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Abstract. Mathematical morphology (MM) is a powerful non-linear theory that
can be used for signal and image processing and analysis. Although MM can be
very well defined on complete lattices, which are partially ordered sets with well
defined extrema operations, there is no natural ordering for multivalued images
such as hyper-spectral and color images. Thus, a great deal of effort has been
devoted to ordering schemes for multivalued MM. In a reduced ordering, in par-
ticular, elements are ranked according to the so-called ordering mapping. Despite
successful applications, morphological operators based on reduced orderings are
usually too reliant on the ordering mapping. In many practical situations, how-
ever, the ordering mapping may be subject to uncertainties such as measurement
errors or the arbitrariness in the choice of the mapping. In view of this remark,
in this paper we present two approaches to multivalued MM based on an uncer-
tain reduced ordering. The new operators are formulated as the solution of an
optimization problem which, apart from the uncertainty, can circumvent the false
value problem and deal with irregularity issues.

Keywords: Mathematical morphology, multivalued image, optimization prob-
lem, uncertainty.

1 Introduction

Mathematical morphology (MM) is a powerful non-linear theory that uses geometric
and topological concepts for signal and image processing and analysis [12, 18]. Ap-
plications of MM include, for instance, boundary detection, image segmentation and
reconstruction, pattern recognition, and signal and image decomposition [4, 8, 16].

Apart from the geometrical interpretation inherent to many morphological opera-
tors, they can be very well defined on an algebraic structure called complete lattices
[12, 14]. A complete lattice L is a partially ordered non-empty set in which any subset
admits both a supremum and an infimum [3, 10]. Since the only requirement is a partial
order with well-defined extreme operations, complete lattices allowed for the develop-
ment of morphological operators to multivalued data, including vector-valued images
such as color and hyper-spectral images [2, 13]. In contrast to real-valued approaches,
however, there is no natural ordering for vectors. Therefore, much research on vector-
valued MM has been dedicated to finding an appropriate ordering scheme for a given
? This work was supported in part by CNPq grant no. 310118/2017-4 and FAPESP grant no.
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multivalued image processing task. The interested reader can find detailed discussions
of multivalued MM in [1, 2].

One simple approach to multivalued MM is obtained by applying gray-scale mor-
phological operators in a component-wise manner. From the complete lattice point of
view, the component-wise approach is based on the marginal ordering, also known as
the product ordering. The marginal ordering is an example of a partial ordering which
is not total [11]. A morphological operator based on a non-total ordering scheme may
yield false values, also called false colors. A false value is an element from the set of
values that does not belong to the original image and it can be a problem in some vector-
valued image processing tasks [7, 17]. Furthermore, the information between bands of
a vector-valued image (or channels in a color image) are ignored in a component-wise
approach.

In order to circumvent the false values problem, a great deal of effort has been dedi-
cated to multivalued morphological operators based on a total ordering scheme. Among
the total ordering approaches, those obtained by combining a reduced ordering with a
look-up table are particularly interesting and computationally cheap [9, 21]. The idea
behind an approach based on a reduced ordering can be summarized as follows. First, a
vector-valued image is transformed into a gray-scale (usually real-valued) image using
a surjective mapping h called ordering mapping. Then, a flat gray-scale morphological
operator is applied on the resulting image and a semi-inverse of h is used to recover a
vector-valued image [9]. The semi-inverse mapping can be determined using a look-up
table in which the vector-values are ranked accordingly to their h-values [21].

In many practical situations, the h mapping has a continuous range and the proba-
bility of two different vectors yield the same h-value is very small. In these situations,
the resulting reduced ordering becomes a total ordering when restricted to the range
of a vector-valued image [6]. Although total orderings avoid the appearance of false
values, they are usually irregular in a metric space [6]. Specifically, Chevallier and An-
gulo showed that under mild conditions there always exist vectors x,y, z such that
x ≤ y ≤ z but d(x, z) < d(x,y), where d denotes a metric and “≤” is a total order.
In other words, z is more similar (or it is closer) to x than y in spite of the inequal-
ities x ≤ y ≤ z. Like false values, the irregularity issue may be a problem in some
vector-valued image processing tasks.

In this paper, we propose two approaches to multivalued MM that prevent the ap-
parition of false values but may not be defined using a total ordering and, thus, possibly
avoiding the irregularity issue. In fact, the novel approaches can deal with the irregular-
ity issue whenever it can be properly measured. The motivation behind our approaches
stems from the fact that reduced orderings are also usually too reliant on the mapping
h. The mapping h, however, can be subject to uncertainties such as the unavoidable
measurement errors under real physical conditions when acquiring a vector-valued im-
age. Broadly speaking, our approaches are derived by relaxing a reduced ordering but
including a kind of regularization goal.

The paper is organized as follows: The next section reviews multivalued MM while
Section 3 briefly presents some approaches based on reduced orderings. We address the
uncertainties involved in a reduced ordering and present our approaches in Section 4.
The paper finishes with some concluding remarks on Section 5.



Multivalued Mathematical Morphology Based on Uncertain Reduced Orderings 3

2 Mathematical Morphology for Multivalued Images

First of all, an image is a mapping from a point set D to a value set V. In particular, a
gray-scale image is obtained by considering V ⊂ R̄, where R̄ = R ∪ {+∞,−∞}. We
speak of a multivalued image when V ⊂ R̄k for k ≥ 2. For simplicity, in this paper
we shall assume that the domain D is a finite subset of either E = R2 or E = Z2. We
denote1 the set of all images from a domain D to a value set V by V = VD.

Briefly, morphological operators examine an image by probing it with a small pat-
tern called structuring element [12, 18]. The structuring element is used to extract useful
information about the geometrical and topological structures on an image. Such as the
domain of an image, we assume that a structuring element S corresponds to a finite
subset of either E = R2 or E = Z2 with Card(S)� Card(D).

As pointed out in the introduction, complete lattices constitute an appropriate frame-
work for a general theory of MM [12, 14]. A partially ordered set (L,≤) is a complete
lattice if any subset X ⊂ L admits a supremum and an infimum, denoted respectively
by
∨
X and

∧
X . On a complete lattice, the fundamental operators of MM, called

erosion and dilation, are defined as follows using an adjunction relationship [12]:

Definition 1. Let L be a complete lattice. We say that ε : L → L and δ : L → L form
an adjunction if

J ≤ ε(I) ⇐⇒ δ(J) ≤ I, for I,J ∈ L. (1)

If ε and δ form an adjunction, then ε is an erosion and δ is a dilation.

Erosions and dilations are the two elementary operations of MM [18]. Many other mor-
phological operators are obtained by combining erosions and dilations. For example,
their compositions yield the so-called opening and closing, which have interesting topo-
logical properties and are used as non-linear image filters [18].

Let us assume that the value set V, equipped with a certain partial ordering “≤”,
is a complete lattice. The set L = VD of all images from D ⊂ E to a value set V
is also a complete lattice with the pointwise ordering defined by I ≤ J if and only if
I(p) ≤ J(p) for all p ∈ D. Furthermore, given a structuring element S ⊂ E, define the
operators εS : L → L and δS : L → L as follows:

εS(I)(p) =
∧
{I(p+ s) : s ∈ S, p+ s ∈ D}, ∀p ∈ D, (2)

and
δS(I)(p) =

∨
{I(p+ s) : s ∈ S, p+ s ∈ D}, ∀p ∈ D. (3)

It is not hard to show that εS and δS∗ , where S∗ = {−s|s ∈ S} is the reflected struc-
turing element, form an adjunction on L = VD equipped with the pointwise ordering.
Thus, εS and δS defined by (2) and (3) are respectively an erosion and a dilation. In
fact, these two operators are the most widely used (flat) elementary operations of either
gray-scale and multivalued MM.

1 Throughout this paper, blackboard bold capital letters such as V and L are used to denote value
sets while calligraphic capital letters like V and L are used to denote sets of images.
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3 Reduced Orderings

In a reduced ordering (R-ordering) or h-ordering, the elements are ranked according to
a surjective mapping h : V → L, where L is a complete lattice [9]. Given a surjective
mapping h : V → L, referred to as the ordering mapping, the h-ordering is defined by

x ≤h y ⇐⇒ h(x) ≤ h(y), ∀x,y ∈ V. (4)

Although being reflexive and transitive, the binary relation “≤h” may fail to be anti-
symmetric. Thus, an h-ordering "≤h" is in fact a pre-order. Nevertheless, an h-ordering
can be used to define elementary morphological operators as follows [9]:

Definition 2. Consider a surjective mapping h from a value set V to a complete lattice
L. We say that two operators εh, δh : V → V form an h-adjunction if

y ≤h εh(x) ⇐⇒ δh(y) ≤h x, for x,y ∈ V. (5)

If εh and δh form an h-adjunction, we say that εh is an h-erosion and δh is an h-
dilation.

In practice, we obtain an h-adjunction (an h-erosion and an h-dilation) from an
adjunction (an erosion and a dilation) on L [9]. Precisely, if εh : V → V and δh : V →
V form an h-adjunction, then there exist adjoint operators ε : L → L and δ : L → L
such that

hεh = εh and hδh = δh. (6)

In other words, the evaluation of the h-erosion εh (or the h-dilation δh) by h equals the
erosion ε (or the dilation δ) of the evaluation by h. In particular, if we consider L = R̄,
then the classical gray-scale elementary operators ε and δ given respectively by (2) and
(3) can be used to determine h-morphological operators.

In analogy to the complete lattice case, h-dilations and h-erosions can be com-
bined to yield many h-morphological operators. For example, if εh and δh form an
h-adjunction, then γh = εhδh is an h-opening and φh = δhεh is an h-closing. Alterna-
tively, in analogy to (6), we can construct a vector-valued operator ψh : V → V from
a morphological operator ψ : L → L using Proposition 1 below, which is based on the
notion of h-increasing operator [9].

Definition 3. We say that an operator ψh : V → V is h-increasing if x ≤h y implies
ψh(x) ≤h ψh(y).

Proposition 1. An operator ψh : V → V is h-increasing if and only if there exists an
increasing operator ψ : L → L such that

hψh = ψh, (7)

In this case, we write ψh h→ ψ.
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a) I b) hI c) γhS(I)

Fig. 1. Color image I, its evaluation hI, and the h-opening γhS(I) by a disk of radius 10.

From Proposition 1, any h-increasing operator ψh : V → V can be derived from
an increasing operator ψ : L → L by means of (7). Needless to say, h-erosions and
h-dilations are h-increasing operators. Accordingly, we have εh h→ ε and δh

h→ δ
from (6). In a similar fashion, h-openings and h-closings are h-increasing operators.
Therefore, an h-opening γh : V → V and an h-closing φh : V → V can be derived
from an opening γ : L → L and a closing φ : L → L such that hγh = γh and
hφh = φh.

When an h-morphological operator ψh : V → V , derived from a surjective mapping
h : V → L and an increasing operator ψ : L → L, is applied to vector-valued images,
we consider V = VD and L = LD, where V denotes a vector-valued set and L is a
complete lattice. It turns out that a mapping h : V → L can be extended to images
I ∈ V in a pointwise manner as follows:

hI(p) = h(I(p)), ∀p ∈ D. (8)

Although we are concerned with operators for vector-valued images, we shall focus on
a mapping h : V → L and assume it is extended to multivalued images using (8). The
interested reader is referred to [21] for a review of reduced orderings in vector-valued
MM, as well as to [1, 19, 5, 20, 15] for some examples of reduced orderings used in
vector-valued MM that are found in the literature. Moreover, from Proposition 1, we
can compute efficiently a vector-valued h-morphological operator ψh from a classical
flat gray-scale increasing operator ψ using a look-up table [21]. The interested reader
can find in [21] a MATLAB-style pseudo-code for computing ψh(I) from an increasing
morphological operator ψ that does not introduce false values.

As far as we know, almost all reduced orderings are defined by considering map-
pings h : V → L ⊂ R̄. Furthermore, we usually have h(x) 6= h(y) for distinct x and
y in I(D) = {I(p) : p ∈ D}, the range of the multivalued image I. In this case, the h-
ordering yields a total ordering on I(D). Accordingly, although the h-ordering prevents
the occurrence of false values (or colors), it is subject to irregularity issues [6]. A visual
interpretation of this remark is illustrated in Fig. 1. Precisely, Fig. 1a) shows a color
image I while Fig. 1b) depicts the gray-scale image hI obtained using the mapping
h : VRGB → [0, 1] defined by

h(x) = 0.298936xR + 0.587043xG + 0.114021xB ,∀x = (xR, xG, xB) ∈ VRGB, (9)
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where VRGB = [0, 1] × [0, 1] × [0, 1]. Also, Fig. 1c) shows the h-opening γhS(I) by a
(flat) disk structuring element S of radius 10 obtained using the look-up table algorithm
detailed in [21]. Note some irregularities at the border of the head of the red parrot.
Similar irregularities can be observed by considering more complex h-mappings such
as the one discussed in [19] and [15].

4 Approximation of h-Increasing Operators

Despite the many successful applications of h-morphological operators, they usually
are too sensitive to the h-ordering mapping. Furthermore, there can be many possible
sources of uncertainty when dealing with an h-ordering which may affect the outcome
of an h-morphological operator. For instance, under real physical conditions, there exist
measurement errors when acquiring a vector-valued image. Also, the inevitable pres-
ence of rounding errors may cause some distortions on an h-ordering. From the method-
ological point of view, we may be uncertain about the method, the parameters, or the
data used to determine the ordering mapping. In the light of these remarks, let us as-
sume that we only have an approximation h̃ : V → L of the ideal unknown ordering
mapping h : V → L. Also, let us assume that the complete lattice L as well as the set
of lattice-valued images L are metric spaces.

According to the previous section, given a vector-valued image I ∈ V and an in-
creasing morphological operator ψ : L → L, a h̃-morphological operator ψh̃ : V → V
yields a vector-valued image J = ψh̃(I) ∈ V such that

h̃J = ψ(h̃I). (10)

Now, if we are uncertain about the ordering mapping h̃, we propose to replace (10) by
the inequality

dL
(
h̃J, ψ(h̃I)

)
≤ τ, (11)

where τ ≥ 0 is a prescribed tolerance parameter and dL : L×L → [0,+∞) is a metric.
On the one hand, τ = 0 implies the equality (10), which means we have complete
confidence in the observed ordering function h̃ : V → L. On the other hand, we have
no confidence in the ordering function when τ is sufficiently large. In this second case,
the vector-valued image J must be determined using other criteria.

In order to prevent the occurrence of false values, we impose that the range of the
output image is contained in the range of the input image. More precisely, in order to
preserve local information, we impose that J(p) is a value in a neighborhood Bp ⊂ D
of the pixel p ∈ D. Formally, we have

J(p) ∈ I(Bp), ∀p ∈ D. (12)

We refer toBp ⊂ D as the local window. Usually, we defineBp = {p+q : q ∈ B}∩D
where, like the structuring element, B is a finite subset of either E = R2 or E = Z2.

Apart from the constraints (11) and (12), we consider an appropriate objective to
be minimized such as the irregularities of the output image J. The objective can also
circumvent ambiguities when there exists more than one feasible vector-value image
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J satisfying both (11) and (12). In mathematical terms, the objective to be minimized
is described by a functional F : V → R which associates to a vector-valued image
a certain scalar measure. Concluding, we define a new morphological operator as a
minimum point of the objective function F subject to the constraints (11) and (12).

4.1 τ -Morphological Operator

Given an increasing morphological operator ψ : L → L, an uncertain ordering mapping
h̃ : V → L, an objective function F : V → R, a local windowB, and a tolerance τ ≥ 0,
we define the τ -morphological operator ψτ : V → V by setting ψτ (I) = J∗ where J∗

is an optimal solution of the optimization problem:
minimize F (J),

subject to dL
(
h̃J, ψ(h̃I)

)
≤ τ,

J(p) ∈ I(Bp), ∀p ∈ D.
(13)

Note that the optimization problem (13) is feasible if ψ(h̃I)(p) ∈ h̃I(Bp) for all
p ∈ D. Indeed, if for any p ∈ D there exists q ∈ Bp such that ψ(h̃I)(p) = h̃I(q),
then setting J(p) = I(q) yields an image J such that (11) holds true for any τ ≥ 0. For
example, the optimization problem (13) is feasible if one considers a classical erosion or
a classical dilation by a flat structuring element S which is included in the local window
B, that is, S ⊂ B. Apart from the feasibility issues, the optimization problem (13) can
be computationally intractable. Thus, let us present a simplified version of this problem
which scales linearly in the size of the image and the number of bands or channels.

A simplified problem is obtained if the objective function F : VD → R is formu-
lated in a pointwise manner as follows where Fp : V→ R, for all p ∈ D:

F (J) =
∑
p∈D

Fp(J(p)). (14)

Although Fp may change for each pixel p ∈ D, it depends only on the value x = J(p).
For example, we can define the objective function Fp : V→ R as follows for all p ∈ D
where R ∈ VD is a reference vector-valued image and dL denotes a metric on L:

Fp(x) = dL
(
x,R(p)

)
. (15)

More importantly, by considering a pointwise ordering mapping h̃ : V → L and the
maximum metric dL(I,J) = max{dL

(
I(p),J(p)

)
: p ∈ D}, the optimization problem

(13) can be decomposed into the following optimization problems for all p ∈ D:{
minimize Fp(x),

subject to dL(h̃(x), ψ(h̃I)(p)) ≤ τ, x ∈ I(Bp).
(16)

Then, the pointwise τ -morphological operator ψτ : VD → VD is defined by setting,
for all p ∈ D, ψτ (I)(p) = x∗, where x∗ is an optimal solution of (16).
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In the worst case, a solution of (16) can be obtained by an exhaustive search on
I(Bp). Moreover, such exhaustive search requires Card(B) evaluations of Fp and dL,
which are usually linear on the number of bands or channels of the multivalued image.
Thus, the vector-valued imageψτ (I) can be obtained performingO(Card(D)·Card(B))
operations and evaluations of the objective functions and the metric dL.

Like (13), the optimization problems given by (16) are all feasible if ψ(h̃I)(p) ∈
h̃I(Bp), ∀p ∈ D. In our implementations, we alert the user and define ψτ (I)(p) = I(p)
if the optimization problem (16) is unfeasible for some p ∈ D.

4.2 λ-Morphological Operator

Alternatively, instead of using the restriction dL(h̃J, ψ(h̃I)) ≤ τ , we may add this term
multiplied by a scaling factor λ ≥ 0 in the objective function. The resulting optimiza-
tion problem is: {

minimize F (J) + λdL
(
h̃J, ψ(h̃I)

)
,

subject to J(p) ∈ I(Bp).
(17)

Given an increasing morphological operator ψ : L → L, an uncertain mapping h̃ :
V → L, an objective function F : V → R, a local window B, and a parameter λ ≥ 0,
we define the λ-morphological operator ψλ : VD → VD by means of the equation
ψλ(I) = J∗, where J∗ is an optimal solution of (17) for a given I ∈ VD.

We would like to call the reader’s attention to two important issues related to the
λ-morphological operator ψλ defined by means of (17). First, the parameter λ ≥ 0 in
(17) controls the trade-off between the objective function and the ordering mapping h̃.
Specifically, the larger the parameter λ ≥ 0 the higher the confidence in the observed
mapping h̃. Indeed, if λ is assigned a small value, the ordering mapping h̃ is considered
to be uncertain and less emphasis is placed on it. At the other extreme, the similarity
between h̃J and ψ(h̃I) dominates the objective function when λ is sufficiently large.

Secondly, but not less important, the optimization problem (17) is always feasible.
Thus, in contrast (16), it does not require ψ(h̃I)(p) ∈ h̃I(Bp), ∀p ∈ D. As a con-
sequence, ψλ : VD → VD is well-defined even when the underlying morphological
operator ψ : LD → LD is based on a non-flat structuring element.

Finally, in analogy to the previous τ -morphological operator, (17) can be simplified
if the objective function F : VD → R can be written as (15) and the metric dL is
given by dL(I,J) =

∑
p∈D dL

(
I(p),J(p)

)
, where dL denotes a metric on L. Using

exhaustive search, the λ-morphological operator ψλ requires O(Card(D) · Card(B))
operations and evaluations of the objective functions and dL. GNU Octave source-
codes of both τ -morphological and λ-morphological operators are available at https:
//codeocean.com/capsule/3486771/tree/v1.

4.3 Computational Experiments

This subsection provides some computational experiments to illustrate the new multi-
valued morphological operators. For simplicity, let us consider the color image I shown
in Fig. 1a), an opening γS by a disk S of radius 10 as the increasing morphological op-
erator ψ, a disk of radius 20 as the local window B, and the functional Fp : VRGB → R
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or the original image I by the parameters τ or λ× 10−5.

given by (15) with the usual Euclidean distance. Also, let us suppose we only know a
noisy version h̃ : VRGB → [0, 1] of the (ideal) ordering mapping h : VRGB → [0, 1] given
by (4). In our experiments, h̃ is obtained by adding uncorrelated Gaussian noise with
zero mean and variance σ2 = 0.01, i.e., h̃(x) = max{0,min{1, h(x) + N}}, where
N ∼ N (0, 0.01).

First, let us address the effect of the parameters τ ≥ 0 and λ ≥ 0 on the operators
γτS and γλS defined respectively by (16) and (17) with ψ = γS and the reference image
R = I. Quantitatively, Fig. 2 shows the average peak signal-to-noise ratio (PSNR)
between the ideal h-opening γhS(I) and the operators γτ and γλ for different values of
the parameters τ ≥ 0 and λ ≥ 0. The average PSNR have been obtained by performing
the same experiment 20 times for each value of the parameters τ and λ. For comparison
purposes, we included in Fig. 2 the horizontal lines corresponding to the PSNR values
between the ideal h-opening γhS(I) and the original image I, the noisy h̃-opening γh̃S(I),

and the filtered gh̃-opening γgh̃S (I). Here, γh̃S(I) and γgh̃S (I) have been computed using
the look-up table algorithm with h̃I and gh̃I, respectively, where g denotes an isotropic
Gaussian filter with spread 0.5. In other words, the filtered gh̃-opening is obtained by
trying to remove the Gaussian noise from h̃I using a Gaussian filter before computing
the h-morphological operator. As expected, we have

lim
τ→0

PSNR
(
γτS(I), γhS(I)

)
= PSNR

(
γh̃S(I), γhS(I)

)
= lim
λ→∞

PSNR
(
γλS(I), γhS(I)

)
,

and

lim
τ→∞

PSNR
(
γτS(I), γhS(I)

)
= PSNR

(
I, γhS(I)

)
= lim
λ→0

PSNR
(
γλS(I), γhS(I)

)
.



10 Mateus Sangalli and Marcos Eduardo Valle

a) I b) γhS(I) c) γh̃S(I)

d) γτS(I) f) γλS(I) c) γgh̃S (I)

Fig. 3. Color image I and its openings by a disk of radius 10 obtained using different approaches.

Most importantly, the largest PSNR rates are obtained for τ = 0.0063 and λ = 39.81.
For these values, the new operators outperformed the gh̃-opening obtained by filter-
ing the noisy h̃I before applying the look-up table algorithm [21]. A visual interpre-
tation of the original image I and the outcome of the openings γhS(I), γh̃S(I), γτS(I),

γλS(I), and γgh̃S (I) is shown in Fig. 3. Comparing Figs. 3b) and c), we observe how
h-morphological operators are sensitive to the ordering mapping. We can also visual-
ize a significant improvement on the outcome of the new operators γτS(I) and γλS(I),
including some kind of regularity in the edge of the head of the red parrot.

Finally, let us turn our attention to the objective function. We previously considered
R = I but, evidently, another image can be used as the reference image. Fig. 4 shows
the images γτS(I) and γλS(I) produced by the new operators using τ = 0.02 and λ = 60
but considering R = γMS (I), where γMS denotes the opening by a disk of radius 10
obtained using the marginal approach. As a consequence, γτS(I) and γλS(I) approximate
the marginal opening γMS , constrained by the noisy h̃-mapping, but without introducing
false colors. In this simple example, the openings shown in Fig. 4 circumvented the
irregularity issues present in the openings shown in Figs. 1 and 3. Furthermore, it reveals
some of the potential advantages of the new operators ψτ and ψλ.

5 Concluding Remarks

Despite the rich mathematical background and its successful applications for analysis
and processing of color and hyperspectral images [9, 20, 21], morphological operators
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(a) γM
S (I) (b) γτS(I) (c) γλS(I)

Fig. 4. Marginal opening γMS by a disk S of radius 10 and the corresponding γτS and γλS operators
using γMS as the reference in (15) and the parameters τ = 2 · 10−2 and λ = 60.

based on reduced orderings are usually too sensitive to the ordering mapping. In many
practical situations, however, the ordering mapping h is subject to uncertainties such as
the unavoidable measurement errors.

In this paper, by assuming that the ordering mapping is uncertain, we proposed two
approaches which are formulated as the solution of optimization problems. Precisely,
we assume that we only have an approximation h̃ of the ideal ordering mapping h.
Given an increasing morphological operator ψ : L → L, we define the τ -operator
ψτ and the λ-operator ψλ as the solution of the optimization problems (13) and (17),
respectively. Apart from the capability to deal with an uncertain ordering mapping, the
new operators can circumvent both the false values problem and the irregularity issues
found in many approaches to multivalued mathematical morphology [6, 17]. In fact,
we avoid false values by imposing J(p) ∈ I(Bp), where Bp is a local window. The
irregularity issue can be dealt by considering an adequate objective function. Finally,
both optimization problems (13) and (17) scales linearly in the size of the image and
the local window if the objective function can be decomposed in a pointwise manner
according to (15).

In order to illustrate the new operators and how they are able to deal with the un-
certainty present in the ordering mapping, we presented some simple computational
experiments with a color image in the RGB color space. By considering an uncertain
ordering mapping h̃ obtained by adding Gaussian noise, both τ -opening and λ-opening
showed to get closer to the ideal h-opening than the usual approach with or without a
filter. The proposed approaches also significantly reduced the visual irregularity present
in the images. To illustrate the effects of the choice of the objective function, we used
the proposed operators to approximate the marginal opening, which is fairly regular.
Visually, both τ -opening and λ-opening are very similar to the marginal opening but
they do not introduce false colors.

Future work relating to this paper includes studying how the new operators, in par-
ticular the λ-operators given by (17), work with non-flat structuring elements. One can
also investigate and compare the performance of the new operators in applications such
as image classification or segmentation.
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