore predicts a convergence rate of the error in
the L2

ω and U1 norms respectively in O(h2) and O(h). This behavior is again
confirmed by our numerical results, exposed in Figure 2.

5.2 Preconditioning the linear systems
Let Xh the considered finite element space (Xh = Vh or Wh), and (φi)i the
basis functions. For an operator A, we denote by [A]p the Galerkin matrix of
the operator for the relevant weight p(x) = 1

ω(x) or ω(x), defined by

[A]p,ij =
∫

Γ
(Aφj)(x)φi(x)p(x) dx .

When the operator BA is a compact perturbation of the identity (either in T s
or Us) then, following [38], we precondition the linear system [A]p x = b by the
matrix [Id]−1

p [B]p [Id]−1
p , which amounts to solve

[Id]−1
p [B]p [Id]−1

p [A]px = [Id]−1
p [B]p [Id]−1

p b .
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Figure 1: Effective order of convergence of the approximation of the solution
β to (27) by the weighted Galerkin method. Two cases are considered where
α ∈ T s for all s < 3/2 but α /∈ T 3/2 (solid line and circles) and α ∈ T 2

(dashed line, crosses) respectively. The approximate slope p is displayed above
each curve. Theoretical convergence rates, respectively O(h3/2) and O(h2) are
recovered in practice

Figure 2: Effective order of convergence of the approximation of the solution
β to (27) by the weighted Galerkin method. In this test, the solution β lies in
U2 and we measure the error in two different norms, respectively L2

ω (solid line,
circles) and U1 (dashed line, crosses). The approximate slope p is displayed
above each curve. The theoretical order of convergence, in O(h2) and O(h)
respectively for the L2

1
ω
and U1 norms, are recovered in practice
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When B is the inverse of a local operator C, then it may be more convenient to
compute [C]p, and solve instead

[C]−1
p [A]px = [C]−1

p b .

The preconditioners introduced in this work are in the form of square roots
of local operators. More precisely, we introduced two preconditioners P1 and
P2 with

P1(k) =
(
−(ω∂x)2 − k2ω2)1/2 ,

P2(k) =
(
−(∂xω)2 − k2ω2)−1/2

.

For the second equation, we rewrite

P2(k) =
(
−(∂xω)2 − k2ω2)−1 (−(∂xω)2 − k2ω2)1/2 .

This brings us back to computing Galerkin matrix of the square root of a dif-
ferential operator. When the frequency is 0, we use the method exposed in [17].
When the frequency is non-zero, the previous method fails since the spectrum
of the matrix contains negative values. In [5], a method involving a Padé ap-
proximation of the square root, with a rotated branch cut, is used to compute
the matrix of an operator of the form

√
X − k2Id where X is a positive defi-

nite operator. This method gives excellent results in our context when using
X = −(∂ωx)2 + k2 (Id − ω2). More specifically, we build a rational approxima-
tion of the function X 7→

√
X − k2 in the form

√
X − k2 = a0 +

Np∑
i=0

ai
bi +X

,

and then take

[√
X − k2Id

]
p
≈ a0[Id]p +

Np∑
i=0

ai (bi[Id]p + [X]p)−1
.

5.3 Preconditioning results
All the numerical results exposed here are obtained on a personal laptop running
on an eight cores intel i7 processor with a clock rate of 2.8GHz. The Galerkin
method has been implemented in the language Matlab R2018. For problems
such that |Γ|λ ≤ 200, where λ stands for the wavelength, the problems are
solved in full BEM without compression method. For the cases with |Γ|λ > 200,
(N > 104 where N is the number of unknowns) the memory of the computer
is insufficient to store the full problem, and in this case the Efficient Bessel
Decomposition (EBD) [8] is used to compress and accelerate the matrix-vector
products.

Flat segment, Laplace-Dirichlet problem. In Table 1, we report the num-
ber of iterations for the numerical resolution of the Laplace problem (25) by the
method detailed above, in section 5. Two cases are considered, first without
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with Prec. without Prec.
N nit t(s) nit t(s)
50 7 0.05 30 0.05
200 8 0.05 58 0.05
800 8 0.06 93 0.10
3200 8 0.13 141 0.90

Table 1: Computing time and number of GMRES iterations for the numerical
resolution of the Laplace single layer integral equation on the segment respec-
tively with the square root preconditioner and without preconditioner

Figure 3: Number of GMRES iterations for the resolution of the Laplace single
layer integral equation on the segment with a mesh of size N = 1600 respec-
tively without preconditioner (circles) and with the square root preconditioner
(crosses)

any preconditioner, and then with a preconditioner given by [Id]−1
1
ω

[B] 1
ω

[Id]−1
1
ω

where [B] 1
ω

is the Galerkin matrix of the operator
√
−(ω∂x)2 + 1

ln(2)2π0. The
right hand side in (25) is chosen as uD(x) = (x2 + 0.001)−1/2, x ∈ [−1, 1]. A
graph of the residual along the iterations is given in Figure 3 for a refined mesh
with 1600 node points.

Flat segment, Laplace-Neumann problem. For the Neumann problem
(27), we also report in Table 2 the number of iterations for the numerical res-
olution with and without the preconditioner given by [Ip]−1

ω [C]ω [Ip]−1
ω where

[C]ω is the Galerkin matrix of the operator
√
−(∂xω)−2. The right hand side

in (27) is chosen as uN (x) = (x2 + 0.001)1/2, x ∈ [−1, 1]. The decay of the
residual along the iterations is shown in Fig. 4. We observe in both Dirichlet
and Neumann cases a drastic decay of the number of iteration which justifies
the approach. We also see that, as expected, the number of iterations obtained
with the preconditioned version does not depend on the mesh size.

We now turn our attention to Helmholtz equation. In each case, in order
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with Prec. without Prec.
N nit t(s) nit t(s)
50 5 0.05 29 0.05
200 5 0.05 127 0.1
800 4 0.05 530 1.0
3200 4 0.07 2153 43

Table 2: Computing time and number of GMRES iterations for the numerical
resolution of the Laplace hypersingular equation respectively with the square
root preconditioner and without preconditioner

Figure 4: Comparison of the number of GMRES iterations in the resolution of
the Laplace hypersingular integral equation on the segment with a mesh of size
N = 1600 respectively without preconditioner (circles) and with the square root
preconditioner (crosses). The importance of preconditioning in this case is even
more spectacular than in the case of the single-layer equation
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Figure 5: Comparison of the number of GMRES iterations in the resolution of
the Helmholtz single layer integral equation on the segment with a mesh of size
N ≈ 2000, L = 200λ, respectively without preconditioner (circles) and with the
square root preconditioner (crosses)

to fully resolve the frequency, the number of segments in the discretization is
set to N ≈ 10k, where k = π

λ is the wavenumber. In the GMRES iteration, we
require a relative residual below 10−8.

Flat segment, Helmholtz-Dirichlet problem. In Table 3 we report the
number of GMRES iterations for the numerical resolution of Equation (11) on
the segment Γ = [−1, 1]× {0}, when the linear system is preconditioned by the
operator √

−(ω∂x)2 − k2ω2 ,

as compared to the case where no preconditioner is used. We take, for the
Dirichlet data, the plane wave uD(x) = eikx. We also provide, in Figure 5,
the value of the relative residual in the GMRES method along the iterations,
with and without preconditioner, for a problem with L = 800λ. As before, we
see that the number of iterations needed to reach a given precision decreases
significantly but, this time, we observe a very slight increase with respect to the
wavenumber.

with Prec. without Prec.
|Γ|/λ nit t(s) nit t(s)
50 9 0.07 79 0.21
200 11 0.37 106 1.35
800 15 15 155 110

Table 3: Computing time and number of GMRES iterations for the numeri-
cal resolution of the Helmholtz single-layer integral equation on the segment
respectively with the square root preconditioner and without preconditioner

Flat segment, Helmholtz-Neumann problem. We run the same numeri-
cal comparisons, this time solving (15) and considering the preconditioning op-
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Figure 6: Comparison of the number of GMRES iterations in the resolution of
the Helmholtz hypersingular integral equation on the segment with a mesh of
size N ≈ 800, L = 50λ, respectively without preconditioner (circles) and with
the square root preconditioner (crosses)

erator
(
−(∂xω)2 − k2ω2)−1/2. Results are given in Table 4 for different meshes

and in Figure 6 for the evolution of the residual along the iterations. We take,
for the Neumann data, the normal derivative of a plane wave uN = ∂

∂ne
ikx.

Huge differences, both in time and number of iterations are shown in favor of
the preconditioned system.

with Prec. without Prec.
|Γ|/λ nit t(s) nit t(s)
50 9 0.07 785 7
200 12 0.5 3115 6 min
800 18 28 ? > 1 hour

Table 4: Computing time and number of GMRES iterations for the numerical
resolution of the Helmholtz hypersingular equation on the segment respectively
with the square root preconditioner and without preconditioner
Non-flat arc. We also consider a spiral shaped arc of equation

x(t) = e0.1(s+s0) cos(2(s− 0.2))
y(t) = e0.1(s+s0) sin(2(s− 0.2))

and report in Tables 5 and 6 the number of iterations and computing times
respectively for the Dirichlet and Neumann problems. The results show that
the preconditioning strategy is also efficient in presence of non-zero curvature,
especially for the Dirichlet problem. For the Neumann problem, it might be
necessary to add a curvature term in the preconditioner for a faster resolution.
The scattering problem with Dirichlet condition is illustrated in Figure 7 for
this geometry.
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Figure 7: Sample diffraction pattern (Dirichlet boundary conditions) with left
to right incidence for an arc of spiral of size L = 800λ. After the resolution of
the integral equation, the computation of the image is accelerated by the EBD
method [8].

With prec. Without prec.
|Γ|/λ nit t(s) nit t(s)
50 20 0.19 117 0.46
200 25 1.2 163 4.8
800 31 28 220 2min 30s

Table 5: Computing time and number of GMRES iterations for the numerical
resolution of the Helmholtz single-layer integral equation on the spiral-shaped
arc respectively with the square root preconditioner and without preconditioner

With prec. Without prec.
|Γ|/λ nit t(s) nit t(s)
50 64 0.34 800 7
200 155 4.2 3250 7 min
800 345 6 min ? > 1 hour

Table 6: Computing time and number of GMRES iterations for the numerical
resolution of the Helmholtz hypersingular integral equation on the spiral-shaped
arc, respectively with the square root preconditioner and without preconditioner

Comparison with the generalized Calderón relations. Eventually, we
test the idea presented in [10], namely to use Sk,ω and Nk,ω as mutual pre-
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conditioners. This alternative method is also very efficient in our numerical
setting (here, we use simple piecewise affine functions, whereas in [10], spectral
discretization with trigonometric polynomials is used). We report the number
of iterations and computing times respectively for the Dirichlet and Neumann
problems on the flat segment respectively in Tables 7 and 8. The second mem-
bers are respectively uD = uinc and uN = ∂

∂nuinc where uinc is a plane wave of
wavenumber k and angle of incidence π

4 . The number of iterations is compara-
ble for both methods in each case. However, our preconditioner being a sparse
matrix, our method leads to a faster resolution of the linear system particularly
for the Dirichlet problem.

Calderón Prec. Square root Prec.
|Γ|/λ nit t(s) nit t(s)
50 15 0.1 9 0.07
200 15 0.47 9 0.35
800 16 41 16 16.2

Table 7: Computing time and number of GMRES iterations for the Helmholtz
single-layer integral equation on the flat segment, respectively with the Calderón
preconditioner and with the square root preconditioner

Calderón Prec. Square root Prec.
|Γ|/λ nit t(s) nit t(s)
50 15 0.1 9 0.07
200 16 0.5 12 0.4
800 17 44 18 32

Table 8: Computing time and number of GMRES iterations for the Helmholtz
hypersingular integral equation on the flat segment, respectively with the
Calderón preconditioner and with the square root preconditioner

6 Conclusion
We have presented a new approach for the preconditioning of integral equations
coming from the discretization of wave scattering problems in 2D by open arc
domains. The methodology is very effective and proven to be optimal for Laplace
problems on straight segments. It has three advantages:

• It generalizes the formulas mainly proposed in [5] for regular domains,
which is only modified by a suitable weight.

• We can show that one can recover optimal error estimates, provided that
the mesh is suitably graded near the edges.

• Eventually, a novel pseudo-differential approach, adapted to the corner
singularities that appear in the problem is proposed. It is sketched in the
present paper, but given in full details in [7].
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We deeply believe that the methodology opens new perspectives for such prob-
lems. First, a generalization to specific 3D scattering problem, e.g. by a flat disc
seems a simple generalization. We plan to extend the results presented here to
such problems in the very near future. Second, the strategy that we used here
seems very likely to be extended to the half line and hopefully to 2D sectors,
giving, on the one hand a new pseudo-differential analysis more suitable than
classical ones (see e.g. [27, 30, 33, 34]) for handling Helmholtz-like problems on
singular domains, and, on the other hand, a completely new preconditioning
technique adapted to the treatment of BEM operators on domains with corners
or wedges in 3D. Eventually, the weighted square root operators that appeared
in the present context might well be generalized to give suitable approximation
of the exterior Dirichlet to Neumann map for the Helmholtz equation which is
of particular importance in e.g. domain decomposition methods. Having such
approximations might therefore lead to better methods in that context too.
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