
HAL Id: hal-02144478
https://hal.science/hal-02144478v1

Preprint submitted on 30 May 2019 (v1), last revised 2 Jul 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergence of proximal solutions for evolution
inclusions with time-dependent maximal monotone

operators
M Kanat Camlibel, Luigi Iannelli, Aneel Tanwani

To cite this version:
M Kanat Camlibel, Luigi Iannelli, Aneel Tanwani. Convergence of proximal solutions for evolution
inclusions with time-dependent maximal monotone operators. 2019. �hal-02144478v1�

https://hal.science/hal-02144478v1
https://hal.archives-ouvertes.fr


CONVERGENCE OF PROXIMAL SOLUTIONS FOR EVOLUTION

INCLUSIONS WITH TIME-DEPENDENT MAXIMAL MONOTONE

OPERATORS

M. KANAT CAMLIBEL, LUIGI IANNELLI, AND ANEEL TANWANI

Abstract. This article studies the solutions of time-dependent differential inclusions which is
motivated by their utility in the modeling of certain physical systems. The differential inclusion

is described by a time-dependent set-valued mapping having the property that, for a given time

instant, the set-valued mapping describes a maximal monotone operator. By successive applica-
tion of a proximal operator, we construct a sequence of functions parameterized by the sampling

time that corresponds to the discretization of the continuous-time system. Under certain mild

assumptions on the regularity with respect to the time argument, and using appropriate tools
from functional and variational analysis, this sequence is then shown to converge to the unique

solution of the original differential inclusion. The result is applied to develop conditions for
well-posedness of differential equations interconnected with nonsmooth time-dependent comple-

mentarity relations, using passivity of underlying dynamics (equivalently expressed in terms of

linear matrix inequalities).

1. Introduction

The theory of monotone operators emerged as an important area of research within the field
of nonlinear analysis in early 1960’s [31, 38, 62]. Since then, we have seen applications of such
operators in various disciplines, which include, but are not limited to, optimization algorithms,
dynamical systems, and partial differential equations are the most prominent ones. Recent arti-
cles [6, 20, 53] provide an overview of monotone operators appearing in optimization algorithms.
The relevance of such operators in dynamical systems was seen in [9, 40], where the differential
inclusions with maximal monotone operators are analyzed. Even in the systems of partial dif-
ferential equations, the appearance of these operators brings tractability to proving existence of
solutions [14, 37, 55, 63]. Applications of dynamical systems with maximal monotone operators
range from modeling traffic equilibrium [42] to electronics [1]. Relatively modern texts on analysis
of monotone operators are [7, 48, 57].

This article is focused on studying maximal monotone operators in the context of mathematical
models for dynamical systems, and the central object of our study is to investigate conditions for
existence of solutions to the differential inclusion

(1) ẋ ∈ −F (t, x), x(0) ∈ domF (0, ·),
where F : [0,∞)×Rn ⇒ Rn has the property that, for each t > 0, F (t, ·) is a maximal monotone
operator. In studying this generic class of systems, we will refer to other types of nonsmooth
dynamical systems which can be recast in the form (1). From a theoretical point of view, most
of the earlier work had focused on differential inclusions with static maximal monotone operators,
which is very elegantly collected in [9], or see [47] for a recent overview on this subject. Common
techniques used in analyzing such systems are either based on regularization, or discretization.
For the former one, the so-called Yosida-Moreau approximations provide a single-valued Lipschitz
function with a regularization parameter, and as this parameter converges to zero, it is shown
that the corresponding solutions converge to the solution of the original differential inclusion. The
discretization techniques rely on constructing piecewise constant interpolations of the sequence of
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points obtained from some discrete system with a sampling parameter. As the sampling parameter
converges to zero, the corresponding sequence of solutions is shown to converge to the actual
solution.

To the best of our knowledge, the first attempts for studying inclusion (1) with time-dependent
operators F (t, x), but with the domain of F (t, ·) stationary for each t > 0, were carried out in
[30]. Since then, several works have appeared which tackle dynamical systems with time-dependent
multi-valued monotone operators. When F (t, x) is the subdifferential of a time-dependent, proper,
lower semicontinuous, and convex function ϕt(·), that is, F (t, x) = ∂ϕt(x), then F (t, ·) is a max-
imal monotone operator. Such systems, involving time-dependent subdifferentials, have been
particularly studied in [5, 28, 29, 35, 41, 61] under varying degrees of regularity on the system
data. Imposing further structure on the operator F (t, ·), if we take F (t, x) = ∂ψS(t)(x), where
S : [0,∞) ⇒ Rn is closed and convex-valued mapping and ψ is the indicator function associated
with S(t), then the resulting dynamics have been more commonly studied under the topic of sweep-
ing processes. Starting from the seminal work of [40], the research in this area has grown to study
several generalizations of the fundamental model, see for example, the monographs [2, 34, 39, 56]
for an overview, and the articles [3, 4, 22, 23, 27, 32, 49] for more recent and focused expositions.
Besides the cases where F is expressed as a subdifferential of a convex function, certain classes of
evolution variational inequalities [12, 44, 59] can also be embedded in the framework of (1).

While all these aforementioned works can be represented by (1), they also rely on the partic-
ular structure of the set-valued mapping in their problem description for analysis of existence of
solutions. Notable exceptions in the literature, which address directly the system class (1) are
[33, 60]. However, the regularity assumptions imposed in these works restrict the applicability of
their results. Consequently, when applications of these dynamical models are studied, for example
in control [10, 59], the results that build on the works of [33, 60] suffer similar limitations. Based
on these observations, the motivation to study new set of conditions for existence of solutions to
systems class (1) arises and our aim in this paper is to provide mild (read as mildest possible)
conditions on regularity with respect to the time argument, which allows us to cover a possibly
larger class of systems. Moreover, we can recover most (if not all) of the results on time-dependent
and static case with our approach.

Our approach builds on using the time-stepping algorithm pioneered in [40], which was also
used for studying existence of solutions for system (1) in [33]. This algorithm constructs a sequence
of solutions, where each element of the sequence is an interpolation of points obtained by applying
the proximal operator associated with domain of the multivalued function appearing in (1). With
the help of an academic counterexample, we show how the assumptions imposed in [33] fail to
hold for a dynamical system described by time-dependent complementarity relations. We study
existence of solutions under conditions which overcome such restrictions. The basic idea is to
construct a sequence of solutions. To construct an element of this approximate solution with a
fixed sampling time, we first compute a set of points at sampled time instants by projecting the
value of a certain function on the domain of the set-valued mapping. Using a novel interpolation
technique among these discrete points, we obtain a sequence of absolutely continuous functions.
Using the arguments based on Ascolà-Arzeli theorem, this sequence is shown to converge to an
absolutely continuous function, which is then shown to be the unique solution of the original
system. We generalize our result to the case where the right-hand side of (1) has a single-valued
Lipschitz vector field in addition to the set-valued maximal monotone operator.

Moreover, because of the relaxed nature of assumptions, our results provide a constructive
framework for studying differential equations with complementarity relations. Such nonsmooth
relations form a particular subclass of maximal monotone operators, and have been useful in model-
ing systems with piecewise affine characteristics [18, 11, 13]. Earlier work on complementarity sys-
tems has focused on linear dynamics coupled with static complementarity relations [16, 26, 54, 25].
Lately, it was shown in [19] that an interconnection of static complementarity relation with ordi-
nary differential equations yields a differential inclusion with static maximal monotone operator.
However, time-dependence in complementarity relations has not been easy to treat with existing
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frameworks. Inspired by the result in [19], we provide conditions under which it is possible to re-
cast the interconnection of an ordinary differential equation with time-dependent complementarity
relation in the form of a differential inclusion with time-dependent maximal monotone operators,
for which the existence of solutions is being studied in this article.

The remainder of the article is organized as follows: In Section 2, we provide appropriate
background material from set-valued and functional analysis. In Section 3, a motivating example
is provided to show how the current literature on differential inclusions with maximal monotone
operators is inadequate for certain system classes. The main assumptions and the result is given
in Section 4, followed by a detailed proof in Section 5. Section 6 deals with extensions of the main
existence/uniqueness result towards non-autonomous case as well as Lipschitzian perturbations.
The results are then studied in the context of linear ordinary differential equations coupled with
time-dependent maximal monotone relations in Section 7. Finally, the paper closes with some
concluding remarks in Section 8.

2. Preliminaries

In this section, we introduce notational conventions that will be in force throughout the paper
as well as auxiliary results that will be employed later.

2.1. Vectors and matrices. We denote the set of real numbers by R, nonnegative real numbers
by R+, n-vectors of real numbers by Rn, and n×m real-valued matrices by Rn×m.

To denote the scalar product of two vectors x, y ∈ Rn, we use the notation 〈x, y〉 := xT y where

xT denotes the transpose of x. The Euclidean norm of a vector x is denoted by |x| := 〈x, x〉 12 .
For a subspace of W of Rn, W⊥ denotes the orthogonal subspace, that is {y ∈ Rn : 〈x, y〉 =
0 for all x ∈ W}.

We say that a (not necessarily symmetric) matrix M ∈ Rn×n is positive semi-definite if xTMx >
0 for all x ∈ Rn. We sometimes write M > 0 meaning that M is positive semi-definite. Also, we
say that M is positive definite if M > 0 for all nonzero x ∈ Rn.

2.2. Convex sets and related notions. The distance of a point x to a set S is defined by
dist(x, S) = inf{|x − y| : y ∈ S}. If the set S is closed and convex then for each x ∈ Rn there
exists a unique point y ∈ S such that |x− y| = dist(x, S). Such a point is called the projection of
x onto the set S and will be denoted by proj(x, S).

The Hausdorff distance between two nonempty subsets of Rm, say S1 and S2, is defined by:

dH(S1, S2) := max
{

sup
z1∈S1

dist(z1, S2), sup
z2∈S2

dist(z2, S1)
}
.

Since dist(x, S) = dist
(
x, cl(S)

)
for any point x and nonempty set S, the Hausdorff distance is

invariant under closure, that is

dH(S1, S2) = dH

(
cl(S1), cl(S2)

)
.

In addition, if y = proj(x, cl(S2)) for some point x ∈ cl(S1), then we have

(2) |x− y| 6 sup
z∈S1

dist(z, S2) ≤ dH(S1, S2).

2.3. Set-valued mappings. Let F : Rm ⇒ Rn be a set-valued mapping, that is F (x) ⊆ Rn for
each x ∈ Rm. We define its domain, image, and graph, respectively, as follows:

domF = {x : F (x) 6= ∅}
imF = {y : there exists x such that y ∈ F (x)}

graphF = {(x, y) : y ∈ F (x)}.

The inverse mapping F−1 : Rn ⇒ Rm is defined by F−1(y) = {x : y ∈ F (x)}.
In what follows we introduce a certain notion of continuity for set-valued mappings of a real

variable. For a more detailed/general treatment we refer to [50, Chp. 4 and 5].
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Let N#
∞ denote the set of all subsequences of N. For a sequence of sets (S`)`∈N in Rq, the outer

limit is defined as the set

lim sup
`→∞

S` :=
{
ξ
∣∣∣ ∃N ∈ N#

∞ and ξ` ∈ S` ∀ ` ∈ N, s.t. ξ`
N→ ξ

}
.

For a given set-valued mapping G : [0, T ]⇒ Rq for some T > 0, we define

lim sup
t→t∗

G(t) :=
⋃
t`→t∗

lim sup
`→∞

G(t`).

It is known from [50, p. 152] that

lim sup
t→t∗

G(t) =

{
y ∈ Rq

∣∣∣∣∣ ∃ (t`, y`)`∈N ⊂ [0, T ]× Rq satisfying y` ∈ G(t`),

and lim
`→∞

(t`, y`) = (t∗, y)

}
.

We say that G is outer semicontinuous at t∗ ∈ [0, T ] if

lim sup
t→t∗

G(t) ⊆ G(t∗).

In case G is outer semicontinuous at every t∗ ∈ [0, T ], we say that G is outer semicontinuous on
[0, T ].

2.4. Maximal monotone operators. Throughout the paper, we are interested in maximal
monotone set-valued mappings. A set valued-mapping F : Rn ⇒ Rn is said to be monotone
if

〈x1 − x2, y1 − y2〉 > 0

for all (xi, yi) ∈ graph(F ). It is said to be maximal monotone if no enlargement of its graph
is possible in Rn × Rn without destroying monotonicity. We refer to [9] and [50] for detailed
treatment of maximal monotone mappings.

If F is maximal monotone, then it is closed and convex-valued, that is, F (x) is a closed convex
set for all x ∈ dom(F ). This enables us to define the minimal section of a maximal monotone
mapping F by

F 0(x) := proj(0, F (x))

for x ∈ dom(F ). Clearly, F 0(x) is the least-norm element of the closed convex set F (x), that is
|F 0(x)| 6 |y| for all y ∈ F (x).

The resolvent Jλ and Yosida approximation Fλ of F are defined by

Jλ = (I + λF )−1 and Fλ =
1

λ
(I − Jλ)

for λ > 0 where I denotes the identity operator.
The following proposition collects some well-known facts (see e.g. [9]) that will be employed in

the sequel.

Proposition 1. Suppose that F : Rn ⇒ Rn is a maximal monotone set-valued mapping. Then,
the following statements hold for all λ > 0:

i. dom Jλ = Rn.
ii. Jλ is single-valued and non-expansive, that is |Jλ(x1)−Jλ(x2)| 6 |x1−x2| for all x1, x2 ∈ Rn.

iii. limλ→0 Jλ(x) = x for all x ∈ Rn.
iv. Fλ is maximal monotone and λ−1−Lipschitzian.
v. Fλ(x) ∈ F

(
Jλ(x)

)
for all x ∈ Rn.

vi. For all x ∈ domF , |Fλ(x)| is nonincreasing in λ, limλ→0 |Fλ(x)| = |F 0(x)|, and |Fλ(x)| 6
|F 0(x)|.

Given two maximal monotone mappings, the pseudo-distance between them, introduced in [60],
is defined as follows:
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Definition 2. The pseudo-distance between two maximal monotone mappings F1 and F2 is defined
by

dis(F1, F2) := sup
x1 ∈ dom(F1), y1 ∈ F1(x1)
x2 ∈ dom(F2), y2 ∈ F2(x2)

〈y1 − y2, x2 − x1〉
1 + |y1|+ |y2|

.

The following lemma relates the Hausdorff distance between the domains of two maximal mono-
tone operators with their pseudo-distance.

Lemma 3 ([60]). For any pair of maximal monotone mappings F1 and F2, it holds that

dH(dom(F1),dom(F2)) 6 dis(F1, F2).

Based on the pseduo-distance defined in Definition 2, one can introduce a notion of continuity
for time-dependent maximal monotone operators as follows.

Definition 4 (Absolute continuity, [60]). Let F : [0, T ] × Rn ⇒ Rn be a time-dependent set-
valued mapping such that F (t, ·) is maximal monotone for each t ∈ [0, T ]. We say that t 7→ F (t, ·)
is absolutely continuous on [0, T ] if there exists a nondecreasing absolutely continuous function
ϕ : [0, T ]→ R such that

dis
(
F (t, ·), F (s, ·)

)
6 ϕ(t)− ϕ(s) ∀ s, t with 0 6 s 6 t 6 T.

2.5. Function spaces. The set of absolutely continuous, integrable, and square integrable func-
tions defined from the interval [t1, t2] with t1 < t2 to Rn are denoted, respectively, byAC([t1, t2],Rn),
L1([t1, t2],Rn), and L2([t1, t2],Rn). Unless specified otherwise, we use the term almost everywhere
with respect to Lebesgue measure, that is, a property holds almost everywhere on a set X ⊂ Rn,
if it holds on every subset of X with nonzero Lebesgue measure.

Convergence of family of functions will play an important role in the sequel. For the sake of
completeness, we state the well-known (see e.g. [52]) Arzelá-Ascoli theorem for which we need
some nomenclature.

Consider a collection F of functions f : [0, T ] → Rn. We say that F is equicontinuous if for
every ε > 0, there exists a δ > 0 such that |f(t)−f(s)| < ε for every f ∈ F and each s, t satisfying
|t − s| < δ. We say that F is pointwise bounded if for every t ∈ [0, T ], there exists an Mt < ∞
such that |f(t)| ≤Mt for every f ∈ F .

Theorem 5 (Arzelá-Ascoli). Suppose that F is pointwise bounded equicontinuous collection of
functions f : [0, T ] → Rn. Every sequence {fn} in F has a subsequence that converges uniformly
on every compact subset of [0, T ].

The following elementary results will be used later.

Lemma 6. Let x : [0, T ] → Rn be a function and t∗ ∈ (0, T ] be such that ẋ(t∗) exists. Suppose
that {tk} and {τk} are two sequences such that 0 6 tk 6 t∗ 6 τk 6 T and tk < τk for all

k and limk↑∞ tk = limk↑∞ τk = t∗. Then, the sequence x(τk)−x(tk)
τk−tk convergences to ẋ(t∗) on a

subsequence.

Proof. Observe that

x(τk)− x(tk)

τk − tk
=
x(τk)− x(t∗)

τk − t∗
τk − t∗

τk − tk
+
x(t∗)− x(tk)

t∗ − tk
t∗ − tk
τk − tk

.

Since 0 6 τk−t∗
τk−tk 6 1 and 0 6 t∗−tk

τk−tk 6 1, both must converge on a (common) subsequence. The

rest follows from the hypothesis that ẋ(t∗) exists. �

Lemma 7. Suppose that a sequence of functions (y`)`∈N weakly converges to y in L2(dψ, [0, T ],R),
for some ψ ∈ AC([0, T ],R). Let (x`)`∈N be a sequence of absolutely continuous functions such that

it converges uniformly to x ∈ AC([0, T ],Rn), and ẋ`(t) = ψ̇(t)y`(t), for each t ∈ Γ :=
{
t ∈

[0, T ] |x`, x and ψ are differentiable at t
}

. Then, it holds that ẋ(t) = ψ̇(t)y(t) for almost every
t ∈ Γ.
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Proof. Define the function ξ : [0, T ]→ Rn by

(3) ξ(t) = x(0) +

∫ t

0

y(s)ψ̇(s) ds

for t ∈ [0, T ]. For every η ∈ Rn, we have

〈η, x`(t)〉 = 〈η, x0〉+

∫ t

0

〈η, y`(s)〉 ψ̇(s) ds

for all ` ∈ N and

〈η, ξ(t)〉 = 〈η, x0〉+

∫ t

0

〈η, y(s)〉 ψ̇(s) ds.

Since (y`)`∈N weakly converges to y, we have that
(
〈η, x`(t)〉

)
`∈N converges to 〈η, ξ(t)〉 for every

t ∈ [0, T ] and every η ∈ Rn. This means that
(
x`(t)

)
`∈N converges to ξ(t) for every t ∈ [0, T ].

Hence, we see that ξ(t) = x(t) for all t ∈ [0, T ] since
(
x`
)
`∈N uniformly converges to x. Therefore,

(3) yields

x(t) = x0 +

∫ t

0

y(s)ψ̇(s) ds.

In other words,

ẋ(t) = ψ̇(t)y(t)

for almost all t ∈ Γ. �

For the next two statements, we recall that two measures are absolutely continuously equivalent
if each one is absolutely continuous with respect to the other one.

Lemma 8. Let f` : [0, T ] → R be a sequence of functions with ` ∈ N such that |f`(t)| 6 1 for all
` ∈ N and t ∈ [0, T ]. Suppose that the sequence (f`)`∈N weakly converges to f in L2(dµ, [0, T ],R)
where dµ is absolutely continuously equivalent to Lebesgue measure. Then,

f(t) ∈ [lim inf
`→∞

f`(t), lim sup
`→∞

f`(t)]

for almost all t ∈ [0, T ].

Proof. Let k > 1 and define gk` (t) := supq>k fq(t)− f`+k(t). Note that (gk` )`∈N weakly converges

in L2(dµ, [0, T ],R) to gk given by gk(t) := supq>k fq(t)−f(t). Since gk` is nonnegative for all ` ∈ N
and t ∈ [0, T ], gk must be nonnegative for almost all t ∈ [0, T ]. This means that f(t) 6 supq>k fq(t)
for almost all t ∈ [0, T ]. Hence, f(t) 6 lim sup`→∞ f`(t) for almost all t ∈ [0, T ]. Applying the
same arguments to the sequence (−f`)`∈N, we can obtain f(t) > lim inf`→∞ f`(t) for almost all
t ∈ [0, T ]. �

Lemma 9. Let y` : [0, T ] → Rq be a sequence of functions with ` ∈ N such that |y`(t)| 6 1 for
all ` ∈ N and t ∈ [0, T ]. Also let

(
S`(t)

)
`∈N be a sequence of sets in Rq with ` ∈ N and t ∈ [0, T ]

such that y`(t) ∈ S`(t) for all ` ∈ N and t ∈ [0, T ]. Suppose that (y`)`∈N weakly converges to y in
L2(dµ, [0, T ],Rq) where dµ is absolutely continuously equivalent to Lebesgue measure. Then,

y(t) ∈ cl
(

conv
(

lim sup
`→∞

S`(t)
))

for almost all t ∈ [0, T ].

Proof. Let S(t) = cl
(

conv
(

lim sup`→∞ S`(t)
))

for t ∈ [0, T ]. It follows from [50, Cor. 4.11] that

S(t) 6= ∅ for each t ∈ [0, T ]. Let Γ = {t ∈ [0, T ] : y(t) /∈ S(t)}. Define the function z : [0, T ]→ R
by

z(t) = proj
(
y(t), S(t)

)
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for all t ∈ Γ and z(t) = 0 for all t ∈ [0, T ] \ Γ. Note that |y(t) − z(t)| > 0 for all t ∈ Γ. Also,
we have z ∈ L∞([0, T ],Rn) since S(t) contains an element in the unit ball of Rn for all t ∈ [0, T ].
Now, define functions a : [0, T ]→ Rn and b : [0, T ]→ R by

a(t) =
y(t)− z(t)
|y(t)− z(t)|

and b(t) = 〈 y(t)− z(t)
|y(t)− z(t)|

,
y(t) + z(t)

2
〉

for all t ∈ Γ and a(t) = 0, b(t) = 0 for all t ∈ [0, T ] \ Γ. For all t ∈ Γ, the hyperplane Ht = {η :
〈a(t), η〉 = b(t)} strictly separates the set S(t) and the point y(t), that is

(4) 〈a(t), y(t)〉 < b(t) < 〈a(t), z〉
for all z ∈ S(t) (see e.g. [8, Prop. 1.5.3]). Note that a ∈ L∞([0, T ],Rn), and since y ∈
L2(dµ, [0, T ],Rn) and z ∈ L∞([0, T ],Rn), it follows that b ∈ L2(dµ, [0, T ],R). Therefore, the
function t 7→ 〈a(t), w(t)〉 belongs to L2(dµ, [0, T ],R) for every w ∈ L2(dµ, [0, T ],Rn). For each
` ∈ N, define ζ` : [0, T ]→ R with ζ`(t) = 〈a(t), y`(t)〉 for all t ∈ Γ and ζ`(t) = 0 for all t ∈ [0, T ]\Γ.
Then, we see that (ζ`)`∈N weakly converges to ζ given by ζ(t) = 〈a(t), y(t)〉 for all t ∈ Γ and
ζ(t) = 0 for all t ∈ [0, T ] \ Γ. From Lemma 8, we see that

(5) ζ(t) ∈ [lim inf
`→∞

ζ`(t), lim sup
`→∞

ζ`(t)]

for almost all t ∈ [0, T ]. Since limit inferior (superior) can be obtained as the limit of a subsequence,
(5) implies that for almost all t ∈ Γ

〈a(t), y(t)〉 ∈ [〈a(t), y(t)〉, 〈a(t), y(t)〉]

where y(t) and y(t) belong to S(t). Together with the second inequality in (4), this yields

〈a(t), y(t)〉 > b(t)

for almost all t ∈ Γ. In view of the first inequality in (4), this means that Γ is a zero measure set.
As such, we can conclude that

y(t) ∈ S(t)

for almost all t ∈ [0, T ]. �

3. Differential inclusions with maximal monotone mappings

Our goal is to study the existence of solutions to the differential inclusion

(6) ẋ(t) ∈ −F
(
t, x(t)

)
, x(0) = x0

where F (t, ·) : Rn ⇒ Rn is maximal monotone for all t > 0. For some T > 0, we say that
x ∈ AC([0, T ],Rn) is a solution of (6) if x(t) ∈ domF (t, ·) and x satisfies (6) for almost all
t ∈ [0, T ].

3.1. Related frameworks and their limitations. Historically, the evolution inclusions given
in (6) have been a subject of research in mathematical community in different eras. However, the
solutions to such equations have been proposed under rather strict conditions. Here, we provide
a brief of list of the main results that exist concerning the existence and uniqueness of solutions
for such systems.

Single-valued operators with fixed domain [30]: The earliest results on solutions of dynamical
systems (6) with time-dependent maximal monotone relations were proposed in [30]. The author
focused on the case where F (t, ·) : Rn → Rn is single-valued and F (·, x) is Lipschitz continuous,
uniformly in x. The major restriction imposed here is that

(7) domF (t, ·) = domF (0, ·), ∀ t > 0.

Under these conditions, there exists a Lipschitz continuous x : R+ → Rn such that (6) holds for
Lebesgue almost every t > 0, and x(t) ∈ domF (t, ·) for each t > 0.
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Static maximal monotone operators (à la Brézis) with additive inputs [9]: In the classical book [9]
dealing with differential inclusions with maximal monotone operators, we can find results dealing
with inclusions of the form

ẋ(t) ∈ −F (t, x) = −A
(
x(t)

)
+ γ x(t)− u(t)

where A is maximal monotone, γ > 0 is a scalar, and u : [0,∞)→ Rn is absolutely continuous. For
such systems domF (t, ·) = domA for each t > 0, that is, the domain of the multivalued operator
is independent of time.

Dissipative operators [46]: Building up on the work of Kato [30] and Brézis [9], we find results
on evolution equations built on convergence of certain discrete approximations in [46]. When the
results appearing in this line of work are applied to the maximal monotone case given in (6),
it turns out that such results also require the strong assumption (7), where the domain of the
operator does not change with time [46, Chap. 1, Sec. 4].

Moreau’s sweeping process [40]: The first real contribution in the literature with time-dependent
domains is observed in the seminal work of [40]. The systems studied here within the umbrella of
sweeping processes comprise differential inclusions with a special conic structure. We introduce a
set-valued mapping S : R+ ⇒ Rn, and let NS(t)(x) denote the normal cone to the set S(t) at a
point x ∈ S(t). The proposed system class is then described as:

(8) ẋ ∈ −F (t, x) := −NS(t)(x), x(0) ∈ S(0).

Thus, for each t and x, F (t, x) is a closed convex cone described by the subdifferential of the
indicator function of S(t), and hence F (t, ·) is maximal monotone. Here, we see that dom(F (t, ·)) =
S(t) and since S is time-dependent, the domain is allowed to vary with time. To describe the
regularity imposed on F (·, x) with respect to time, we consider the Hausdorff distance, and in the
simplest instances, it is assumed that, for every t1, t2 > 0

dH

(
domF (t1, ·),domF (t2, ·)

)
= dH

(
S(t1), S(t2)

)
≤ L|t1 − t2|,

that is the Hausdorff distance between the domains of F (t, ·) is bounded by a Lipschitz contin-
uous function of time. Under these assumptions, there exists a unique solution to (8) which is
Lipschitz continuous. Different variants of this framework were then derived depending on how
the Hausdorff distance varies with time, or whether we can relax the convexity assumption on
S(t) while preserving some nice properties of the subdifferential of the indicator function for that
set. In short, sweeping processes provide the first instance in the literature on inclusions with
a particular kind of maximal monotone operators which depend on time, and the corresponding
domain may vary.

Maximal monotone operators with time-dependent domain [60, 33]: As a generalization of the
sweeping process, Vladimirov [60] studied evolution inclusions where time-dependent domains were
considered, with the hypothesis that the set-valued mapping F (t, ·) is just maximal monotone for
each t > 0, without any further structural or geometrical assumption. However, a very strong
regularity assumption was imposed with respect to the pseudo-distance given in Definition 2.
In particular, the mapping F (t, ·) is required to be uniformly continuous, that is, there exists a
sequence of piecewise constant operators Fi : [0, T ]× Rn ⇒ Rn such that for each t ∈ [0, T ]

lim
i→∞

dis
(
Fi(t, ·), F (t, ·)

)
= 0.

Kunze and Monteiro-Marques [33] then generalized this line of work to consider systems where the
regularity with respect to time can be relaxed, so that the pseudo-distance between F (t1, ·) and
F (t2, ·) is bounded by |µ(t1)−µ(t2)| for some function of bounded variation µ : [0, T ]→ R. Certain
results developed in the context of sweeping processes are thus covered within this framework. The
work started by Vladimirov, and later generalized to some extent by Kunze and Monteiro-Marques,
indeed is an attempt to deal with differential inclusions with most general time-dependent maximal
monotone operators. However, they impose very strong assumptions in deriving their results which
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make their applicability somewhat restrictive. Indeed, as we show in the next section, strong
continuity assumption is not necessary.

3.2. Motivation. A primary motivation for looking at inclusions of type (6) comes from differen-
tial equations where certain variables are related by a maximal monotone operator. In particular,
consider systems described by

ẋ(t) = Ax(t) +Bz(t)

w(t) = Cx(t) +Dz(t) + v(t)

w(t) ∈M
(
− z(t)

)
where x ∈ Rn, (z, w) ∈ Rm×Rm, v ∈ Rm, the matrices (A,B,C,D) have appropriate dimensions
and M : Rm ⇒ Rm is a maximal monotone operator.

Systems of the form (9) can be alternatively described by (6) where

(10) F (t, x) := −Ax+B(M+D)−1
(
Cx+ v(t)

)
.

By invoking [19, Theorem 2], one can show that F (t, ·) is maximal monotone for each t ∈ R+

under certain assumptions. Regularity with respect to time is critical here. In the works of
[60, 33], existence and uniqueness of solutions to (6) is established under the assumption of absolute
continuity in the sense of Definition 4. However, the mapping t 7→ F (t, ·) defined by (10) does
not, in general, enjoy absolute continuity with respect to pseudo-distance even if v is absolutely
continuous. This is seen in the following example.

Example 10. Consider a system of the form (9) where n = 1, m = 2,

A = 0, B = CT =
[
0 1

]
, D =

[
0 1
−1 0

]
,

and M : R2 ⇒ R2 is the set-valued mapping given by M(ζ) = {η : η > 0, ζ 6 0, and 〈η, ζ〉 = 0}.
By invoking [19, Theorem 2], it can be verified that the corresponding set-valued mapping F (t, ·)
as defined in (10) is maximal monotone for each t. Let v : [0, T ]→ R2 be an absolutely continuous
function such that for some t1, t2 ∈ [0, T ], we have

v(t1) =

[
0
0

]
and v(t2) =

[
−1
0

]
.

Let Fi := F (ti, ·) with i = 1, 2. It can be verified that

0 ∈ F1(ρ+ 1) and 1 ∈ F2(0)

for any ρ > 0. From Definition 2, we get

dis(F1, F2) = sup
x ∈ dom(F1), y ∈ F1(x),

ξ ∈ dom(F2), ζ ∈ F2(ξ)

〈ζ − y, x− ξ〉
1 + |y|+ |ζ|

>
ρ+ 1

2
.

Since the righthand side is not bounded, we can conclude that set-valued mapping F (t, ·) is not
absolutely continuous in the sense of Definition 4. However, existence and uniqueness of solutions
for this example would follow from our main results. Indeed, this example satisfies the hypothesis
of Theorem 22.

4. Main results

The main goal of this paper is to investigate conditions (weaker than those of [60, 33]) that
guarantee existence of solutions to (6). The uniqueness of solution for a fixed initial condition
follows easily from the maximal monotone property of the right-hand side of (6).
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4.1. Existence and uniqueness of solutions to (6). To state the main result of our paper, we
introduce the following assumptions, where T > 0 is considered fixed in the sequel.

(A1) For each t ∈ [0, T ], the operator F (t, ·) is maximal monotone.
(A2) There exists a nondecreasing function ϕ ∈ AC([0, T ],R) such that

sup
z∈domF (s,·)

dist
(
z,domF (t, ·)

)
6 ϕ(t)− ϕ(s), ∀s, t with 0 6 s 6 t 6 T.

(A3) For every positive number r, there exists σr ∈ L1([0, T ],R+) such that

|F 0(t, x)| 6 σr(t)(1 + |x|)
for all1 x ∈ Bn(r) ∩ domF (t, ·) with t ∈ [0, T ].

(A4) The set-valued mapping t 7→ graphF (t, ·) is outer semicontinuous on [0, T ].

The result on existence and uniqueness of solutions now follows.

Theorem 11. Consider the system (6) and assume that (A1)-(A4) hold. For every x0 ∈ cl
(

domF (0, ·)
)
,

there exists a unique solution x ∈ AC([0, T ],Rn) of (6).

4.2. Relevance of Theorem 11. In what follows we will show how the results of [33] as well as
the results on sweeping processes can be recovered from Theorem 11.

4.2.1. Recovering the results of [33]. As recalled in Sect. 3.1, the results in [33] imposed continuity
with respect to the pseudo-distance introduced in Definition 2. We claim that if the mapping t 7→
F (t, ·) : Rn ⇒ Rn is absolutely continuous on [0, T ] then the set-valued mapping t 7→ graphF (t, ·)
is outer semicontinuous on [0, T ]. To see this, let (t`, x`, y`)`∈N ⊆ [0, T ]× Rn × Rn be a sequence
such that y` ∈ F (t`, x`) and lim`↑∞(t`, x`, y`) = (t, x, y) for some t ∈ [0, T ], x, y ∈ Rn. What needs
to be proven is that y ∈ F (t, x). To see this, let (η, ζ) ∈ Rn+n be such that ζ ∈ F (t, η). From
absolute continuity of t 7→ F (t, ·), we have

〈ζ − y`, x` − η〉 6
(
r(t)− r(t`)

)(
1 + |ζ|+ |y`|

)
.

By letting ` tend to infinity, we obtain

〈ζ − y, x− η〉 6 0

since r is continuous. This means that y ∈ F (t, x) as F (t, ·) is maximal monotone. Another
hypothesis required by the results of [33] is a linear growth condition that coincides with (A3).

4.2.2. Recovering the special of sweeping processes. Sweeping process is a special case of (6), where
F (t, x) = NS(t)(x), with S : [0, T ]⇒ Rn being a closed convex-valued mapping. The normal cone
operator is by definition maximal monotone for each t ∈ [0, T ]. Moreover, in this particular case,
assumption (A3) is trivially satisfied since NS(t)(x) is a cone and thus 0 ∈ NS(t)(x), for each
t ∈ [0, T ] and x ∈ dom NS(t)(·) = S(t). It can also be checked that assumption (A2) implies (A4);
Indeed, it follows from [60, Lemma 3.5] that

dH(S(t), S(s)) = dis(NS(t)(·),NS(s)(·)).
Thus, (A2) imposes continuity with respect to the metric dis(·, ·), and based on the reasoning in
Section 4.2.1, we have the desired claim.

5. Proof of Theorem 11

Proof. We are basically concerned with the existence of the solution in this proof, as the unique-
ness readily follows from assumption (A1). The proof of existence is based on constructing a
sequence of approximate solutions and showing that this sequence converges to a function which
satisfies the differential inclusion (6). This is formally done in following main steps:

• Discretizing (6)
• Obtaining bounds on discrete values
• Construction of a sequence of approximate solutions
• Studying the limit of the sequence

1Here, Bn(r) denotes the closed ball of radius r in Rn, that is Bn(r) := {x ∈ Rn : |x| 6 r}.
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Each of these steps is carried out as a subsection in the sequel, and it is shown that the limit we
thus obtain is indeed a solution to (6).

5.1. Discretization of (6). We first begin with discretizing (6). Let

∆ = {t0, t1, . . . , tK : 0 = t0 < t1 < · · · < tk < tk+1 < · · · < tK = T}

be a partition of the interval [0, T ]. Define

0 < hk := tk − tk−1

for k ∈ {1, 2, . . . ,K}. Note that
∑K
k=1 hk = T . We define the size of the partition ∆ by K(∆)

and the granularity by |∆| = maxk∈{1,2,...,K} hk. For simplicity, we write K = K(∆) when ∆ is
clear from the context.

Next, consider the discretization of (6) based on the partition ∆ given by

(11)
xk+1 − xk
hk+1

∈ −F (tk+1, xk+1)

for k ∈ {0, 1, . . . ,K − 1}. Alternatively, we have

(12) xk+1 =
(
I + hk+1F (tk+1, ·)

)−1
(xk).

This resolvent based alternative form, together with assumption (A1) and Proposition 1, guaran-
tees that the discretization (11) is well-defined in the sense that there exist x0, x1, . . . , xK satisfying
(11) (and hence (12)). If dom(F (t, ·)) is closed for each t > 0, then it follows from (12) that xk+1

is a projection of xk on the set dom(F (tk+1, ·)); Put simply, in case the domain of the multivalued
function F (t, ·) is closed, the sequence of points xk is obtained by applying the proximal operator
[45] associated with the indicator function of the domain of F (t, ·). We will use a certain interpo-
lation between the points xk to get an approximate solution for the differential inclusion (6).

5.2. Bounds on xk values. We aim at establishing bounds on xk that are independent of the
underlying partition ∆. As we will use these bounds later on also for extending the results of
Theorem 11, we keep the analysis a bit more general than the proof of Theorem 11 requires.

Let ϕ satisfy (A2) and let α be such that

(13) α = |x0|+ ϕ(T )− ϕ(0) and rα > α.

Since x0 ∈ cl
(

domF (0, ·)
)
∩ Bn(α), we have Bn(rα) ∩ domF (0, ·) 6= ∅. Then, there exists

σrα ∈ L1([0, T ],R+) satisfying (A3). Let β, γ, and rγ be such that

β = α+ ϕ(T )− ϕ(0) + (1 + α)

∫ T

0

σrα(s) ds(14)

γ = β + ϕ(T )− ϕ(0) and rγ > γ.(15)

Since x0 ∈ cl
(

domF (0, ·)
)
∩ Bn(α) and rγ > γ > α, we have Bn(rγ) ∩ domF (0, ·) 6= ∅. Then,

there exists σrγ ∈ L1([0, T ],R+) satisfying (A3). Define ψ : [0, T ]→ R+ by

(16) ψ(t) := t+ 2ϕ(t) + (1 + γ)

∫ t

0

σrγ (s) ds ∀ t ∈ [0, T ].

With the help of these definitions, we provide uniform bounds on xk values in the following lemma.
These bounds are required for invoking the convergence theorems.

Lemma 12. For any partition ∆, we have

|xk| 6 β(17)

|xk − xk−1| 6 ψ(tk)− ψ(tk−1)(18)

for each k ∈ {1, 2, . . . ,K}.
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Proof. To obtain the bounds given in (17) and (18), we start by analyzing the sequence (12) for
a fixed partition and introduce some simplified notation for the corresponding operators:

(19) Fk := F (tk, ·), Jk :=
(
I + hkFk

)−1
, and Yk :=

1

hk
(I − Jk).

It then follows from (12) that

xk+1 ∈ domFk+1

xk+1 = Jk+1(xk)(20)

for all k ∈ {0, 1, . . . ,K − 1}, where we recall that K is the size of the chosen partition.
To establish (17), we first introduce auxiliary points x̄k given by x̄0 = x0 and

x̄k+1 := proj
(
x̄k, cl(domFk+1)

)
for k ∈ {0, 1, . . . ,K − 1}. Clearly, we have

(21) x̄k ∈ cl(domFk)

for all k ∈ {0, 1, . . . ,K}. Then, it follows from assumption (A2) and (2) that

(22) |x̄k − x̄k−1| 6 ϕ(tk)− ϕ(tk−1)

for all k ∈ {1, 2, . . . ,K}. We thus obtain, for each k ∈ {1, 2, . . . ,K},
|x̄k| 6 |x̄k−1|+ |x̄k − x̄k−1| 6 |x̄k−1|+ ϕ(tk)− ϕ(tk−1)(23a)

6 |x̄0|+ ϕ(tk)− ϕ(t0)(23b)

6 |x̄0|+ ϕ(T )− ϕ(0)(23c)

where (23b) follows from the repeated application of (23a), and (23c) uses the fact that ϕ is
nondecreasing. An immediate consequence of (23c) is that

(24) |x̄k| 6 α
for each k ∈ {0, 1, . . . ,K} where α satisfies (13).

The bounds given in (17) and (18) are now obtained from Assumption (A3). From (21), we
have that, for every ε > 0 and each k ∈ {1, 2, . . . ,K}, there exists a point x̄εk satisfying

x̄εk ∈ domFk(25)

|x̄εk − x̄k| 6 ε,
and therefore

(26) |x̄εk| 6 α+ ε

for all k ∈ {0, 1, . . . ,K} in view of (24) and the triangle inequality. Next, we introduce the sequence
of points ȳεk based on x̄εk by

ȳεk := Jk(x̄εk)(27)

for all k ∈ {0, 1, . . . ,K}. Note that

x̄εk − ȳεk
hk

= Yk(x̄εk).

Now, it follows from (25) and Proposition 1 that

(28)

∣∣∣∣ x̄εk − ȳεkhk

∣∣∣∣ 6 |F 0
k (x̄εk)|.

To obtain a bound on the right-hand side of (28), we employ assumption (A3). Let rα be as in
(13). Without loss of generality, assume that σrα is a constant function2.

By using assumption (A3) and (26), we get

(29) |x̄εk − ȳεk| 6 hkσrα(1 + α+ ε)

2For the general case, when σrα is locally integrable, one has to work with piecewise constant approximations

of σrα and sufficiently finer partitions (with |∆| sufficiently small) to make use of [36, Lemma 3.3.1], see also
Remark 13.
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for all k ∈ {0, 1, . . . ,K} and ε with 0 < ε 6 rα−α. In view of (20) and (27), Proposition 1 implies
that

(30) |xk − ȳεk| 6 |xk−1 − x̄εk|.
Hence, using (29) and (30), we obtain

(31) |xk − x̄εk| 6 |xk − ȳεk|+ |ȳεk − x̄εk| 6 |xk−1 − x̄εk|+ hkσrα(1 + α+ ε)

for all k ∈ {1, 2, . . . ,K} and ε with 0 < ε 6 rα − α. Letting ε tend to zero in (31) results in

|xk − x̄k| 6 |xk−1 − x̄k|+ hkσrα(1 + α)

for all k ∈ {1, 2, . . . ,K}. Therefore, we have

|xk − x̄k| 6 |xk−1 − x̄k|+ hkσrα(1 + α)

6 |xk−1 − x̄k−1|+ |x̄k−1 − x̄k|+ hkσrα(1 + α)

(22)

6 |xk−1 − x̄k−1|+ ϕ(tk)− ϕ(tk−1) + hkσrα(1 + α)

6 |x0 − x̄0|+ ϕ(tk)− ϕ(0) + (

k∑
`=1

hk)σrα(1 + α)

6 ϕ(T )− ϕ(0) + Tσrα(1 + α).(32)

for all k ∈ {1, 2, . . . ,K}. Since the constant σrα is finite, we can conclude from (24) and (32) that

|xk| 6 β(33)

for all k ∈ {1, 2, . . . ,K} where β satisfies (14). This establishes (17).
Next, we proceed to establish (18) using the bound in assumption (A3) and (17). To this end,

we continue using the notation introduced in (19), and introduce a sequence of auxiliary points ξk

ξk := proj
(
xk−1, cl(domFk)

)
for all k ∈ {1, 2, . . . ,K}. Clearly, we have

ξk ∈ cl(domFk)

for all k ∈ {1, 2, . . . ,K}. Therefore, for all ε > 0 there exist points ξεk satisfying

ξεk ∈ domFk(34a)

|ξεk − ξk| 6 ε.(34b)

It follows from (2) and assumption (A2) that

|xk−1 − ξk| 6 ϕ(tk)− ϕ(tk−1)(35)

for all k ∈ {1, 2, . . . ,K}. In view of (33) and the fact that ϕ is nondecreasing, this means that

|ξk| 6 β + ϕ(T )− ϕ(0)

for all k ∈ {1, 2, . . . ,K}. As such, we have

(36) |ξεk| 6 γ + ε

for all k ∈ {1, 2, . . . ,K} where γ satisfies (15). Now, define

ζεk := Jk(ξεk)

for all k ∈ {1, 2, . . . ,K}. Note that

|xk − xk−1| 6 |xk − ζεk|+ |ζεk − ξεk|+ |ξεk − xk−1|
6 2|ξεk − xk−1|+ |ζεk − ξεk|(37)

where we used the fact that |xk − ζεk| 6 |xk−1 − ξεk| due to the resolvent being nonexpansive.
Let rγ be as in (15). Without loss of generality, assume that σrγ is a constant function3. Since

3For the general case, see Remark 13.
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ξεk ∈ domFk due to (34a), we can invoke the bound on the least norm element of F (tk, ξ
ε
k) in

assumption (A3) to obtain

ξεk − ζεk
hk

= Yk(ξεk) =⇒ |ξεk − ζεk| 6 hk |F 0(tk, ξ
ε
k)|

(36)

6 hk σrγ (1 + γ + ε)

for all k ∈ {1, . . . ,K} and ε with 0 < ε 6 rγ − γ. Together with (34b) and (35), (37) leads to

|xk − xk−1| 6 2
(
ϕ(tk)− ϕ(tk−1)

)
+ hkσrγ (1 + γ)

by taking the limit as ε tends to zero. This establishes the bound given in (18). �

Remark 13. In the proof of Lemma 12, when invoking assumption (A3), we only worked with a
constant function σrα to obtain the bounds (17) and (18). This could also be done when σrα is
assumed to be integrable by using the result from [36, Lemma 3.3.1]. To implement this result,
one must choose the partitions ∆ carefully, and work with a piecewise constant approximation
(in L1-norm) of the function σrα . This changes the method in which the bound (17) and (18) is
computed. Otherwise, the rest of the proof remains the same.

5.3. Construction of a sequence of approximate solutions. Based on the xk values, we
construct a sequence of absolutely continuous (in time) functions which approximate the actual
solution of the system. To this end, note that the function ψ defined above is strictly increasing
and absolutely continuous. Now, define the piecewise continuous function x∆ as

(38) x∆(t) :=
ψ(tk+1)− ψ(t)

ψ(tk+1)− ψ(tk)
xk +

ψ(t)− ψ(tk)

ψ(tk+1)− ψ(tk)
xk+1

where t ∈ [tk, tk+1] and k ∈ {0, 1, . . . ,K − 1}. By definition, x∆ is a continuous function and

(39) x∆(tk) = xk

for all k ∈ {0, 1, . . . ,K}. We will show that

x(t) := lim
|∆|→0

x∆(t)

is the desired solution to the inclusion (6). An important intermediate step in studying the
convergence of the sequence x∆ is to obtain the following uniform bound.

Lemma 14. Let τ and τ be such that 0 6 τ < τ 6 T . For any partition ∆, it holds that

(40) |x∆(τ)− x∆(τ)| 6 ψ(τ)− ψ(τ).

Proof. From the definition of x∆ (38) for a fixed partition ∆, there exist integers q and r with
q + 1 6 r such that tq 6 τ < tq+1 and tr−1 < τ 6 tr. If q + 1 = r, then we have

|x∆(τ)− x∆(τ)| 6 | ψ(τ)− ψ(τ)

ψ(tq+1)− ψ(tq)
(xq+1 − xq)| from (38)

6
ψ(τ)− ψ(τ)

ψ(tq+1)− ψ(tq)

(
ψ(tq+1)− ψ(tq)

)
from (39)

6 ψ(τ)− ψ(τ).

In a similar fashion, if q + 1 < r then we have

|x∆(τ)− x∆(τ)| 6 |x∆(tr−1)− x∆(τ)|+
∑

q+16i6r−2

|x∆(ti+1)− x∆(ti)|+ |x∆(τ)− x∆(tq+1)|

=
ψ(τ)− ψ(tr−1)

ψ(tr)− ψ(tr−1)
|xr − xr−1|+

∑
q+16i6r−2

|x∆(ti+1)− x∆(ti)|+
ψ(tq+1)− ψ(τ)

ψ(tq+1)− ψ(tq)
|xq+1 − xq|

6 ψ(τ)− ψ(tr−1) +
∑

q+16i6r−2

(
ψ(ti+1)− ψ(ti)

)
+ ψ(tq+1)− ψ(τ) = ψ(τ)− ψ(τ).

Hence, (40) is established. �



EVOLUTION INCLUSIONS WITH TIME-DEPENDENT MAXIMAL MONOTONE OPERATORS 15

5.4. Limit of the sequence. The bounds established in the previous section allow us to study
the limiting behaviour of the sequence (x∆`

)`∈N.

Lemma 15. Consider a sequence of partitions (∆`)`∈N with |∆`| → 0 as ` tends to infinity. The
sequence (x∆`

)`∈N is equicontinuous.

Proof. Note first that ψ introduced in (16) is uniformly continuous on the compact interval [0, T ]
as it is absolutely continuous on the same interval. Therefore, for any ε > 0 there exists a positive
number δ > 0 such that

|ψ(τ)− ψ(τ)| < ε

for all τ , τ ∈ [0, T ] such that |τ − τ | < δ. In view of (40), we have

|x∆`
(τ)− x∆`

(τ)| < ε

for all ` ∈ N and τ , τ ∈ [0, T ] such that |τ − τ | < δ. Consequently, the sequence (x∆`
)`∈N is

equicontinuous. �

Let (∆`)`∈N be a sequence of partitions with |∆`| → 0 as ` tends to infinity. Since the sequence
(x∆`

)`∈N is also uniformly bounded in view of Lemma 12, Theorem 5 (Arzelá-Ascoli theorem)
implies that it converges uniformly to a continuous function x on a subsequence, say N ∈ N#

∞.
We claim that x is absolutely continuous. To see this, let τ , τ ∈ [0, T ] with τ 6 τ and note that

|x(τ)− x(τ)| 6 |x(τ)− x∆`
(τ)|+ |x∆`

(τ)− x∆`
(τ)|+ |x∆`

(τ)− x(τ)|
6 |x(τ)− x∆`

(τ)|+ ψ(τ)− ψ(τ) + |x∆`
(τ)− x(τ)|

6 ψ(τ)− ψ(τ)(41)

where the first inequality follows from the triangle inequality, the second from (40), and the third
by taking the limit on the convergent subsequence N . Thus, absolute continuity of x follows from
absolute continuity of the function ψ.

Now, we want to show that x is a solution of (6), that is

(42) x(t) ∈ domF (t, ·) and ẋ(t) ∈ −F
(
t, x(t)

)
for almost all t ∈ [0, T ].

Let Γ ⊆ [0, T ] be defined by Γ = {t ∈ (0, T ) : ψ and x are both differentiable at t and t 6∈
∪`∈N∆`}. Since ψ and x are both absolutely continuous and ∪`∈N∆` is countable, it is enough
to show (42) for almost all t ∈ Γ.

For a partition ∆, define

y∆(t) =
xk+1 − xk

ψ(tk+1)− ψ(tk)

for t ∈ (tk, tk+1) and y∆(tk) = 0 for tk ∈ ∆.
From (38), we see that

ẋ∆`
(t) = ψ̇(t)

xk+1 − xk
ψ(tk+1)− ψ(tk)

= ψ̇(t)y∆`
(t)

for all t ∈ Γ.
In view of (38) and Lemma 14, we see that |y∆`

|L∞ 6 1 for all `. Therefore, the sequence

(y∆`
)`∈N is contained in the closed ball with radius

√
ψ(T )− ψ(0) of the Hilbert space L2(dψ, [0, T ],Rn).

As such, there exists a subsequence N ′ of N such that (y∆`
)`∈N ′ converges to y weakly in

L2(dψ, [0, T ],Rn). It then follows from Lemma 7 that

(43) ẋ(t) = ψ̇(t)y(t)

for almost all t ∈ Γ.
Now, let t∗ ∈ Γ. Then, for every ` ∈ N , there must exist k` ∈ {1, 2, . . . ,K(∆`)} with the

property that tk` < t∗ < tk`+1. Note that lim`↑∞ tk` = lim`↑∞ tk`+1 = t∗ since |∆`| converges to
zero as ` tends to infinity. By construction, we have(

xtk`+1
,−

xtk`+1
− xtk`

tk`+1 − tk`

)
∈ graphF (tk`+1, ·).



16 M.K. CAMLIBEL, L. IANNELLI, AND A. TANWANI

Equivalently, we have

(44)
(
x∆`

(tk`+1),−ψ(tk`+1)− ψ(tk`)

tk`+1 − tk`
y∆`

(t)
)
∈ graphF (tk`+1, ·).

Let S`(t
∗) := − tk`+1−tk`

ψ(tk`+1)−ψ(tk` )
F (tk`+1, x∆`

(tk`+1)). From (44), we have that y`(t
∗) ∈ S`(t

∗).

We now invoke Lemma 9 and observe that y(t∗) ∈ cl (conv (lim sup`→∞ S`(t
∗))). Due to the

outer-semicontinuity assumption, we have lim sup`→∞ F (tk`+1, x∆`
(tk`+1)) ⊆ F (t∗, x(t∗)). The

set F (t∗, x(t∗)) is closed and convex because of the maximal monotonicity property, and hence

y(t∗) ∈ −1

ψ̇(t∗)
F (t∗, x(t∗)).

Since ψ̇(t∗) > 1, we get

ẋ(t∗)
(43)
= ψ̇(t∗)y(t∗) ∈ −F (t∗, x(t∗))

for each t∗ ∈ Γ. �

6. Extensions

In this section, we extend the results of Theorem 11. First, we consider non-autonomous
differential inclusions of the form

(45) ẋ(t) ∈ −F
(
t, x(t)

)
+ u(t), x(0) = x0

where F (t, ·) : Rn ⇒ Rn is maximal monotone for all t > 0 and u ∈ L1([0, T ],Rn). We begin with
the following observation.

Lemma 16. Consider the system (45). Let u ∈ L1([0, T ],Rn) and G be the set-valued mapping

defined by G(t, ξ) := F
(
t, ξ +

∫ t
0
u(τ) dτ

)
. Then, the differential inclusion (45) admits a solution

x if and only if the differential inclusion

ξ̇(t) ∈ −G
(
t, ξ(t)

)
, ξ(0) = x0

admits a solution ξ.

Proof. For the ‘only if’ part, suppose that x is a solution of (45). Define

ξ(t) = x(t)−
∫ t

0

u(τ) dτ

for all t > 0. Note that ξ(0) = x0 and

ξ̇(t) = ẋ(t)− u(t) ∈ −F
(
t, x(t)

)
= −F

(
t, ξ(t) +

∫ t

0

u(τ) dτ
)

= −G(t, ξ(t)).

The ‘if’ part follows reversing the arguments. �

Theorem 17. Suppose that u ∈ L1([0, T ],Rn) and F (t, ·) satisfies assumptions (A1)–(A4). For
every x0 ∈ cl

(
domF (0, ·)

)
, there exists a unique solution x ∈ AC([0, T ],Rn) of (45).

Proof. In view of Lemma 16 and Theorem 11, it is enough to show that the time-dependent

set-valued map G defined by G(t, x) = F
(
t, x+ Φ(t)

)
with Φ(t) =

∫ t
0
u(τ) dτ satisfies assumptions

(A1)–(A4).

(A1): Since maximal monotonicity is preserved under translations (see e.g. [50, Thm. 12.43]),
G satisfies assumption (A1) whenever F satisfies it.

(A2): Note that domG(t, ·) = domF (t, ·)− Φ(t) for all t ∈ [0, T ]. Therefore, we have

sup
z∈domG(s,·)

dist
(
z,domG(t, ·)

)
= sup
z+Φ(s)∈domF (s,·)

dist
(
z + Φ(t),domF (t, ·)

)
6 ϕ(t)− ϕ(s) + |Φ(t)− Φ(s)|
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for all s, t with 0 6 s 6 t 6 T since F satisfies assumption (A2). Note that

ϕ(t)− ϕ(s) + |Φ(t)− Φ(s)| 6 ϕ̄(t)− ϕ̄(s)

for all s, t with 0 6 s 6 t 6 T where

(46) ϕ̄(t) := ϕ(t) +

∫ t

0

|u(τ)| dτ.

Therefore, G satisfies assumption (A2).

(A3): Let r be a positive number such that Bn(r)∩ domG(t∗, ·) 6= ∅ for some t∗ ∈ [0, T ]. Note
that

|G0(t, x)| = |F 0
(
t, x+ Φ(t)

)
|

for all x ∈ Bn(r) ∩ domG(t, ·) with t ∈ [0, T ]. Let Φ∗ = maxt∈[0,T ] |Φ(t)| and Φ̄ > Φ∗. Note that

Bn(r + Φ̄) ∩ domF (t∗, ·) 6= ∅. Then, we have

(47) |G0(t, x)| = |F 0
(
t, x+ Φ(t)

)
| 6 σr+Φ̄(t)

(
1 + |x+ Φ(t)|

)
for all x ∈ Bn(r) ∩ domG(t, ·) with t ∈ [0, T ] since F satisfies assumption (A3). Note that

σr+Φ̄(t)
(
1 + |x+ Φ(t)|

)
6 σr+Φ̄(t)

(
1 + |Φ(t)|

)
(1 + |x|).

Together with (47), this results in

|G0(t, x)| 6 σr+Φ̄(t)
(
1 + |Φ(t)|

)
(1 + |x|)

for all t ∈ [0, T ] and for all x ∈ Bn(r+Φ̄)∩domG(t, ·). Since the function t 7→ σr+Φ̄(t) is integrable
and t 7→ 1 + |Φ(t)| is continuous, their product is integrable. Consequently, G satisfies assumption
(A3).

(A4): Note that graphG(t, ·) = graphF (t, ·) − {Φ(t)} × {0}. Since the set-valued mapping
t 7→ graphF (t, ·) is outer semicontinuous on [0, T ] by assumption and Φ is absolutely continuous,
t 7→ graphG(t, ·) is outer semicontinuous on [0, T ]. �

Now, we turn our attention to differential inclusions of the form

(48) ẋ(t) ∈ −F
(
t, x(t)

)
+ f

(
x(t)

)
+ u(t), x(0) = x0

where F (t, ·) : Rn ⇒ Rn is maximal monotone for all t > 0, f : Rn → Rn is a function and
u ∈ L1([0, T ],Rn). Based on Theorem 17, we present the following existence and uniqueness
result.

Theorem 18. Suppose that u ∈ L1([0, T ],Rn), f : Rn → Rn is a Lipschitz continuous function,
and F (t, ·) satisfies assumptions (A1)–(A4). For every x0 ∈ cl

(
domF (0, ·)

)
, there exists a unique

solution x ∈ AC([0, T ],Rn) of (48).

Proof. Let x0 ∈ cl
(

domF (0, ·)
)

and let x0(t) = x0 for all t ∈ [0, T ]. It follows from Theorem 17
that for each integer ` with ` > 1 there exists a unique absolutely continuous function x`+1 :
[0, T ]→ Rn such that x`+1(0) = x0, x`+1(t) ∈ domF (t, ·) and the differential inclusion

ẋ`+1(t) ∈ −F
(
t, x`+1(t)

)
+ f

(
x`(t)

)
+ u(t)

holds for almost all t ∈ [0, T ]. In the rest of the proof, we will construct a solution of (48)
by showing that the sequence {x`(τ)}`∈N is a Cauchy sequence that converges to an absolutely
continuous function which satisfies (48).

Step 1: The sequence {x`(τ)}`∈N is Cauchy. By using (A1) and Lipschitzness of f , we see that

1

2

d

dt

(
|x`+1(t)− x`(t)|2

)
= 〈ẋ`+1(t)− ẋ`(t), x`+1(t)− x`(t)〉

6 α|x`(t)− x`−1(t)| |x`+1(t)− x`(t)|
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for almost all t ∈ [0, T ] where α is the Lipschitz constant of f . By integrating both sides from 0
to τ ∈ [0, T ], we obtain

1

2
|x`+1(τ)− x`(τ)|2 6

∫ τ

0

α|x`(s)− x`−1(s)| |x`+1(s)− x`(s)| ds.

Application of [9, Lemma A.5, p. 157] results in

|x`+1(τ)− x`(τ)| 6
∫ τ

0

α|x`(s)− x`−1(s)| ds

for all τ ∈ [0, T ]. Hence, we get

(49) |x`+1(τ)− x`(τ)| 6 (ατ)`

`!
|x1 − x0|L∞

for all τ ∈ [0, T ] where | · |L∞ denotes the sup norm. Consequently, (x`)`∈N converges uniformly
on [0, T ] to a function x.

Step 2: The function x belongs to AC([0, T ],Rn). For the moment, suppose that there exist an

integer L and a nondecreasing function ψ̂ : AC([0, T ],R) such that

(50) |x`(τ)− x`(τ)| 6 ψ̂(τ)− ψ̂(τ)

for all ` > L and for all τ , τ with 0 6 τ < τ 6 T . This would mean that we have

|x(τ)− x(τ)| 6 |x(τ)− x`(τ)|+ |x`(τ)− x`(τ)|+ |x`(τ)− x(τ)|

6 |x(τ)− x`(τ)|+ ψ̂(τ)− ψ̂(τ) + |x`(τ)− x(τ)|

6 ψ̂(τ)− ψ̂(τ)

for all τ , τ with 0 6 τ < τ 6 T where the first inequality follows from the triangle inequality,
the second from (50) for all ` > L, and the third by taking the limit as ` tends to infinity. Thus,

absolute continuity of x follows from absolute continuity of the function ψ̂.
To prove (50), we first observe that the triangle inequality and (49) result in

|x`(τ)| ≤ |x`(τ)− x`−1(τ)|+ |x`−1(τ)|

≤
l−1∑
i=1

|xi+1(τ)− xi(τ)|+ |x1(τ)|

≤ (eατ − 1) + |x1(τ)| ≤ C1

for some C1 > 0, and each ` > 1, τ ∈ [0, T ]. Hence, in particular, |x`(·)| is uniformly bounded for
each ` > 1. Similar to function ϕ in (46), let us introduce the function ϕ` as,

ϕ`(t) = ϕ(t) +

∫ t

0

|f(x`−1(τ))|+ |u(τ)| dτ

so that, the Lipschitz continuity of f , |f(z)| ≤ |f(0)|+ Lf |z|, yields

ϕ`(τ)− ϕ`(τ) ≤ Lf
∫ τ

τ

|x`−1(τ)| dτ + |f(0)|(τ − τ) +

∫ τ

τ

|u(τ)| dτ

≤ (LfC1 + |f(0)|)(τ − τ) +

∫ τ

τ

|u(τ)| dτ.

By introducing the function ψ`, similar to (16), as

ψ`(t) = t+ 2ϕ`(t) + (1 + γ)

∫ t

0

σrγ (s) ds ∀ t ∈ [0, T ],

and by letting g(s) := s+ (1 + γ)
∫ s

0
σrγ (τ) dτ + 2

∫ s
0
|u(τ)| dτ , we get

ψ`(τ)− ψ`(τ) = τ − τ + 2ϕ`(τ)− 2ϕ`(τ) + (1 + γ)

∫ τ

τ

σrγ (τ)dτ

≤ g(τ)− g(τ) + 2(LfC1 + |f(0)|)(τ − τ).
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It follows from (41) that |x`(τ)− x`(τ)| ≤ ψ`(τ)− ψ`(τ). Thus we get

|x`(τ)− x`(τ)| ≤ g(τ)− g(τ) + 2LfC1(τ − τ)

for each ` > 1, and hence (50) follows with ψ̂(s) := g(s) + 2LfC1s, which is clearly an absolutely
continuous function.

Step 3: The function x satisfies (48). In view of Lemma 16, x` is a solution to the differential
inclusion

ẋ`(t) ∈ −G`
(
t, x`(t)

)
, x`(0) = x0

for all ` > 1 where G`(t, ξ) = F (t, ξ + Φ`(t)
)

with Φ`(t) =
∫ t

0
f
(
x`−1(τ)

)
+ u(τ) dτ . Since

graphG`(t, ·) = graphF (t, ·)− {Φ`(t)} × {0}.
Let us introduce the sequence y` := dx`

dψ̂
, so that

ẋ`(t) =
˙̂
ψ(t)y`(t) ∈ −F (t, x`(t)) + f(x`(t)) + u(t).

Because of the bound (50), |y`|L∞ ≤ 1, and there exists a subsequence N such that (y`)`∈N
converges to y weakly in L2(dψ̂, [0, T ],Rn). It then follows from Lemma 7 that

ẋ(t) =
˙̂
ψ(t)y(t)

for almost all t ∈ Γ := {t ∈ [0, T ] |x`, ` > L, x, and ψ are differentiable at t}.
Let t∗ ∈ Γ. By construction, we have

(x`(t
∗),−ẋ`(t∗)) ∈ graphG`

(
t∗, x`(t

∗)
)

or equivalently, (
x`(t

∗),− ˙̂
ψ(t∗)y`(t

∗)
)
∈ graphG`(t

∗, x`(t
∗)).

In other words, y`(t
∗) belongs to the convex set −1

˙̂
ψ(t∗)

G`(t
∗, x`(t

∗)). Using Lemma 9 with S`(t) =

−1
˙̂
ψ(t)

G`(t, x`(t)), and recalling that | ˙̂ψ(t)| > 1 for each t ∈ [0, T ], we see that

ẋ(t∗) =
˙̂
ψ(t∗)y(t∗) ∈ cl

(
conv

(
lim sup
`→∞

S`(t
∗)

))
⊆ −G(t∗, x(t∗))

and the same holds for almost every t∗ ∈ [0, T ]. �

7. Linear systems and maximal monotone relations

A particularly interesting class of time-dependent maximal monotone mappings arises from the
interconnection of linear passive systems with maximal monotone relations. To formalize this class
of systems, consider the linear system

ẋ(t) = Ax(t) +Bz(t) + u(t)(51a)

w(t) = Cx(t) +Dz(t) + v(t)(51b)

where x ∈ Rn is the state, u ∈ Rn and v ∈ Rm are external inputs, and (z, w) ∈ Rm+m are the
external variables that satisfy

(51c)
(
− z(t), w(t)

)
∈ graph(M)

for some set-valued map M : Rm ⇒ Rm.
By solving z from the relations (51b), (51c), and substituting in (51a), we obtain the differential

inclusion

(52) ẋ(t) ∈ −H
(
t, x(t)

)
+ u(t)

where

(53) H(t, x) = −Ax+B(M+D)−1
(
Cx+ v(t)

)
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and

domH(t, ·) = C−1
(

im(M+D)− v(t)
)
.

The rest of this section is devoted to developing conditions under which the time-dependent
set-valued mapping H(t, ·) satisfies the hypotheses of Theorem 11. To establish such conditions,
we first introduce passivity of a linear system.

A linear system Σ(A,B,C,D)

ẋ(t) = Ax(t) +Bz(t)

w(t) = Cx(t) +Dz(t)

is said to be passive, if there exists a nonnegative-valued storage function V : Rn → R+ such that
the so-called dissipation inequality

V (x(t1)) +

∫ t2

t1

zT (τ)w(τ) dτ 6 V (x(t2))

holds for all t1, t2 with t1 < t2 and for all trajectories (z, x, w) ∈ L2([t1, t2],Rm)×AC([t1, t2],Rn)×
L2([t1, t2],Rm) of the system (54).

The classical Kalman-Yakubovich-Popov lemma states that the system (54) is passive if, and
only if, the linear matrix inequalities

(55) K = KT > 0

[
ATK +KA KB − CT
BTK − C −(DT +D)

]
6 0

admits a solution K. Moreover, V (x) = 1
2x

TKx defines a storage function in case K is a solution
the linear matrix inequalities (55).

In the following proposition, we summarize some of the consequences of passivity that will be
used later.

Proposition 19 ([17, Lem. 1]). If Σ(A,B,C,D) is passive with the storage function x 7→ 1
2x

TKx
then the following statements hold:

i. D is positive semi-definite.
ii. (KB − CT ) ker(D +DT ) = {0}.

The following theorem states conditions that guarantee the hypotheses of Theorem 17 for the
time-dependent set-valued mapping H as defined in (53).

Theorem 20. Let T > 0. Suppose that

i. Σ(A,B,C,D) is passive with the storage function x 7→ 1
2x

Tx,
ii. M is maximal monotone,

iii. for all t ∈ [0, T ], we have4 imC ∩ ri
(

im(M+D)− v(t)
)
6= ∅,

iv. v is bounded on [0, T ],
v. there exists an absolutely continuous nondecreasing function θ : [0, T ]→ R such that

sup
w∈imC∩(im(M+D)−v(s))

dist
(
w, imC ∩

(
im(M+D)− v(t)

))
6 θ(t)− θ(s)

for all s, t with 0 6 s 6 t 6 T .
vi. For every positive number ρ such that Bm(ρ) ∩ dom(M + D)−1 6= ∅, there exists a positive

number αρ such that

|B
(
(M+D)−1

)0
(η)| 6 αρ(1 + |η|)

for all η ∈ Bm(ρ) ∩ dom (M+D)−1.

Then, H satisfies assumptions (A1)–(A4).

4Here, ri(S) denotes the relative interior of S.
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Proof. For brevity, we define W (t) := im(M+D)−v(t) for all t ∈ [0, T ]. Note that domH(t, ·) =
C−1W (t) for all t ∈ [0, T ].

(A1): It follows from [19, Thm. 2] that the conditions (i.)-(iii.) imply that H(t, ·) is a maximal
monotone mapping for all t ∈ [0, T ]. As such, H satisfies assumption (A1).

(A2): Let t and s be such that 0 6 s 6 t 6 T . Also, let x ∈ C−1W (s) and let y =
proj

(
x,C−1W (t)

)
. Further, let ζ = proj

(
Cx, imC ∩W (t)

)
. Therefore, there exists ξ such that

ζ = Cξ. Without loss of generality, we can assume that x− ξ ∈ imCT since Rn = imCT ⊕ kerC.
Now, we see that Cx ∈ imC ∩W (s) and ζ = Cξ ∈ cl

(
imC ∩W (t)

)
. From (v.), we get

|Cx− Cξ| 6 θ(t)− θ(s).
Since x− ξ ∈ imCT , there exists a positive number α such that

|x− ξ| 6 α
(
θ(t)− θ(s)

)
.

Since ξ ∈ C−1W (t), we obtain

|x− y| 6 |x− ξ| 6 α
(
θ(t)− θ(s)

)
.

Therefore, we see that
dist

(
x,C−1W (t)

)
6 α

(
θ(t)− θ(s)

)
.

This implies that
sup

x∈C−1W (s)

dist
(
x,C−1W (t)

)
6 α

(
θ(t)− θ(s)

)
.

Since domH(t, ·) = C−1W (t), we can conclude that H satisfies assumption (A2).

(A3): Let r be a positive number such that Bn(r) ∩ domH(t∗, ·) 6= ∅ for some t∗ ∈ [0, T ]. Let
Γ = {t ∈ [0, T ] : Bn(r)∩ domH(t, ·) 6= ∅}. If Γ = ∅, then H satisfies (A3) trivially. Suppose that
Γ 6= ∅ so that

(56)
(
CBn(r) + v(t)

)
∩
(
W (t) + v(t)

)
6= ∅

for all t ∈ Γ. Since v is bounded on [0, T ] due to the hypothesis (iv.), we can find a positive
number ρ such that

(57) CBn(r) + v(t) ⊆ Bm(ρ)

for all t ∈ Γ. It follows from (56) that Bm(ρ) ∩ dom(M + D)−1 6= ∅ since W (t) + v(t) =
im(M+D) = dom(M+D)−1. From (vi.), we know that there exists a positive number αρ such
that

(58) |B
(
(M+D)−1

)0
(η)| 6 αρ(1 + |η|)

for all η ∈ Bm(ρ) ∩ dom (M+D)−1. Let x ∈ Bn(r) ∩ domH(t, ·) for some t ∈ [0, T ]. Since
Ax−Bz0 ∈ H(t, x) where z0 ∈

(
(M+D)−1)0

(
Cx+ v(t)

)
, we have

(59) |H0(t, x)| 6 |Ax−Bz0| 6 |Ax|+ |Bz0|.
Since t ∈ Γ and x ∈ Bn(r)∩domH(t, ·), we see from (57) that Cx+v(t) ∈ Bm(ρ)∩dom(M+D)−1.
Then, it follows from (58), (59), and boundedness of v that

|H0(t, x)| 6 |Ax|+ αρ(1 + |Cx+ v(t)|) 6 β(1 + |x|)
for some positive number β that does not depend on t. Therefore, we have

|H0(t, x)| 6 β(1 + |x|)
for all x ∈ Bm(ρ) ∩ domH(t, ·) with t ∈ [0, T ]. In other words, H satisfies assumption (A3).

(A4): Let (t`, x`, y`)`∈N ⊆ [0, T ] × Rn × Rn be a sequence such that y` ∈ H(t`, x`) and
lim`↑∞(t`, x`, y`) = (t, x, y) for some t ∈ [0, T ], x, y ∈ Rn. What needs to be proven is that
y ∈ H(t, x).
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Note that for each ` there exists z` ∈ (M + D)−1
(
Cx` + v(t`)

)
such that y` = −Ax` + Bz`.

Then, (Bz`)`∈N converges. Let W be the subspace parallel to the affine hull of im(M + D) =
dom(M+D)−1. It follows from maximal monotonicity of (M+D)−1 that for each `

(60) ζ + z` ∈ (M+D)−1
(
Cx` + v(t`)

)
holds for any ζ ∈ W⊥. Now, let z` = z1

` + z2
` where z1

` ∈ kerB ∩W⊥ and

(61) z2
` ∈ (kerB ∩W⊥)⊥ = imBT +W.

Note that

(62) Bz` = Bz2
` .

From (60) by taking ζ = −z1
` , we have

(63) z2
` ∈ (M+D)−1(Cx` + v(t`)).

Suppose that (z2
` )`∈N is bounded. Hence, (z2

` )`∈N converges on a subsequence N , say to z. Then,
we see from (x`, y`) = (x`,−Ax` + Bz`) that (x`, y`)`∈N converges to (x, y) = (x,−Ax + Bz).
Since H(t, ·) is maximal monotone and that implies the closedness of graph

(
H(t, ·)

)
, we then can

conclude that (x, y) ∈ graph
(
H(t, ·)

)
, or equivalently y ∈ H(t, x).

Therefore, it is enough to show that (z2
` )`∈N is bounded. Suppose, on the contrary, that z2

` is

unbounded. Without loss of generality, we can assume that the sequence
z2`
|z2` |

converges. Define

(64) ζ∞ = lim
`→∞

z2
`

|z2
` |
.

From (62) and the fact that (Bz`)`∈N converges, we have

lim
`→∞

Bz2
` = Bζ.

Thus, we get

(65) ζ∞ ∈ kerB.

Let (x̄, ȳ) ∈ graphH(t, ·). Then, ȳ = −Ax̄+Bz̄ where

(66) z̄ ∈ (M+D)−1
(
Cx̄+ v(t)

)
.

Due to passivity with K = I and monotonicity of (M + D)−1, it follows from (63) and (66)
that

〈x` − x̄,−A(x` − x̄) +B(z2
` − z̄)〉 > 〈z2

` − z̄, C(x` − x̄)−D(z2
` − z̄)〉

> −〈z2
` − z̄, v(t`)− v(t)〉.

By dividing by |z2
` |2, taking the limit as ` tends to infinity and using boundedness of v, we obtain

〈ζ∞, Dζ∞〉 6 0.

Since D is positive semi-definite due to the first statement of Proposition 19, this results in

ζ∞ ∈ ker(D +DT ).

Then, it follows from (65), K = I, and the second statement of Proposition 19 that

(67) ζ∞ ∈ kerCT .

Let η ∈ im(M+D)− v(t) and ζ ∈ (M+D)−1
(
η+ v(t)

)
. In view of monotonicity of (M+D)−1,

we get

〈z
2
` − ζ
|z2
` |

, Cx` + v(t`)− η − v(t)〉 > 0,

from (63). Taking the limit as ` tends to infinity, employing boundedness of v, and using (67), we
obtain

(68) 〈ζ∞, Cx− η〉 = 〈ζ∞,−η〉 > 0.
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From (67) and (68), we see that the hyperplane span({ζ∞})⊥ separates the sets imC and im(M+
D) − v(t). In view of imC = ri(imC) and (iii.), it follows from [51, Thm. 11.3] that imC and
im(M + D) − v(t) cannot be properly separated. Therefore, both imC and im(M + D) − v(t)
must be contained in the hyperplane span({ζ∞})⊥. Thus, we see that im(M + D) is contained
in v(t) + span({ζ∞})⊥. Since W is the subspace parallel to the affine hull of im(M+D), we get
W ⊆ span({ζ∞})⊥ which implies ζ∞ ∈ W⊥. Together with (65), we get

ζ∞ ∈ kerB ∩W⊥.
In view of (61) and (64), this yields ζ∞ = 0. This, however, clearly contradicts with (64). There-
fore, |z2

` | must be bounded. �

Next, we specialize the results of Theorem 20 to linear complementarity systems.

7.1. Linear complementarity systems. Linear complementarity systems are important in-
stances of the differential inclusions of the form (52) with M described by so-called comple-
mentarity relations. In this section, we aim at presenting tailor-made conditions for existence and
uniqueness of solutions to linear complementarity systems.

Consider a linear complementary system

ẋ(t) = Ax(t) +Bz(t) + u(t)

w(t) = Cx(t) +Dz(t) + v(t)

where x ∈ Rn is the state, u ∈ Rn and v ∈ Rm are external inputs, and (z, w) ∈ Rm+m are the
external variables that satisfy (

− z(t), w(t)
)
∈ graph(P)

where P : Rm ⇒ Rm is the maximal monotone set-valued mapping given by

P(ζ) = {η : η > 0, ζ 6 0, and 〈η, ζ〉 = 0}.
Next, we introduce the linear complementarity problem.

Given a vector q ∈ Rm and a matrix M ∈ Rm×m, the linear complementarity problem
LCP(q,M) is to find a vector z ∈ Rm such that

z > 0(70a)

q +Mz > 0(70b)

〈z, q +Mz〉 = 0.(70c)

We say that the LCP(q,M) is feasible if there exists z satisfying (70a) and (70b). If a vector z
is feasible and satisfies (70c) in addition, then we say that z solves (is a solution of ) LCP(q,M).
The set of all solutions of LCP(q,M) will be denoted by SOL(q,M).

A comprehensive study on LCPs can be found in [21]. In the sequel, we will be interested in
LCP(q,M) where M is a (not necessarily symmetric) positive semi-definite matrix.

Given a square matrix M , we define

QM := SOL(0,M) = {z : z > 0, Mz > 0, and 〈z,Mz〉 = 0}
and its dual cone

Q+
M = {ζ : 〈ζ, z〉 > 0 for all z ∈ QM}.

When M is (not necessarily symmetric) a positive semi-definite matrix, the set QM is a convex
cone and can be given by QM = {z : z > 0, Mz > 0, and (M +MT )z = 0}.

The following proposition characterizes the conditions under which an LCP with positive semi-
definite M matrix has solutions.

Proposition 21 (Cor. 3.8.10 of [21] and Lem. 23 of [15]). Let M be a positive semi-definite
matrix. Then, the following statements are equivalent:

i. q ∈ Q+
M .
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ii. LCP(q,M) is feasible.
iii. LCP(q,M) is solvable.

Moreover, the following statements hold:

iv. For each q ∈ Q+
M , there exists a unique least-norm solution z∗(q) ∈ SOL(q,M) in the sense

that |z∗(q)| 6 |z| for all z ∈ SOL(q,M).
v. There exists a positive number α such that

|z∗(q)| 6 α|q| ∀ q ∈ Q+
M .

Now, define

(71) HP(t, x) = −Ax+B(P +D)−1
(
Cx+ v(t)

)
.

Note that domHP(t, ·) = C−1
(

im(P + D) − v(t)
)
. Moreover, q ∈ (P + D)(z) if and only if

−z ∈ SOL(q,D). This means that q ∈ (P +D)(z) if and only if q ∈ Q+
D in view of Proposition 21.

In other words, domHP(t, ·) = C−1
(
Q+
D − v(t)

)
.

The following theorem provides streamlined conditions that guarantee the hypotheses of The-
orem 20 for the time-dependent set-valued mapping HP as defined in (71).

Theorem 22. Let T > 0. Suppose that

i. Σ(A,B,C,D) is passive with the storage function x 7→ 1
2x

Tx,

ii. imC ∩ ri
(

im(P +D)− v(t)
)
6= ∅ for all t ∈ [0, T ],

iii. v ∈ AC([0, T ],Rm),

Then, HP satisfies assumptions (A1)–(A4).

Proof. It is enough to show that HP satisfies the hypotheses (i.)-(vi.) of Theorem 20. The first
four hypotheses of Theorem 20 are readily satisfied. Therefore, we need to show that the remaining
two also hold.

For the hypothesis (v.) of Theorem 20, we need a streamlined version of Hoffman’s bound on
the polyhedral sets. To elaborate, let ∅ 6= R ⊆ Rm be a polyhedral set given by R = {ζ : Rζ =
0 and Qζ 6 q} where R,Q are matrices and q is vector with appropriate sizes. Hoffman’s bound
(see e.g. [24, Lemma 3.2.3]) asserts that there exists a positive number α that depend on R such
that

(72) dist(x,R) 6 α
(
|Rx|+ |max(0, Qx− q)|

)
for all x ∈ Rm where max denotes componentwise maximum. By definition Q+

D is a polyhedral

cone. Therefore, we have Q+
D = {η ∈ Rm : Qη 6 0} for some matrix Q. Let E be a matrix such

that imC = kerE. Then, we have

imC ∩
(

im(P +D)− v(t)
)

= imC ∩
(
Q+
D − v(t)

)
(73)

= {ζ ∈ Rm : Eζ = 0 and Qζ 6 −Qv(t)}

for all t ∈ [0, T ].
Let s, t be such that 0 6 s 6 t 6 T and w ∈ imC ∩

(
im(P+D)− v(s)

)
. From (73), we see that

(74) Ew = 0 and Qw 6 −Qv(s).

Now, we have

dist
(
w, imC ∩

(
im(P +D)− v(t)

)) (72)

6 α
(
|Ew|+ |max

(
0, Qw +Qv(t)

)
|
)

(74)

6 α|max
(
0,−Qv(s) +Qv(t)

)
|

6 β|v(s)− v(t)|(75)

where β is a positive number. Since v is absolutely continuous, we have

|v(s)− v(t)| =
∣∣∣∣∫ t

s

v̇(τ) dτ

∣∣∣∣ 6 ∫ t

s

|v̇(τ)| dτ =

∫ t

0

|v̇(τ)| dτ −
∫ s

0

|v̇(τ)| dτ.
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Then, (75) implies that

sup
w∈imC∩(im(P+D)−v(s))

dist
(
w, imC ∩

(
im(P +D)− v(t)

))
6 θ(t)− θ(s)

for all s, t with 0 6 s 6 t 6 T where θ(t) = 1
β

∫ t
0
|v̇(τ)| dτ for all t ∈ [0, T ]. Clearly, θ is nonde-

creasing and absolutely continuous.

For the hypothesis (vi.) of Theorem 20, note that ζ ∈ (P + D)−1(η) if and only if −ζ ∈
SOL(η,D). Due to Proposition 19, D is positive semi-definite. Then, it follows from Proposition 21
that there exists a positive number α such that(

(P +D)−1
)0

(η) 6 α|η|

for all η ∈ dom (P +D)−1. Therefore, HP satisfies the hypothesis (vi.) of Theorem 20. �

8. Conclusions

In this article, we have studied the existence of solutions to differential inclusions with time-
dependent maximal monotone operators. With the help of an example, it is shown that our
proposed conditions overcome the limitations of existing results. As a particular class of these
inclusions, we consider differential equations coupled with time-dependent complementarity rela-
tions. For this system class, conditions for existence of solutions are derived explicitly in terms
of system data. To build on these results, the conditions for existence of solutions can be relaxed
for differential inclusions where the maximal monotone operators have a particular structure, for
example [59].

Moving forward from the question of existence of solutions, it is also of interest to study the
qualitative properties of the solutions of such systems, such as continuity with respect to initial
data [43]. One can also investigate stability related problems for the generic class of dynamical
systems, as has been done for some specific set-valued systems in [58]. It also remains to be seen
whether our proposed results provide any advantages in the study of optimal control problems,
such as [10].
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[40] J.J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equa-

tions, 26:347–374, 1977.
[41] M. Otani. Nonlinear evolution equations with time-dependent constraints. Advances in Mathematical Sciences

and Applications, 3, 01 1994.
[42] J.-S. Pang, L. Han, G. Ramadurai, and S. Ukkusuri. A continuous-time linear complementarity system for

dynamic user equilibria in single bottleneck traffic flows. Mathematical Programming, Ser. A, 133(1):437–460,
2012.

[43] J.-S. Pang and D. Stewart. Solution dependence on initial conditions in differential variational inequalities.
Mathematical Programming, Ser. B, 116(1):429–460, 2009.

[44] J.-S. Pang and D.E. Stewart. Differential variational inequalities. Mathematical Programming, Ser. A, 113:345–

424, 2008.
[45] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1(3):123–231, 2013.



EVOLUTION INCLUSIONS WITH TIME-DEPENDENT MAXIMAL MONOTONE OPERATORS 27

[46] N.H. Pavel. Nonlinear Evolution Operators and Semigroups: Applications to Partial Differential Equations,

volume 1260 of Lecture Notes in Mathematics. Springer, Berlin, 1987.

[47] J. Peypouquet and S. Sorin. Evolution equations for maximal monotone operators: Asymptotic analysis in
continuous and discrete time. J. Convex Analysis, 17(3 & 4):1113–1163, 2010.

[48] R.R. Phelps. Convex Functions, Monotone Operators and Differentiability. Springer-Verlag, Berlin, 2nd edi-

tion, 1993.
[49] V. Recupero. BV continuous sweeping processes. Journal of Differential Equations, 259:4253–4272, 2015.

[50] R.T. Rockafellar and J.-B. Wets. Variational Analysis. A Series of Comprehensive Studies in Mathematics 317.

Springer, 1998.
[51] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.

[52] W. Rudin. Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics.

McGraw-Hill Book Co., New York, third edition, 1976.
[53] E.K. Ryu and S. Boyd. A primer on monotone operator methods: Survey. Appl. Comput. Math., 15(1):3–43,

2016.
[54] J.-M. Schumacher. Complementarity systems in optimization. Mathematical Programming, Ser. B, 101(1):263–

295, 2004.

[55] R.E. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American
Mathematical Society, Providence, RI, 1997.

[56] A.H. Siddiqi, P. Manchanda, and M. Brokate. On some recent developments concerning Moreau’s sweeping

process. In A.H. Siddiqi and M. Kocvara, editors, Proceedings of the 1st International Conference on Industrial
and Applied Mathematics of the Indian Subcontinent: Trends in Industrial and Applied Mathematics, Applied

Optimization, pages 339–354. Kluwer Academic Publishers, 2002.

[57] S. Simons. From Hahn-Banach to Monotonicity. Springer-Verlag, Berlin, 2nd edition, 2008.
[58] A. Tanwani, B. Brogliato, and C. Prieur. Stability and observer design for Lur’e systems with multivalued, non-

monotone, time-varying nonlinearities and state jumps. SIAM J. Control and Optimization, 56(2):3639–3672,

2014.
[59] A. Tanwani, B. Brogliato, and C. Prieur. Well-posedness and output regulation for implicit time-varying

evolution variational inequalities. SIAM J. Control and Optimization, 56(2):751–781, 2018.
[60] A.A. Vladimirov. Nonstationary dissipative evolution equations in a Hilbert space. Nonlinear Analysis, 17:499–

518, 1991.

[61] N. Yamazaki. Nonlinear evolution equations with time-dependent constraints. Hokkaido University Preprint
Series in Mathematics, 696:1–16, 2005.

[62] E.H. Zarantonello. Solving functional equations by contractive averaging. Technical Report Tech. report no.

160, University of Wisconsin, Madison, USA, 1960.
[63] E. Zeidler. Nonlinear Functional Analysis and its Applications II/B – Nonlinear Monotone Operators.

Springer-Verlag, NewYork, 1990.

Bernoulli Institute of Mathematics, Computer Science, and Artificial Intelligence, University of

Groningen, The Netherlands
Email address: m.k.camlibel@rug.nl

Department of Engineering, University of Sannio in Benevento, Italy
Email address: luigi.iannelli@unisannio.it

LAAS – CNRS, University of Toulouse, 31400 Toulouse, France
Email address: aneel.tanwani@laas.fr

URL: http://homepages.laas.fr/atanwani


