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Joint optimisation of operation and maintenance policies in an urban ropeway transport systems 

context 

Abstract: 

For urban transport systems, efficient passenger flows are a key goal in the management of operations. This 

paper proposes a stochastic optimisation model for integrating service and maintenance policies in order to 

solve the queueing problem and the cost of maintenance activities for public transport services, with a 

particular focus on urban ropeway system.  We adopt the following approaches: (i) a discrete-event model that 

uses a set of interrelated queues for the formulation of the service problem using a cost-based expression; and 

(ii) a maintenance model consisting of preventive and corrective maintenance actions, which considers two 

different maintenance policies (periodic block-type and age-based). The maintenance policies are then 

evaluated for their impact on the service and operation of the transport system. The performance of the current 

maintenance policy is compared against a different maintenance policy. The authors conclude by applying the 

proposed optimisation model using an example concerning ropeway systems. 

Keywords: maintenance policy, public transport, queuing theory, ropeway system, urban passenger transport. 

1. Introduction 

Studies of passenger transport demand in urban public transport systems have increased with a renewed 

recognition of their role in the economic development of cities. In recent years, transport planning has evolved 

to place greater emphasis on urban transport to increase the mobility of commuters (Ibarra-Rojas et al., 2015; 

Shang et al., 2016; Li and Sheng, 2016). Previous works have had different approaches for analysing passenger 

demand in urban transport systems. Using a dynamic systems approach, Horn (2002) showed a demand-

responsive passenger transport system based on a model to analyse the performance of urban passenger 

transport. By means of an economic theory-based approach, Ison and Sagaris (2016) examined the social, 

political, regulatory, and operational challenges in providing urban transport. Using a scheduling-based 

approach, Wang et al. (2015) proposed an event-driven model involving different types of events to obtain a 

nonlinear nonconvex optimisation problem. There are also studies (Barrena et al., 2014-a; Sun et al., 2014) 

focusing on a non-periodic timetable that explicitly considers time-dependent passenger demand to reduce 

waiting time and travel time. Other works (Niu and Zhou, 2013; Barrena et al., 2014-b) reduced the waiting 

time of passengers looking into the arrival process of passengers in stations with a uniform process or a Poisson 

process. A detailed review of these approaches is provided by Caris et al. (2013) and Yin et al. (2017).  

There has also been a research focus on waiting and queueing phenomena associated with urban transport 

services, with studies showing that urban transport users are negatively inclined if it involves uncertain waiting 

time (Ceder et al., 2013). Nesheli et al. (2015) introduced synchronised timetables to reduce the waiting time 

caused by batch arrivals. Queues with batch arrivals and bulk service are commonly observed in the field of 
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behaviour in transport systems, and such queues are found with urban buses, trains, trams, railways or 

ropeways. The queueing process follows the following features (Wang et al., 2014): (i) passenger demand at 

urban transport terminals consists of people gradually arriving in batches, with demand increasing 

progressively until rush hour, and then declining in the off-rush hour; and (ii) the service has a bulk-like pattern, 

given that it is a mass-transport service. Passengers arrive in batches to a terminal where they can be served en 

masse for the transport system. This paper therefore assumes an urban transport system characterised by batch 

arrivals and bulk service patterns. 

Queueing theory applications in transport has led to a number of author to develop queueing systems (Ceder 

et al., 2013): (i) arrival patterns of passengers –e.g. Poisson, Erlang, Gaussian and others–; (ii) service patterns; 

(iii) queue discipline –e.g. first-come-first served, priority-based–; (iv) number of servers provided; (v) 

maximum queue length allowed; (vi) configuration of the transport operators –e.g., in series, in parallel, or 

mixed. In this work, the theory of compound Poisson processes is used to establish a stochastic model of 

passenger demand in the stations. The distribution of arrival passengers is obtained with the classes defined by 

the quantity of users per time unit on the frequency domain (e.g. passengers/minute). Thus, the density 

distribution function of passenger arrivals follows a Poisson distribution (Dalla-Chiara, 2010); in consequence, 

it is possible to apply the queuing theory, which allows to evaluate the quality of requested service. 

Some authors (May and Keller, 1967; Hall, 2003) have argued that queues in the transport field often tend 

to be deterministic and predictable because of: (i) the passengers journey generates demands for repetitive 

patterns; and (ii) queues by random variations in arrivals and service are often deemed to be secondary relative 

to queues caused by predictable demand patterns. In response, another line of research (Lee and Vuchic, 2005; 

Nesheli et al. 2015) has defined urban transport attributes as stochastic (e.g. travel time, dwell time, passenger 

demand, etc.). Ceder (2007) used a formulation for mean passenger waiting time under the assumption of 

random passenger arrivals, and Newell (1977) assumed that the passengers arrive at stops according to a 

Poisson distribution and the delay of vehicles according to Fokker-Planck. The hybrid queue-based model of 

Wu and Mengersen (2014) reflected a Bayesian Network model and stochastic queuing theory, using the 

properties of the Poisson and exponential distributions. The theory of compound Poisson process is introduced 

as the main model to deal with the queueing problem on urban public transport (Ceder et al., 2013). Moreover, 

transport queueing models have been characterised as non-stationary (time varying) systems (Lee and Vuchic, 

2005; Parbo et al., 2014). 

Following similar lines, several optimisation models have been developed. Lee and Vuchic (2005) proposed 

an optimal transit system as a compromise among the minimal travel time, the transit operator profit, and 

minimisation of social costs. Parbo et al. (2014) dealt with timetable optimisation from the perspective of 

minimising the waiting time experienced by bus passengers; the researchers obtained a bi-level minimisation 

problem via a non-linear non-convex mixed integer problem. Yin et al. (2017) studied a dynamic passenger 
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demand in the context of railway scheduling with the goal of minimising the operational costs and passenger 

waiting time, resulting in a mixed-integer linear programming problem. 

Pitsiava-Latinopoulou and Iordanopoulos (2012) is noteworthy for introducing a categorization of urban 

transport terminals based on journey features. Intercity terminals are transit points for passengers traveling 

relatively long distances between cities or countries, where the chief characteristic is long waiting times and a 

lack of significant traffic fluctuations. At commuter transit centres, the passengers are regular travellers who 

need advanced accessibility and minimum travel time (Sun et al., 2017); the main feature is the large variation 

in hourly demand during the day and the need for a quick and convenient transfer between transport modes 

(Jones et al., 2000). Interchanges are intermodal facilities established at connection points for different 

transport modes forming a co-operative urban transport network. Park-and-ride terminals function as stations 

designed to provide adequate parking, primarily at urban transport terminals (Spillar, 1997). Finally, there are 

on-street facilities, public transport stops that serve different routes or transfers between different modes. The 

present article is focused on park-and-ride terminals and on-street facilities, as they are the more typical 

terminals for the integration of passengers into an urban transport network via ropeway. In cities with hills, the 

ropeways offer an attractive, straightforward and reasonably-priced system for mainstream urban public 

transport. Ropeway systems provide not only a convenient transportation in hilly terrains, over rivers, harbours 

and motorways, but also an alternative to connect people over densely populated residential areas (Alshalalfah 

et al., 2012). Currently, ropeway systems are becoming a popular transport mode and a logical choice for their 

ability to efficiently move passengers from the tops of hilly metropolitan areas to lower-lying areas. In this 

way, the ropeways are often the critical initial piece of the system, bringing passengers down to valley areas 

where they can access other transport modes in the wider integrated urban transport network.  

The proposed work analyses the demand for transport, for an optimal service-oriented maintenance plan. 

The lack of studies evaluating service performance, as impacted by maintenance requirements provided a 

motivation for the research. In particular, the authors found few studies dealing with the simultaneous 

optimisation of maintenance and service policies in urban ropeway transport systems. An efficient service 

should consider the waiting time of users, but on the operational side, decreasing the waiting time increases 

the cost of service in terms of maintenance actions. The contributions of this work are as follows: 

(i) to the best of our knowledge, this is the first study to simultaneously consider maintenance policy and 

operational policy in an urban aerial ropeway system, taking up the problem of queueing with particular 

attention to the unique requirements public transport services; 

(ii) this work analyses ropeway system maintenance and operational polices based on the international 

regulations, evaluating how fluctuating demand influences the operating conditions; and 

(iii)  this paper proposes a method to establish passenger waiting time of in relation to the optimal maintenance 

policy for an optimal urban transport service. The approach has been developed specifically to take into 

account passenger demand in urban public ropeway systems. 
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The paper is organised as follows. Section 2 sets out the mathematical expressions of service and 

maintenance policies applied to ropeway system operation. In Section 3, a stochastic optimisation model is 

developed to obtain the optimal service and maintenance actions. The model is applied in Section 4 using a 

numeric example. Table 1 shows the coefficients, parameters and variables to be used throughout the paper. 

Table 1 

Indices and parameters used throughout the paper. 

𝑖 = {1,2, … , 𝐼} indices of the platforms on the ropeway systems; 

𝑗 = {1,2, … , 𝐽} indices of the components on the ropeway systems; 

𝑘 = {1,2, … , 𝐾} indices of the vehicles (gondolas) on the ropeway systems; 

𝑚 = {1,2, … } indices of the user demand conditions from rush hour to off-peak periods; 

𝑛 = {1,2, … , 𝑁} indices of discretised time; 

𝑎, 𝑏 instants of time; 

𝑁 typical (representative) period of working time; 

𝜂 horizon of time, long time window of working-life; 

∆𝑡 discret-time. 

Operational parameters: 

𝑐𝑣 vehicles capacity [pax]; 

𝑓𝑣𝑛 passing vehicles frequency in service over the 𝑛th discretised time [s−1]; 

𝑔𝑘,𝑖,𝑛 available places of the 𝑘th vehicle on the 𝑖th platform over the 𝑛th discretised time [pax]; 

ℎ𝑖 quantity of discretised time period ∆𝑡 that a vehicle spend to transit between stations [--]; 

𝑙𝑣𝑛 distance between vehicles [m]; 

[𝑞𝑣𝑖𝑛𝑓 , 𝑞𝑣𝑠𝑢𝑝] lower and upper limit of density of vehicles in service [m-1], respectively; 

[𝑠𝑣𝑖𝑛𝑓 , 𝑠𝑣𝑠𝑢𝑝] lower and upper limit of vehicles speed [m/∆𝑡], respectively. 

Service policy parameters: 

𝐶𝑤 cost associated with the waiting time spend by passengers in the queue [mu/∆𝑡]; 

𝑙𝑖 proportional coefficient of 𝜆𝑖,𝑛 at the 𝑖th platform [--]; 

𝐿𝑞𝑖,𝑛 number of users in the queue on the 𝑖th platform over the 𝑛th discretised time [pax/∆𝑡]; 

𝑃𝑎𝑖,𝑛 probability function of passengers’ arrival at the 𝑖th platform [pax/∆𝑡]; 

𝑃𝑒𝑖,𝑛 probability function of effected services at the 𝑖th platform [pax/∆𝑡]; 

𝑊𝑔𝑛 global mean waiting time in the queue over the 𝑛th discretised time [∆𝑡]; 

𝑊𝑔𝑠𝑢𝑝 upper limit of the mean waiting time of the users in the queue [∆𝑡]; 

𝜆𝑖,𝑛 users that arrive on the 𝑖th platform over the 𝑛th discretised time [pax/∆𝑡]; 

𝜎𝑘,𝑛 effected services (disembarking passengers) the 𝑘th vehicle over the 𝑛th discretised time [pax/∆𝑡]; 

𝜇𝑖,𝑛 passengers boarding the vehicle form the 𝑖th platform over the 𝑛th discretised time [pax/∆𝑡]. 

Maintenance policy parameters: 

𝐶𝑐𝑗 cost of a repair activity (corrective maintenance) due to the failure of the 𝑗th component, which is 

quantified on monetary unit over failure [mu/failure]; 

𝐶𝑖𝑗 cost of an imperfect maintenance by the preventive maintenance actions for the 𝑗th component 

[mu/maint.]; 

𝐶𝑚𝑎𝑥𝑗 cost of a perfect maintenance (AGAN) for the 𝑗th component [mu/maint.]; 

𝑓𝑗,  𝐹𝑗 probability and cumulative fault distributions, respectively [cycles/fault]; 

𝑝 relationship between the quantity of minor maintenance actions per major maintenance action [--]; 

𝑟𝑗,𝑛 ratio of cycles by the 𝑗th component over the 𝑛th discretised time [cycles//∆𝑡]; 

𝑅𝑗, 𝑅𝑔 reliability of the 𝑗th component and global reliability of the system [cycles], respectively; 

𝑅𝑔𝑖𝑛𝑓  lower limit of the global reliability of the system [cycles]; 

𝛼 age reduction coefficient after a maintenance action. To this work: the corrective maintenance policy is a 

minimal repair action to a failed component, thus 𝛼 = 1; and the preventive maintenance policy is an 

imperfect action, 𝛼 = {𝛼𝑝1, 𝛼𝑝2}, whit 𝛼𝑝1, 𝛼𝑝2 ∈ (0, … ,1], where 𝛼𝑝1, 𝛼𝑝2 are the age reduction 

coefficient of a major maintenance and a minor maintenance; 

𝜑𝑗 probability of failure of the 𝑗th component over the finite period of time [failure]; 

𝜔𝑗 current working cycles of the 𝑗th component [cycles]; 

𝜔𝑜, 𝜔𝐴 working cycles of the last and the next preventive maintenance action [cycles], respectively. 
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Optimisation parameters: 

𝛤𝑤𝑔 global penalty cost due to the waiting time spend by passengers in queues [mu]; 

𝛤𝑐 cost of the corrective maintenance [mu]; 

𝛤𝑎 cost of the periodic block-type preventive maintenance policy [mu]; 

𝛤𝑝 cost of the periodic age-based preventive maintenance policy [mu]. 

Decision variables: 

𝑞𝑣𝑛 Density of vehicles in the 𝑛th discretised time [m-1]; 

𝑠𝑣𝑛 vehicles speed [m/s]; 

𝑇𝑗 periodicity of periodic block-type maintenance, quantity of maintenances over a full cycle of preventive 

maintenance [maint./year]; 

𝐴𝑗 range of working between the scheduled preventive maintenances [cycles/maint.]. 
 

2. Problem description 

This section describes the problem by analysing the characteristics of each policy separately: (i) urban 

transport service policy, and (ii) ropeway system maintenance policy; as follows: 

2.1. Urban transport service policy 

The distribution of passengers that arrive at a ropeway station is obtained by the quantity of users per time 

unit in the frequency domain (e.g. pax/min), the probability distribution of arrivals on the 𝑖th platform over the 

𝑛th instant of time belongs a Poisson distribution, 𝑃𝑎𝑖,𝑛 [pax/∆𝑡] (Gillen and Hasheminia, 2013), the empirical 

distribution of the passenger arrivals has been verified using a goodness of fit test (Dalla-Chiara, 2010). 

According to the queuing behaviour of ropeways, the best model for evaluating waiting time is expressed as 

M/M/1/∞/FIFO (Jenelius, 2018). This work assumes the following conditions about service policy and context: 

Assumption 1. Passengers arrive at the upper ropeway station in order to reach the downtown or connect to 

another transport mode by means of a transfer station at the bottom of the hill (railway, light-train, bus, etc.). 

Assumption 2. The stations are characterised by having on-street facilities. 

Assumption 3. Passengers do not use another transport mode before their arrival at the upper ropeway station. 

Assumption 4. If the number of waiting users exceeds the capacity of the ropeway system, the operator leaves 

behind some passengers – just as in any other transportation mode (Kfahraman et al., 2011). The system has 

therefore a finite capacity to serve users. The demand rate may exceed the capacity of the system in some 

periods. 

Assumption 5. The urban transport service policy must correspond to the demand placed upon the system. 

There must, in other words, be flexibility in the service, allowing it to adapt to variations in demand (Amirgholy 

and Gonzales, 2016). 

Given a Poisson process as probability function of discrete-time and linearly spaced, the sequence 𝑛 =

{1,2, … , 𝑁} with 𝑛 ∈ 𝑡 is used to represent the time sequence between successive events. The discrete-time 

stochastic distributions make it possible quantify the number users over a finite set of events. The events 
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depend on the arrival of vehicles on the platform. Using an operative characteristic of the ropeway system (all 

vehicles are synchronised by the pulling cable, and the vehicles speed,  𝑠𝑣𝑛, has a constant value over the 

periods of operation) the discrete-time period can be written as 

[𝑛, 𝑛 + 1] = ∆𝑡 =
𝑙𝑣𝑛

𝑠𝑣𝑛
  (1) 

where 𝑙𝑣𝑛 is distance between vehicles (see Fig. 1.a). 

The weighted mean of arriving passengers on the 𝑖th platform over the 𝑛th event is represented by 𝜆𝑖,𝑛 

[pax/∆𝑡], with 𝑖 = {1,2, … 𝐼}. It can be expressed as a probability function at the 𝑖th platform, 𝑃𝑎𝑖,𝑛, over a 

period of time [𝑎, 𝑏] by means of 𝜆𝑖,𝑛 = (𝑏 − 𝑎)−1 ∑ 𝑃𝑎𝑖,𝑛
𝑏
 𝑛=𝑎 , with 𝑎 < 𝑏. Using an analogous definition, 

the average of effected services during the same period of time is given by 𝜎𝑖,𝑛 = (𝑏 − 𝑎)−1 ∑ 𝑃𝑒𝑖,𝑛
𝑏
 𝑛=𝑎 , where 

𝑃𝑒𝑖,𝑛 is the probability function of disembarking passengers. If the period of time is [𝑎, 𝑏] = 𝑁, and 𝑁 is 

defined as a typical service period of time (e.g. full working day), the service capacity of the platform must 

not overflow in order to ensure the complete outflow of the passengers from the system; i.e., a stability 

condition of the service must be guaranteed, where ∑ 𝜆𝑖,𝑛𝑛 (∑ 𝜎𝑖,𝑛)𝑛
−1 ≤ 1.  

Remark 1. Note that, 𝜎𝑖,𝑛 relies on the capacity of the transport system. This means 𝜎𝑖,𝑛 [pax/∆𝑡] is directly 

related to both variables: the frequency of passing vehicles in service 𝑓𝑣𝑛 [s-1] (in the case of ropeway systems, 

all vehicles have the equivalent of 𝑓𝑣𝑛 value in each instant 𝑛, because pulling cable synchronises the 

separation –distance–  between vehicles), and the quantity of available places in the 𝑘th vehicle 𝑔𝑘,𝑖,𝑛 [pax], 

with 𝑘 = {1,2, … 𝐾}; thus, 𝜎𝑖,𝑛 = 𝑓𝑣𝑛 𝑔𝑘,𝑖,𝑛. Moreover, 𝑓𝑣𝑛 can be expressed according to the density of 

vehicles 𝑞𝑣𝑛, and the vehicles speed 𝑠𝑣𝑛, i.e. 

𝑓𝑣𝑛 = 𝑠𝑣𝑛 𝑞𝑣𝑛.  (2) 

Two different boarding/disembarking models are considered for the queuing model to describe the service 

behaviour of a typical ropeway system: 

The first model describes the boarding/disembarking process on the single platforms (see Fig. 1.b) 

belonging to stations between the loops of the line. The model is based on a stochastic service. The service on 

a platform directly depends on the service behaviour of the previous platform; i.e.,  𝜇𝑖,𝑛 depends on 𝑔𝑘,𝑖,𝑛. 

From the point of view of users in the queue, the vehicles in service have different (random) sizes because of 

user is interested in the available places in the vehicle. 

The second model describes the process for boarding/disembarking at terminal stations, located at the ends 

of the line. This model is based on constant service time (see Fig. 1.c); i.e., the service is constant and 

established by the operational characteristics. This service behaviour takes place according to two different 

operating conditions: (i) cases in which the ropeway system starts operating, and each vehicle is empty in order 

to pick up passengers; and (ii) cases in which the 𝑘th vehicle is located in one of the system’s terminal stations 

(passengers have finished their journey and just disembarked) 
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According to the both boarding/disembarking models, the quantity of users in the queue on the 𝑖th platform 

is 

𝐿𝑞𝑖,𝑛 = { 
𝐿𝑞𝑖,𝑛−1 + 𝜆𝑖,𝑛 − 𝜇𝑘,𝑖,𝑛 ;         

𝐿𝑞𝑖,𝑛−1 + 𝜆𝑖,𝑛 − 𝑐𝑣      ;         
  if first queuing model 

if second queuing model 
(3) 

and 𝜇𝑘,𝑖,𝑛 = 𝑔𝑘,𝑖,𝑛−ℎ + 𝜇𝑘,𝑖−1,𝑛−ℎ − 𝜎𝑘,𝑖−1,𝑛−ℎ, with 𝜇𝑘,𝑖−1,𝑛−ℎ representing the quantity of passengers that 

board the 𝑘th vehicle at the platform before (the vehicle spend ℎ𝑖 times of discrete-time period ∆𝑡 to transit 

between stations), and 𝜎𝑘,𝑖−1,𝑛−ℎ representing the quantity of passengers that disembarked from the 𝑘th vehicle 

on the preceding platform.  

Proposition 1. The general formulation to the mean waiting time is expressed as  

𝑊𝑔𝑛 =
1

𝑠𝑣𝑛 𝑞𝑣𝑛  
∑

𝐿𝑞𝑖,𝑛

𝜇𝑖,𝑛
𝑖   (4) 

Proof 1. By definition, the average waiting time for each platform depends on the ratio between the quantity 

of users in the queue, 𝐿𝑞𝑖,𝑛, and the users leaving the queue to board the vehicle, 𝜇𝑖,𝑛, adjusted for time they 

spend waiting in the queue, i.e. 

𝑊𝑔𝑛 = [𝑛, 𝑛 + 1] 
𝐿𝑞𝑖,𝑛

𝜇𝑖,𝑛
 ;     ∀ 𝑖 = {1,2, … , 𝐼} ; (5) 

therefore, the total weighted waiting time in the railway system is the sum of the values on all platforms, 

𝑊𝑔𝑛 = [𝑛, 𝑛 + 1] ∑
𝐿𝑞𝑖,𝑛

𝜇𝑖,𝑛
𝑖  , (6) 

then, taking Eq. (1) and considering that ∆𝑡 is equivalent to the inverse of the passing vehicles frequency 𝑓𝑣𝑛
−1

 

𝑊𝑔𝑛 =
1

𝑓𝑣𝑛  
 ∑

𝐿𝑞𝑖,𝑛

𝜇𝑖,𝑛
𝑖  , (7) 

taking into account Eq. (2) the proposition is proved. □ 

The discrete-event model deals with the analysis of the waiting lines with the objective of determining 𝑊𝑔𝑛 

value, which changes only when the passengers board the vehicle, 𝜇𝑖,𝑛 –and simultaneously other passengers 

disembark from the previous vehicle, 𝜎𝑘−1,𝑛. In other words, the proposed model is a composite of queues 

from a set of stochastic distributions {𝑃𝑎𝑖,𝑛, 𝑃𝑒𝑖,𝑛}. Therefore, only 𝑛 is required to examine the transitory 

behaviour of the system, and other time points do not affect the data relating to system operation. In Section 

3.1., we will develop the formulation of the service problem regarding to the service parameters behaviour 

(𝑠𝑣𝑛, 𝑞𝑣𝑛). 
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a. General diagram of urban ropeway systems. 

 
b. Queuing model of a simple platform.  c. Queuing model of a terminal station. 

Fig. 1. Service model of ropeway systems. 

2.2. Maintenance policy of ropeway systems 

Technical regulations govern the requirements for passenger installations by cable drives. Directive 

2000/9/EC (2000) standardises ropeway installations designed to carry persons (e.g., funicular railways, cable-

cars, gondolas, chairlifts and drag lifts) and which are designed, manufactured, put into service, and operated 

for the purpose of transporting passengers safely. The international standard BS/EN-1709 (2004) establishes 

general guidelines in relation to the inspection and maintenance required on the component systems: (ii) 

vehicles; (ii) carrier cables and pulling cables; (iii) electro-mechanical devices; (iv) traction and brake 

equipment; (v) rescue, monitoring and signalling devices; and (vi) installation and infrastructure. Moreover, 

there are two types of components associated with any ropeway system: (i) a set of mobile components which 

are driven by the pulling cable –such as the vehicle and its parts– that are influenced directly by 𝑠𝑣𝑛; and (ii) 

a set of structural components, such as supports, installation and infrastructure, that are influenced directly by 

both: 𝑠𝑣𝑛 and 𝑞𝑣𝑛.  

Remark 2. As part of the safety systems governing installations like ropeway systems, periodic preventive 

maintenance has been introduced as a technical specification on an industry-wide basis. The maintenance 

managers of ropeways have adopted a periodic preventive maintenance based on a periodic block-type 

maintenance policy, which provides for maintenance actions to be carried out according a fixed schedule based 

on linearly-spaced periods of chronological time. 
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The number of working cycles, 𝜔𝑗, produces wear-out of the 𝑗th component; thus, the ratio of cycles, 

denoted as 𝑟𝑗,𝑛
  [cycles/s], defines the rate of deterioration for the 𝑗th component. 

Proposition 2. The ratio of cycles is expressed as 

𝑟𝑗,𝑛
 = { 

2 𝐼 𝑠𝑣𝑛 𝑞𝑣𝑛

∑ ℎ𝑖𝑖
 ;         ∀ 𝑗   𝑖𝑓   𝑢 = 0  

 𝑙𝑣𝑛 𝑠𝑣𝑛 𝑞𝑣𝑛
2

∑ ℎ𝑖𝑖
 ;       ∀ 𝑗   𝑖𝑓   𝑢 = 1  

;  with 𝑢 = {0,1}, (8) 

where 𝑢 = 0 in the case which the 𝑗th component be a mobile component, 𝑢 = 1 in the case which the 𝑗th 

component be a structural component, and the value 𝐼 is the quantity of platforms. 

Proof 2. Consider the 𝑗th component as a moving component by the pulling cable; then, the component 

undergoes two cycles each time a platform is crossed (a first cycle entering the platform, and a second cycle 

leaving the platform), i.e. the quantity of cycles that are applied to a component during a loop journey is 2 𝐼 

[cycles]; moreover, the spent time by a vehicle for whole loop journey is ∆𝑡 ∑ ℎ𝑖  𝑖 [s]; therefore, 

𝑟𝑗,𝑛
 =

2 𝐼

∆𝑡 ∑ ℎ𝑖𝑖
;     ∀ 𝑗   𝑖𝑓   𝑢 = 0;  (9) 

then, taking Eqs. (1) and (2) into Eq. (9), the first part of the proposition is proved. Now, consider the 𝑗th 

component as a structural component belonging to the ropeway system. The component undergoes a single 

cycle each time that a vehicle crosses the component; i.e., the quantity of cycles that are applied to a component 

during a loop journey is  𝑞𝑣𝑛 𝑙𝑣𝑛 [cycles]; therefore, 

𝑟𝑗,𝑛
 =

𝑞𝑣𝑛 𝑙𝑣𝑛

∆𝑡 ∑ ℎ𝑖𝑖
;     ∀ 𝑗   𝑖𝑓   𝑢 = 1;  (10) 

again, taking Eqs. (1) and (2) into Eq. (10), the second part of the proposition is proved. □ 

Remark 3. Note that the operational parameters, 𝑞𝑣𝑛 and 𝑠𝑣𝑛, define the quality level of service 𝑊𝑔𝑛, and 

the degree of deterioration in the ropeway components as well, 𝑟𝑗,𝑛
 . 

Fig. 2.a shows the relationship between 𝑟𝑗,𝑛
  and the two types of components (mobile and structural) over a 

typical service time 𝑁, which is classified by periods of users demand, 𝑚 = {1, 2, … }, where 𝑚 = 1 represents 

the users demand of full rush hour, and ∀𝑚 ≠ 1 represents the users demand of a partial rush hour. Considering 

the periods of users demand for the ropeway system, the performed working cycle by the 𝑗th component can 

be expressed as 𝜔𝑗 = ∆𝑡 ∑  𝑟𝑗,𝑛𝑛 . 

Let 𝑓𝑗 be defined as the fault probability distribution of the 𝑗th component – working cycles per fault 

[𝜔/faults]– (see Fig. 2.b) and 𝐹𝑗 as the cumulative distribution function corresponding to 𝑓𝑗 on a determined 

working cycle 𝜔𝑗, 𝐹𝑗(𝜔𝑗 ≤ 𝜔), see Fig. 2.c. The reliability probability of each 𝑗th component in the transport 

system is 𝑅𝑗 = 1 − 𝐹𝑗 with 𝑗 = {1, 2, … , 𝐽} (see Fig. 2.d). The global reliability of the system, 𝑅𝑔, is directly 

relied on the behaviour of 𝑅𝑗 as follows 
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𝑅𝑔 = { 
∏ 𝑅𝑗𝑗 ;                        ∀ 𝑗   𝑖𝑓   𝑢′ = 0   

1 − ∏ (1 − 𝑅𝑗)𝑗 ;    ∀ 𝑗   𝑖𝑓   𝑢′ = 1  
;  with 𝑢′ = {0,1}  (11) 

where 𝑢′ = 0 in the case which the 𝑗th component be in a series relationship configuration over the system, 

i.e. a failure of the any 𝑗th component will result in a failed function in the whole system; and 𝑢′ = 1 in the 

case where the 𝑗th component is in a parallel relationship configuration over the system, i.e. the system 

performs as long as a single 𝑗th component remains operational. 

Ropeway maintenance managers may adopt different maintenance policies regarding the repair actions on 

a failed component ahead of the next scheduled preventive maintenance. The repairing actions affect the 

technical state of the repaired component in terms of its working life (Khatab, 2013), i.e. 𝛼 𝜔𝑗, with 0 ≤ 𝛼 ≤

1, where 𝛼 is the age reduction coefficient after the maintenance action. In case of the maintenance manager 

adopts a maintenance policy with a value 𝛼 = 0, the reliability level of the component takes the nominal value 

𝑅𝑗 = 1, and the working cycles is restored to 𝜔𝑗 = 0. This means that the corrective actions are focused on a 

perfect repair bringing the component to as-good-as-new condition (AGAN). AGAN involves repairing the 

component using the required resources to obtain the highest repair quality of the component. But, in a case 

where maintenance management adopts a maintenance policy with a value 𝛼 = 1, the reliability level of the 

component remains the value before the fault 𝑅𝑗(𝜔𝑗), meaning that the corrective actions are focused on a 

minimal intervention to the component, entitled as-bad-as-old (ABAO), which consists in repairing the 

component using the minimum possible resources to obtain the working component again (Hajej et al., 2012, 

Martinod et al., 2018). In Section 3.2., we will develop the formulation of the maintenance policy problem 

regarding to the imperfect preventive maintenance. 

 

    a. Rate of cycles to different type of components.  b. Fault probability functions. 
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c. Cumulative fault probability functions.  d. Reliability probability functions. 

Fig. 2. Maintenance model of ropeway systems. 

3. Proposed Model 

There are two different methodologies available to address the problem: (i) an aspiration-level model, which 

works directly with the measure of the queuing performance with the goal of determining an acceptable range 

for the service level, 𝜇𝑖,𝑛, by specifying reasonable limits on the queuing performance (the limits represent the 

aspiration level); and (ii) a cost-based model, which attempts to balance two conflicting costs: (a) the cost of 

offering an efficient service, and (b) the cost of delaying the service offer (passengers waiting time) . The two 

types of cost are in conflict because any increase to one automatically affects the other. Both approaches 

recognise that higher service levels reduce the waiting time in the system, and both models aim to strike a 

balance between service level and waiting time (Taha, 2011). The proposed work is focused on the cause-

effect relationship between the joint service-operational policy and the maintenance policy, a relationship 

developed in the context of the cost-based model optimisation analysis: (i) penalty cost for passengers waiting 

time, and (ii) maintenance activities cost. 

The paper tackles the problem by developing the formulation in three stages: (i) formulation of the service; 

(ii) formulation of the maintenance, which is analysed by two different strategies: (a) corrective and (b) 

preventive; and (iii) formulation of the combined service-maintenance policies. 

3.1. Development formulation of the service problem 

A discrete-time model is used to describe the queuing situations, in which the passengers: (i) demand the 

system, 𝜆𝑖,𝑛; (ii) wait in a queue, if necessary, 𝑊𝑔𝑛; (iii) receive the service, 𝜇𝑖,𝑛; and (iv) arrive at their 

destination, 𝜎𝑖,𝑛. The discrete-time model is composed of a set of interrelated queues with the objective of 

determining 𝑊𝑔𝑛 value. 

Remark 4. Note that the 𝑊𝑔𝑛 value constitutes a penalty cost. The methodologies to quantify the penalty cost 

are directly defined by the operation managers of the ropeway systems. Each can use different criteria to 

quantify the penalty cost according to its service policy. 
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In this paper, the relationship used to describe the penalty cost for waiting time is expressed as 𝐶𝑤 [mu/∆𝑡] 

(see Fig. 3.a); thus, the penalty cost for the global waiting time is defined as 

𝛤𝑤𝑔 = 𝐶𝑤 ∑ 𝑊𝑔𝑛𝑛   . (12) 

Remark 5. This work assumes that 𝛤𝑤𝑔 is described as a linear function, where the 𝐶𝑤 value is a constant 

linear rate. The linear function is adopted because it is efficient and appropriately describe the cost for 

passengers waiting time. The task of building on these assumptions will be part of future works, according to 

the correlations highlighted in the literature review. 

Section 4.2. will develop an application example of the service parameters behaviour regarding to the penalty 

cost by 𝛤𝑤𝑔. 

3.2. Development formulation of the maintenance problem 

The maintenance actions and their associated cost are a well-known topic for ropeways maintenance 

managers, who must assess the relative merits of preventive versus corrective maintenance policies. 

3.2.1. Formulation of corrective maintenance  

The repairing actions on a failed component are executed between the scheduled preventive maintenances, 

i.e. between the working cycles range 𝐴𝑗 = 𝜔𝐴 − 𝜔𝑜 (see Fig. 3.b); in addition, the repairing actions have a 

cost associated for the fault of the 𝑗th component, which is expressed as an cost value on monetary unit, 𝐶𝑐𝑗 

[mu]. 

Remark 6. The corrective maintenance policy (commonly used by the maintenance managers) corresponds to 

ABAO (Pham and Wang, 1996; Khatab et al., 2013). This work adopts a ABAO corrective maintenance policy, 

which is defined by the age reduction coefficient 𝛼 = 1, i.e. the 𝑅𝑗 value, before the fault, remains (Martinod 

et al., 2018). 

Proposition 3. The cost of the corrective maintenance, 𝛤𝑐, are expressed as the sum of the cost for the fault 

of the components affected by their probability of fault, 𝜑𝑗, 

𝛤𝑐 = ∑ 𝐶𝑐𝑗 𝜑𝑗𝑗   (13) 

where 𝜑𝑗 is the average failure probability for the 𝑗th component, from the current lifetime, 𝜔𝑗, to the next 

preventive maintenance action, 𝜔𝐴.  

Proof 3. The fault probability of the 𝑗th component is quantified by the mean area value from the probability 

function of fault distribution 

𝜑𝑗 = 𝑃 (𝜔𝑗 ≤ 𝜔 ≤
𝜔𝑗+𝜔𝐴

2
)  

                   = (𝜔𝐴 − 𝜔𝑗)
−1

∫ 𝑓𝑗(𝜔) 𝑑𝜔
𝜔𝐴

𝜔𝑗
 , 

(14) 
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with 𝜔𝑗 < 𝜔𝐴. In addition, the probability average value of the function of fault distribution can be expressed 

by the mean value of the cumulative fault distribution 

(𝜔𝐴 − 𝜔𝑗)
−1

∫ 𝑓𝑗(𝜔) 𝑑𝜔
𝜔𝐴

𝜔𝑗
= 𝐹𝑗 (𝜔𝑗 +

𝜔𝐴−𝜔𝑗

2
) . (15) 

If the relationship 𝜔𝑗 + (𝜔𝐴 − 𝜔𝑗) 2⁄  is denoted as 𝜙𝑗, it is possible to express 𝐹𝑗(𝜙𝑗) = 𝜑𝑗; then, the 

probability of fault, which affects 𝐶𝑐𝑗 to get the corrective maintenance cost actions, has been proved. □ 

3.2.2. Formulation of preventive maintenance 

The preventive maintenance actions are adjusted to improve the 𝑅𝑔 value. The imperfect preventive 

maintenance is well-established the field of engineering (Hajej et al., 2014; Hajej et al., 2015) and has been 

the preferred approach of the maintenance managers of ropeways (Martinod et al., 2018); therefore, the 

imperfect preventive maintenance is considered in this study, which is defined by the age reduction coefficient, 

0 < 𝛼 ≤ 1. After each preventive maintenance action, the equipment is restored on a lower level than the 

nominal state of its components, i.e. over the lifetime of the system its components undergo wear and 

degradation.  

Let us define the highest quality maintenance cost as  𝐶𝑚𝑎𝑥𝑗 [mu], which is the cost of the required 

resources to carry out AGAN maintenance. In other words 𝐶𝑚𝑎𝑥𝑗 represents the cost of the required resources 

to get the highest quality maintenance and to restore the reliability function of the component to its nominal 

value, 𝑅𝑗 = 1. As a consequence, when the budget of a maintenance action for the 𝑗th component is equivalent 

to 𝐶𝑚𝑎𝑥𝑗, the executed maintenance action consists of replacing the component with a new one; hence, the 

value of the age reduction is restored, 𝛼 = 0 (Martinod et al., 2018). 

The cost of the imperfect maintenance action is a fraction of 𝐶𝑚𝑎𝑥𝑗, which is directly related to the age 

reduction coefficient of the component; thus, the cost of a preventive maintenance action can be expressed as 

𝐶𝑚𝑎𝑥𝑗 (1 − 𝛼). The preventive actions are classified according to two types: major maintenance and minor 

maintenance. The age reduction coefficient associated with the preventive maintenance action is  𝛼 = {𝛼𝑝1, 

𝛼𝑝2}, whit 𝛼𝑝1 and 𝛼𝑝2 ∈ (0 < 𝛼 ≤ 1), where 𝛼𝑝1 is the age reduction after major maintenance action, and 

𝛼𝑝2 is the age reduction coefficient after minor maintenance. 

Remark 7. The cost of the major maintenance action is higher than the cost of the minor maintenance action, 

𝐶𝑚𝑎𝑥𝑗 (1 − 𝛼𝑝1) ≫ 𝐶𝑚𝑎𝑥𝑗 (1 − 𝛼𝑝2), therefore 𝛼𝑝1 ≪ 𝛼𝑝2. 

Proposition 4. The cost of an imperfect maintenance action by the preventive maintenance policy is expressed 

as 

𝐶𝑖𝑗 = 𝐶𝑚𝑎𝑥𝑗  (1 −
 𝛼𝑝1+ 𝑝 𝛼𝑝2

1+𝑝
) , (16) 
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Proof 4. By definition, the cost of the imperfect maintenance relies on the sum of the costs of maintenance 

actions executed over the period of operating service time; i.e., the cost of the major maintenance and all the 

minor maintenances over a full cycle of preventive maintenance is 

𝐶𝑖𝑗 =  𝐶𝑚𝑎𝑥𝑗 (1 − 𝛼𝑝1) +  𝐶𝑚𝑎𝑥𝑗 ∑  (1 − 𝛼𝑝2)𝑝  ; (17) 

thus, the relationship between the major and the minor preventive maintenances is defined by means of the 

parameter 𝑝, which describes the quantity of minor maintenance actions per each major maintenance action, 

where 1 + 𝑝 is a full cycle of preventive maintenance over the long-term horizon of time 𝜂; therefore the 

expression is write as 

𝐶𝑖𝑗 =  𝐶𝑚𝑎𝑥𝑗 ((1 − 𝛼𝑝1) + 𝑝 (1 − 𝛼𝑝2)) , (18) 

and after some algebraic manipulations the proposition is proved. □ 

This work considers two preventive maintenance policies: 

(i) The periodic block-type is the preventive maintenance policy adopted by the ropeways maintenance 

managers. Given a horizon of time expressed as 𝜂 with a piecewise linear distribution of time 𝑇𝑗 (see Fig. 

3.c) the distribution of time over a full cycle of preventive maintenance is defined as 𝑇𝑗 𝜂 = 1 + 𝑝. The cost 

of the periodic block-type maintenance policy is expressed as 

𝛤𝑝 = ∑ 𝑇𝑗 𝐶𝑖𝑗𝑗  , (19) 

(ii) The age-based maintenance policy is executed as the reliability indices of the components reach a 

predetermined level (Wang, 2002), i.e. the system undergoes a preventive maintenance whenever its 

reliability 𝑅𝑔 reaches a given threshold level, 𝑅𝑔𝑖𝑛𝑓 (Martinod et al., 2018). Let the working cycles range 

be expressed as 𝐴𝑗 = 𝜔𝐴 − 𝜔𝑜 such that 𝑅𝑔(𝜔𝑜) is the reliability level of the last preventive maintenance 

denoted as 𝑅𝑔𝑜, and ∃ 𝜔𝐴 ∈  𝜔 ∶  𝑅𝑔(𝜔𝐴) = 𝑅𝑔𝑖𝑛𝑓. 𝜔𝐴 represents the quantity of working cycles in which 

the system reaches the reliability threshold level 𝑅𝑔𝑖𝑛𝑓 (see Fig. 3.d). Therefore, 𝐴 covers the working 

cycles executed by the system in response to deterioration between preventive maintenances, and the period 

between maintenances can be expressed as 𝐴𝑗 =  𝑅𝑔−1(𝑅𝑔𝑖𝑛𝑓) − 𝑅𝑔−1(𝑅𝑔𝑜), where 𝑅𝑔−1(∙) expresses 

the inverse function of the global reliability. The cost of the age-based maintenance policy is expressed as 

𝛤𝑎 = ∑ 𝐴𝑗
−1 𝐶𝑖𝑗𝑗  , (20) 

Section 4.3. will develop an application example of the maintenance parameters behaviour regarding types 

of preventive maintenance policies: periodic bock-type and age-based. 
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a. Waiting cost relationship. b. Corrective maintenance parametrization. 

 

c. Periodic block-type preventive maintenance.  d. Age-based preventive maintenance. 

Fig. 3. Relationship of maintenance policy parameters. 

3.3. Formulation of the joint service-maintenance problem 

This work introduces a stochastic optimisation model in order to simultaneously prove a cost-efficient 

service and maintenance plan. The decision variables are the service rate, 𝑞𝑣𝑛 and 𝑠𝑣𝑛  (adopted for each 

period) and the periodicity of the maintenance actions, 𝑇𝑗 and 𝐴𝑗 (corrective and preventive). The optimal 

service plan is obtained by minimising the expected penalty cost for passengers waiting time and the cost of 

maintenance activities. From that point, the proposed model merges the service policy and the maintenance 

policy. The maintenance cost increases as a service level increases (i.e. decreasing the cost of waiting time). 

Formally, the problem is solved thought a cost-based model made up of waiting cost, 𝛤𝑤𝑔 (Eq. 12), corrective 

maintenance cost, 𝛤𝑐 (Eq. 13), and preventive maintenance cost, 𝛤𝑝 (Eq. 19) and 𝛤𝑎 (Eq. 20), as follows 
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𝑚𝑖𝑛
𝜔𝑗

𝐶 ∶ { 
𝐶𝑤 ∑ 𝑊𝑔𝑛𝑛 + ∑ 𝐶𝑐𝑗 𝜑𝑗𝑗 + ∑ 𝑇𝑗 𝐶𝑖𝑗𝑗      ; 

𝐶𝑤 ∑ 𝑊𝑔𝑛𝑛 + ∑ 𝐶𝑐𝑗 𝜑𝑗𝑗 + ∑ 𝐴𝑗
−1 𝐶𝑖𝑗𝑗  ;

  
if periodic block maintenance 

if age-based maintenance 
(21) 

Subject to the following constraints 

        0 ≤  𝑔𝑘,𝑖,𝑛 ≤  𝑐𝑣 ,    ∀ 𝑘, 𝑖, 𝑛 

         0 ≤   𝜇𝑖,𝑛  ≤ min (𝐿𝑞𝑖,𝑛, 𝑔𝑘,𝑖,𝑛) , ∀ 𝑖, 𝑛 

        0 ≤  𝜎𝑘,𝑛  ≤  𝑐𝑣 − 𝑔𝑘,𝑖,𝑛 ,  ∀ 𝑘, 𝑛 

𝑠𝑣𝑖𝑛𝑓  ≤   𝑠𝑣𝑛   ≤ 𝑠𝑣𝑠𝑢𝑝 ,   ∀ 𝑛 

𝑞𝑣𝑖𝑛𝑓  ≤  𝑞𝑣𝑛   ≤ 𝑞𝑣𝑠𝑢𝑝 ,  ∀ 𝑛 

𝑅𝑔𝑖𝑛𝑓 ≤   𝑅𝑔   ≤ 1 , 

        0 ≤  𝑊𝑔𝑛 ≤ 𝑊𝑔𝑠𝑢𝑝  , 

        0 ≤ ∑ 𝜆𝑖,𝑛𝑖,𝑛 ≤ 𝑐𝑣 ∑ 𝑠𝑣𝑛 𝑞𝑣𝑛𝑛  , 

       ∑ 𝜆𝑖,𝑛𝑖,𝑛 = ∑ 𝜎𝑘,𝑛𝑘,𝑛  , 

(21.a) 

(21.b) 

(21.c) 

(21.d) 

(21.e) 

(21.f) 

(21.g) 

(21.h) 

(21.i) 

where: 

- Eq. (21.a) highlights that the available places of a vehicle, 𝑔𝑘,𝑖,𝑛, must be less or equal to the vehicle’s 

capacity, 𝑐𝑣; 

- Eq. (21.b) means the quantity of passengers boarding the vehicle, 𝜇𝑖,𝑛, must be less or equal that the quantity 

of passengers waiting in the queue, 𝐿𝑞; but besides, 𝜇𝑖,𝑛 must be less or equal that the available places of 

the vehicle, 𝑔𝑘,𝑖,𝑛; 

- Eq. (21.c) expresses that the quantity of passengers disembarking from the vehicle, 𝜎𝑘,𝑛, must be less or 

equal than the quantity of the passengers traveling inside the vehicle, 𝑐𝑣 − 𝑔𝑘,𝑖,𝑛; 

- Eq. (21.d) is related to an operating condition; namely, the speed of the vehicles  𝑠𝑣𝑛 which is limited by a 

range [𝑠𝑣𝑖𝑛𝑓, 𝑠𝑣𝑠𝑢𝑝]; 

- Eq. (21.e) refers to another operating condition; namely, that the system must have a range of vehicles in 

active service (density of vehicles) [𝑞𝑣𝑖𝑛𝑓 , 𝑞𝑣𝑠𝑢𝑝]; 

- Eq. (21.f) is related to the maintenance policy, where 𝑅𝑔𝑖𝑛𝑓 is the lower limit of global reliability of the 

system; 

- Eq. (21.g) is related to other service policy, where 𝑊𝑔𝑠𝑢𝑝 is the upper limit of global waiting time in the 

queue; 

- Eq. (21.h) implies that the capacity of the transport system, 𝑐𝑣 ∑ 𝑠𝑣𝑛 𝑞𝑣𝑛𝑛 , must be greater than the total 

passenger demand for a given time horizon  in the transport system, ∑ 𝜆𝑖,𝑛𝑖,𝑛 ; otherwise, the system is 

overloaded; 

- Eq. (21.i) indicates that the quantity of passengers disembarking from all vehicles on the time horizon 

∑ 𝜎𝑘,𝑛𝑘,𝑛 , must be equal to the quantity of users that arrive on the platforms, ∑ 𝜆𝑖,𝑛𝑖,𝑛 , . It means that with 

the close of a period of service time at the end of a full working day, all passengers are served and no one 

remains in the system. In other words, when the system is closed after a working day, the system is empty. 
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A model of the ropeway transport has been developed in a virtual environment using a programming 

language, which allows investigating the effects of a wide range of possible conditions and parameters 

variation. The results obtained from the model provides accurate predictions of the behaviour of the system 

and its interaction with the decision variables. A ropeway transport system has been defined (see Appendix 

A). A sensitivity model analysis is executed by mean of 50 sets of test, every test covers 500 events. The input 

data are 𝜆𝑖,𝑛 (a set to each platform) which are defined as a set of variables with stochastic Poisson distribution 

(see Fig. 4). 

Appendix B (Fig. B.1) shows every single mean waiting time 𝑊𝑔𝑛, which represents the estimator used to 

describe the system behaviour over the discret-time; therefore, a relationship can be established between a 

measure of central tendency such as the average values, 𝑚𝑒𝑎𝑛(𝑊𝑔𝑛), and the measure of dispersion such as 

the deviation standard, 𝑠𝑡𝑑(𝑊𝑔𝑛), to quantify the sensitivity of the model regarding the events. The ratio 

between 𝑚𝑒𝑎𝑛(𝑊𝑔𝑛) and 𝑠𝑡𝑑(𝑊𝑔𝑛) to each platform is {0.007, 0.065, 0.011, 0.098}%, which represent 

an acceptable deviation level for the scope of this work. 

The model is subjected to a convergence analysis to reach a stable value, Appendix B (Fig. B.2) shows the 

results of the mean waiting time in the queue to each platform, a lower value of 3% variation represents an 

acceptable level of deviation from this study. Therefore, in order to fulfil the requirement a total of 18 

simulations are necessary. 

 

     a. Probability functions of arrival users.                         b. Dataset of arrival users. 

Fig. 4. Poisson distribution of users arrival to the platforms, 𝜆𝑖,𝑛. 
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4. Case study: urban aerial ropeway system 

This section provides an application example to expose the obtained numerical results. According to the 

general operational characteristics of ropeway transport systems, two types of aerial ropeways are identified 

(Mizuma, 2004; Alshalalfah et al., 2013): 

(i) aerial tramway –téléphérique– in this system, two large vehicles (cabins) are permanently attached to each 

leg of the pulling cable which alternatively turns in one direction. The vehicles stop when they reach the 

station (see Fig. 5.a). This feature allows vehicle speed and cable velocity to remain the same throughout 

the journey. In addition, two operational aerial tramway designs are available: (a) an aerial tramway –

reversible ropeway system consists of two vehicles suspended from cables, situated at opposite ends of the 

cable loops –when one is ascending, the other is descending, and they pass each other midway on the cable 

span–; (b) in a dual-haul aerial tramway system, there are two reversible vehicles that run on parallel tracks. 

There are two guide ropes and a haul rope loop per vehicle, which allows for single-vehicle operation when 

demand warrants. 

(ii) gondola –télécabine– this system has a pulling cable revolving constantly in one direction; the vehicles 

(gondolas) are attached and detached when entering and travelling through a platform (see Fig. 5.b). This 

feature allows the vehicles to be set at regularly spaced close intervals with the cable continuously 

circulating with the vehicles. The vehicles detach from the hauling rope at the platforms, decelerated, and 

carried at a very low speed through an embarking/disembarking area, and finally accelerating upon 

reattachment to the haulage rope for high speed travel on the line between stations. There are three gondola 

designs: (a) the mono-cable detachable gondola, with vehicles that are suspended from a moving loop of 

steel cable, (b) the bi-cable detachable gondola, which uses reversible ropeway technology, but the system 

is detachable, which allows the system to have a high capacity and a detachable circulating systems, and 

(c) tri-cable detachable gondola –3S– combines features of both gondola and reversible ropeway systems 

and detachable gondolas. 

Our case study is concerned with a fleet supporting an urban mass-transport system; in particular, a gondola-

type aerial cable system running on a continuous cycle, see figure 5(b), mono-cable (simple ring) with a 

detachable release clamp device (Martinod et al., 2015). The urban transport system in our case study is similar 

in design and construction to those used for tourist passenger transports in winter regions (e.g. Daemyung, 

Korea; La Clusaz, France; Donovaly, Slovakia) (Estepa et al., 2014), but it does not share the tourist purpose 

of these other examples (Mizuma, 2004). Therefore, the transport system in question is required at high levels 

of service demand that have not been supported by similar systems, causing highly elevated wear rates 

(Hoffmann, 2006); it will be hence the aerial cable transportation system with highest level of demand, in 

terms of wear hours of components and service (Martinod et al., 2015). The general features of the application 

example are illustrated in Table A.1. 
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a. Aerial tramway (téléphérique) fixed cabins. 

 
b. Gondola (télécabine) with a detachable release clamp. 

Fig. 5. General operational characteristics of ropeway transport systems. 

4.1. Service parameters behaviour  

A set of tests has been developed in which the decision variables (𝑠𝑣𝑛, 𝑞𝑣𝑛) were considered; thus, a set of 

combinatory tests was performed based on the ranges de operation of the ropeway system, 𝑞𝑣𝑛 =

{50, … , 66}[veh] and 𝑠𝑣𝑛 = {1.5, … ,5.5}[m/s]. With each combination run, the quantity of simulations was 

defined by the convergence analysis to check the stability of results (Section 3.3).  

The weighted mean of users that arrive on terminal platforms (𝜆1,𝑛, 𝜆3,𝑛) and the halfway-platforms (𝜆2,𝑛, 

𝜆4,𝑛) reflects the different levels of demand at these locations (e.g. the typical demand service of the terminal 

platforms are higher than the halfway-platforms). The relationship between the different levels of the passenger 

demand can be expressed as 𝑙𝑖𝜆𝑖,𝑛 where 𝑙𝑖 is the proportional coefficient between platforms; as such, 𝑙1 𝜆1,𝑛 =

𝑙2 𝜆2,𝑛 = 𝑙3 𝜆3,𝑛 = 𝑙4 𝜆4,𝑛. In the proposed example, the relationship between the passenger demand at each 

platform can be written as 𝜆1,𝑛 = 1.87𝜆2,𝑛 = 1.25𝜆3,𝑛 = 2.13𝜆4,𝑛. In addition, the tests are structured by the 

conditions of user demand from rush hour to off-peak periods; see figure 2(a). A set of five demand conditions 

are established (𝑙𝑖 𝜆𝑖,𝑛)𝑚 with 𝑚 = {1, … , 5} where (𝑙𝑖  𝜆i,𝑛)1 represents the demand conditions of full rush 
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hour, and (𝑙𝑖 𝜆𝑖,𝑛)5 represents the demand conditions of off-peak periods; thus, a total of 8.917 tests were 

executed. Table 2 shows the 𝑚th Poisson parameter of (𝑙𝑖  𝜆𝑖,𝑛)𝑚 to the 𝑖th platform (see Fig. 6). 

The results of these tests are synthesised on Fig. 7. An initial analysis was carried out to identify the 

combination of the values 𝑠𝑣𝑛 and 𝑞𝑣𝑛, that must be provided by the transport system to reach a service policy 

without incurring passenger waiting time; i.e.,  𝑊𝑔𝑛 = 0. Fig. 7.a shows the boundary values of 𝑠𝑣𝑛 and 𝑞𝑣𝑛 

in each demand condition. If the manager chooses a set of values equal to or higher than to the boundary, the 

users can board the vehicle without waiting in a queue. A second analysis is focused on assessing the values 

of 𝑠𝑣𝑛 and 𝑞𝑣𝑛 at which the transport system can offer a service with an acceptable waiting time of passengers 

defined by the service policy, i.e. 𝑊𝑔𝑛 ≤ 𝑊𝑔𝑠𝑢𝑝. Fig. 7.b shows these boundary values. If the manager 

chooses a set of values 𝑠𝑣𝑛 and 𝑞𝑣𝑛 equal to or higher than the boundary, the users face a shorter waiting time 

that the waiting limit, 𝑊𝑔𝑠𝑢𝑝. A third analysis is the quantification of 𝛤𝑤𝑔 according each user demand 

conditions (𝜆𝑖,𝑛)𝑚, see Fig. 7.c. 

Table 2. 

Poisson parameters of the users demand to each platform, (𝑙𝑖  𝜆𝑖,𝑛)𝑚 [pax/∆𝑡]. 

  

Rush hour Off-peak 

periods Full 80% 50% 30% 

 𝑚 = 1  𝑚 = 2  𝑚 = 3  𝑚 = 4  𝑚 = 5 

Platform 1 (𝑙1𝜆1,𝑛)𝑚 15.0 12.0 7.5 4.5 3.0 

Platform 2 (𝑙2𝜆2,𝑛)𝑚 8.0 6.4 4.0 2.4 1.6 

Platform 3 (𝑙3𝜆3,𝑛)𝑚 12.0 9.6 6.0 3.6 2.4 

Platform 4 (𝑙4𝜆4,𝑛)𝑚 7.0 5.6 3.5 2.1 1.4 

 

 

 Fig. 6. Dataset of users arrival conditions, (𝑙𝑖 𝜆𝑖,𝑛)
𝑚

 [pax/∆𝑡]. 
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a. Waiting time level, 𝑊𝑔 < 0. 

 

c. Waiting time cost, 𝛤𝑤𝑔 [mu]. 
 

b. Waiting time exceeds the waiting level, 𝑊𝑔 < 𝑊𝑔𝑠𝑢𝑝. 

Fig. 7. Service parameters behaviour, 𝑊𝑔 [∆𝑡] and 𝛤𝑤𝑔 [mu]. 

4.2. Maintenance parameters behaviour 

The example is focused on the maintenance conditions of two sets of critical components for the 

exploitation of ropeway transport: (i) the conveyor-track system, and (ii) traction system. 

The conveyor-track system has of the ability to decelerate/accelerate the vehicles around each platform; 

there is one independent system per platform. The conveyor-track system is considered one of the structural 

components (according to the section 2.2). The ropeway system requires that very conveyor-track works, or 

else the system must stop until the failure is fixed, this affecting the service policy; thus, the sets of conveyor-

track systems have a series configuration on the ropeway transport, with a set of reliability functions expressed 

as {𝑅1, 𝑅2, 𝑅3, 𝑅4}. 

The traction system is composed by three independent and redundant systems {𝑅5, 𝑅6, 𝑅7} (see Fig. 8). 

There are two sets of electric motors, with each motor joined to a different gearbox. The ropeway system 

requires just one working motor-gearbox, and the second, standby motor-gearbox is available for maintenance 

actions. The third redundant traction system is a set of engine-gearbox; this traction system works in the case 

of the electrical network undergoes a cut off. Thus, the sets of traction systems have a parallel configuration 

on the ropeway transport. 

Following the example, the set of reliability function is {𝑅1, … , 𝑅𝐽} with 𝐽 = 7, and the global reliability 

expression is 𝑅𝑔 = ∏ 𝑅𝑗
𝐽−3
𝑗=1 ⋅ (1 − ∏ (1 − 𝑅𝑗)𝐽

𝑗=5 ). A previous study (Trujillo, 2013) developed an evaluation 

and analysis focused on components of a ropeway system based on reliability, maintainability, and availability 
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(RMA). That study measured the fault probability distribution of the detachable grips, and its reliability 

probability. The author made a Kosmogorov-Smirnov test and found the distribution of the faults belong to 

Weibull distributions.  

The example considers all analysed components, 𝑗 = {1, … , 𝐽}, belong to the same type of components (in 

this case, the components belong to the structural elements in the system), the same maintenance policy is 

applied to the same type of the components. An analysis of the failure probability progress on the transport 

system is made. Deterioration of the system is computed in three stages: (i) the functions 𝑓𝑗, 𝐹𝑗 and 𝑅𝑔 are 

calculated to obtain the progressive degradation of the system according to typical operation conditions. 

Considering just the corrective maintenance actions, it means a reactive maintenance policy is applied, without 

preventive maintenance actions, see Fig. 9.a; (ii) the effect of the preventive imperfect maintenance action to 

each period of time is calculated; and (iii) the degradation system is found by the superposition principle, to 

get the mixed effect due to the corrective and preventive maintenance actions on the system (see Fig. 9.b). 

Two scenarios are considered for application example: 

(i) maintenance cost calculated according to periodic block-type preventive maintenance. This is the current 

maintenance policy applied by the maintenance managers of ropeways systems and it is the traditional 

maintenance policy established by the international regulation. The decision variables (𝑇𝑗, 𝑠𝑣𝑛, 𝑞𝑣𝑛) have 

been considered as a combinatorial tests based on the range 𝑇𝑗 = {3, … ,12}[maint./year] and the working 

cycles 𝜔(𝑠𝑣𝑛, 𝑞𝑣𝑛) = {1.18E4, … ,4.56E4}[cycles]. Each combination was run and the quantity of 

simulations was governed by the convergence analysis to check the stability of results. Fig. 10.a shows a 

synthesis of the results. The cost of the periodic block-type preventive maintenance do not rely on the 

degradation of the components, but it is directly proportional to its periodicity, 𝑇𝑗. The cost of the corrective 

maintenance increace with the degradation of the components, but decrease with the periodicity of the 

periodic block-type preventive maintenance. 

(ii) age-based preventive maintenance. This scenario can be used to quantify the effectiveness of the applied 

current maintenance policy used by the maintenance management. Fig. 10.b shows a synthesis of the 

results. The cost of the age-based preventive maintenance depends on the degradation of the components. 

As such, quantity of maintenance actions is in function of 𝑅𝑔. Note that the quantity of preventative 

maintenances corresponds to 7 maintenance actions per year, the cost of the corrective maintenance changes 

of tendency; i.e., the cost behaviour of the corrective maintenance for the age-based preventive maintenance 

can be classified in two performances: (a) the value of the corrective maintenance cost decreases until a 

defined quantity of preventive maintenances, and (b) after the defined quantity of preventive maintenances, 

the value of the corrective maintenance cost remain almost constant.  
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Fig. 8. Components configuration on the ropeway system. 

  

            a. Failure probability at frequency domain.           b. Effects of preventive maintenance actions. 

Fig. 9. Failure probability progress of the system. 

4.3. Cost of service and maintenance policies 

By using Eq. 21, which relates the cost of the service and maintenance policies, it is possible to get two 

independent objective functions 𝐶(𝑇𝑗, 𝜔): (i) an objective function regarding to the periodic block-type 

maintenance policy (see Fig. 10.c), and (ii) an objective function regarding to the age-based maintenance 

policy (see Fig. 10.d). 

An analysis of 𝑚𝑖𝑛 (𝐶(𝑇𝑗, 𝜔)) belonging to the periodic block-type maintenance policy shows the lowest 

cost is obtained through quarterly preventive maintenance actions for a working-life of 4.59E4 [cycles]. Once 

the working-life reaches a value of 1.139E5 [cycles], however, the lowest cost is achieved with a monthly 

preventive maintenance action. The function 𝑚𝑖𝑛 (𝐶(𝑇𝑗, 𝜔)) belongs to the age-based maintenance policy. It 

indicates that the periodicity of the preventive actions have a constant value over the working-life of the system. 

The lowest cost is gotten with a two-monthly preventive maintenance action. 

 

Conveyor system

R1 R2 R4R3

Traction
system

R5

R6

R7
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Fig. 10.e shows the relationship between the functions 𝑚𝑖𝑛 (𝐶(𝑇𝑗, 𝜔)) in each of the maintenance policies. 

Note that if the components of the system have a low working-life value, the appropriate policy is the periodic 

block-type maintenance (the cost of the periodic block-type maintenance is 27.62% lower than the age-based 

maintenance). However, if the components of the system undergo wear and a decline in performance, due to 

the high demand on the system, the appropriate policy is the age-based maintenance (the cost of the periodic 

block-type maintenance is 37.40% higher than the age-based maintenance). Therefore, there is an optimal 

working-life value for a change in the maintenance policy. This value ensures minimal cost (considering the 

operational service and the maintenance actions) during the service life of the transport system. The optimal 

working-life value is calculated as 6.75E4 [cycles]. 

 

a. Cost of service and periodic block-type maint. policy.    b. Cost of service and age-based maint. policy 

 

c. Objective fn. with a periodic block-type maint. policy.   d. Objective fn. with an age-based maint. policy. 
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e. Minimal functions of different maintenance policies. 

Fig. 10. Cost of service and maintenance policies. 

5. Conclusions and discussion 

In this study, a mathematical framework is developed to integrate service and maintenance policies in order 

to solve the queueing problem and the cost of maintenance actions in public transport services. For this 

purpose, the authors have proposed: (i) a stochastic discrete-event model composed of a set of interrelated 

queues for the formulation of the service problem using a cost-based mathematical expression; and (ii) an 

imperfect preventive maintenance based on two different maintenance polices (periodic block-type 

maintenance and age-based maintenance). 

In the first stage of the analysis, a mathematical model of the service policy was proposed to determine the 

values of the operational parameters (𝑠𝑣𝑛, 𝑞𝑣𝑛) in which the transport system offers different levels of service 

quality: (i) users get the service they need without waiting in a queue; and (ii) an acceptable waiting time for 

passengers, defined  on the basis of the service policy. Further on in our analysis, the penalty cost in terms of 

global waiting time, 𝛤𝑤𝑔, was considered as a term of the optimisation model based on cost, 𝐶(𝑇𝑗, 𝜔). In a 

later stage of the research, this work developed a stochastic model of maintenance that considers the 

degradation for a multi-component system with a dependence relationship between the components. Through 

our analysis, the model cost of maintenance (which includes the corrective and preventive maintenance action) 

completes𝐶(𝑇𝑗, 𝜔). An optimisation model 𝐶(𝑇𝑗, 𝜔) has been formulated to bring together the service and 

maintenance policies, making it possible to determine the optimal cost function 𝑚𝑖𝑛(𝐶(𝜔)) such that the cost 

over a long-time window of working-life was minimised. 

This work developed an optimization model that integrates the service and operations policies with the 

maintenance policy of a transport system. We show that neither periodic block-type maintenance nor an age-

based maintenance are necessarily the best maintenance strategy over a long system lifecycle. The optimal 

strategy must consider both policies; at the beginning of the working-life, applying a periodic block-type is 
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likely the most advantageous, but as the components of the system undergo age and deteriorate, an age-based 

maintenance policy is likely the preferable option.  

Currently, maintenance managers of transport systems apply a single maintenance policy during the 

working-life cycle. This paper provides strong support to the idea that an optimal maintenance policy is a 

mixed policy. Therefore, current maintenance strategies should be reconsidered in order to improve service 

and the maintenance activities. 

Future research will focus on the four major aspects. From the perspective of passenger demand, transport 

systems are not independent, they are interconnected and inter-modal Further analysis of service delivery and 

the passengers’ facilitation process can be undertaken with regard to a ropeway system’s connection to an 

intermodal transport network. This calls for a more robust algorithm to speed up the data processing for solving 

larger-scale problems. Secondly, it is possible to propose other study, in which broaden different relationships 

of the penalty cost for the global waiting time –polynomial functions, hyperbolic functions, exponential 

function, etc.– where an analysis of the system characteristics and its implications is considered. The present 

work has only considered a linear function for this relationship and for the implications for the service policy. 

Third, it is perceived that urban transport undergo a remarkable intensity of passengers flow in one direction 

over defined periods –people go to work, students go to schools, etc.– generating a strong asymmetric demand 

of passengers over the ropeway system. This urban transport characteristic can be further embedded into the 

formulated model. Fourth, this work provides an analysis which considers the user requirements and the 

company profit. Building on that, it possible to propose a further analysis that includes the social cost and the 

environmental cost; thus, an approximation of sustainability model can be proposed. Finally, this work 

assumed that all analysed components belong to the same type of elements, and therefore the same maintenance 

policy is applied to the components, and in addition the preventive maintenance actions are performed on all 

components at the same time. As such, it would be possible in future to develop a maintenance model which 

considers components affected by multiple types of independent degradation processes. 
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Appendix A. General features of the ropeway transport model 

Table A1. Parameters of the transport ropeway system. 

Operational parameters Value 

Vehicle (gondola) capacity, 𝑐𝑣 [pax/veh] 10 

Quantity of vehicles, 𝑞𝑣𝑛 [unit] 60 

Commercial speed, 𝑠𝑣𝑛 [m/s] 5.00 

Distance between vehicles, 𝑙𝑣𝑛 [m] 61.67 

Frequency of vehicles, 𝑓𝑣𝑛 [s] 12.33 

Quantity of stations [unit] {1, 2, 3} 

Quantity of platforms, 𝑖 [unit] {1, 2, 3, 4} 

Discretised time, 𝑛 {1, 2,..., 500} 

Travel between platforms (start-end) 1-2 2-3 3-4 4-1 

Inter-platform length [m] 750 900 900 750 

Inter-platform vehicles [veh] 14 16 16 14 

Inter-platform travel time [s] 170 200 200 170 

Service policy parameters Value 

Travel between platforms (start-end) 1-2 2-3 3-4 4-1 

Users arrival to platform (Poisson distribution), 𝜆𝑖,𝑛 [pax/∆𝑡] 9.0 3.0 8.0 5.0 

Effected services, 𝜎𝑖,𝑛 [pax/∆𝑡] (uniform distribution) -- -- -- -- 

Maintenance policy parameters Value 

Cost of preventive maintenance action, 𝐶𝑝 [mu] 60 

Cost of corrective maintenance action, 𝐶𝑐 [mu] 10 𝐶𝑝 

Age reduction coefficient (major maintenance), 𝛼1 [--] 0.1 

Age reduction coefficient (minor maintenance), 𝛼2 [--] 0.3 

Quantity of minor maintenance per major maintenance, 𝑝 [--] 3 

Appendix B. Results of sensitivity of the model 

 

Fig. B1. Mean waiting time in the queue, 𝑊𝑔𝑖,𝑛 [∆𝑡]. 
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Fig. B2. Convergence analysis result of the numerical model. 
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