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PURPOSE. To develop a deep learning approach to digitally stain optical coherence tomography
(OCT) images of the optic nerve head (ONH).

METHODS. A horizontal B-scan was acquired through the center of the ONH using OCT
(Spectralis) for one eye of each of 100 subjects (40 healthy and 60 glaucoma). All images were
enhanced using adaptive compensation. A custom deep learning network was then designed
and trained with the compensated images to digitally stain (i.e., highlight) six tissue layers of
the ONH. The accuracy of our algorithm was assessed (against manual segmentations) using
the dice coefficient, sensitivity, specificity, intersection over union (IU), and accuracy. We
studied the effect of compensation, number of training images, and performance comparison
between glaucoma and healthy subjects.

RESULTS. For images it had not yet assessed, our algorithm was able to digitally stain the retinal
nerve fiber layer þ prelamina, the RPE, all other retinal layers, the choroid, and the
peripapillary sclera and lamina cribrosa. For all tissues, the dice coefficient, sensitivity,
specificity, IU, and accuracy (mean) were 0.84 6 0.03, 0.92 6 0.03, 0.99 6 0.00, 0.89 6
0.03, and 0.94 6 0.02, respectively. Our algorithm performed significantly better when
compensated images were used for training (P < 0.001). Besides offering a good reliability,
digital staining also performed well on OCT images of both glaucoma and healthy individuals.

CONCLUSIONS. Our deep learning algorithm can simultaneously stain the neural and connective
tissues of the ONH, offering a framework to automatically measure multiple key structural
parameters of the ONH that may be critical to improve glaucoma management.

Keywords: glaucoma, artificial intelligence, deep learning, optic nerve head, optical
coherence tomography, digital staining, adaptive compensation

In glaucoma, the optic nerve head (ONH) exhibits complex
structural changes, including, but not limited to, thinning of

the retinal nerve fiber layer (RNFL)1; changes in choroidal
thickness,2,3 minimum rim width,4 and lamina cribrosa (LC)
depth5; and scleral canal expansion and bowing.6,7 If all these
structural parameters (and their changes) could be measured
automatically with optical coherence tomography (OCT), it
could considerably assist clinicians in their day-to-day manage-
ment of glaucoma.

For OCT research, manual segmentation has remained the
gold standard to extract structural information of the ONH, and
this is especially true for deeper connective tissues.8,9 However,
manual segmentation is time consuming, prone to bias, and
unsuitable in a clinical setting.10,11 Although several techniques
have been proposed to automatically segment some (but not
all) ONH tissues in OCT images,10,12–20 each tissue currently

requires its own processing algorithm. This lack of a ‘‘universal’’
approach may limit the clinical translation and appeal for these
algorithms.

Furthermore, the quality of automated segmentations/
delineations largely depends on that of the OCT images. Poor
deep-tissue visibility and shadow artifacts21 in OCT images as a
result of light attenuation make the development of robust
segmentation tools difficult. With the advent of swept-source
OCT,22 enhanced depth imaging,23–25 and compensation
technology,26 the quality of OCT images has been improved,
opening the door to new possibilities. Recently, our group has
developed a postprocessing technique that, when combined
with compensation, could digitally stain (highlight) neural and
connective tissues in OCT images of the ONH. However, this
approach remains limited, as it cannot identify each ONH tissue
separately, and in some cases requires manual inputs.27
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In this study, we aimed to develop a custom deep learning
algorithm to automatically and simultaneously stain six
important neural and connective tissue structures in OCT
images of the ONH. We hope to offer a framework to
automatically extract key structural information that has
remained difficult to obtain in OCT scans of the ONH.

METHODS

Patient Recruitment

A total of 100 subjects were recruited at the Singapore
National Eye Centre. All subjects gave written informed
consent, and the study adhered to the tenets of the
Declaration of Helsinki and was approved by the institutional
review board of the hospital. The subject population
consisted of 40 healthy controls, 41 subjects with primary
open-angle glaucoma (POAG), and 19 patients with primary
angle closure glaucoma (PACG). Inclusion criteria for healthy
controls were as follows: IOP � 21 mm Hg, healthy optic
nerves with vertical cup-disc ratio (CDR) less than or equal to
0.5, and normal visual fields. POAG was defined as glaucoma-
tous optic neuropathy (GON; characterized as loss of neuro-
retinal rim with vertical CDR > 0.7 and/or focal notching with
nerve fiber layer defect attributable to glaucoma and/or
asymmetry of CDR between eyes > 0.2) with repeatable
glaucomatous visual field defects. PACG was defined as the
presence of GON with compatible visual field loss, in
association with a closed anterior chamber angle and/or
peripheral anterior synechiae in at least one eye. A closed
anterior chamber angle was defined as the posterior
trabecular meshwork not being visible in at least 1808 of
anterior chamber angle.

OCT Imaging

OCT imaging was performed on seated subjects under dark
room conditions after dilation with tropicamide 1% solution.
Images were acquired by a single operator (TAT). The diagnosis
was masked with the right ONH being imaged in all the
subjects, unless the inclusion criteria were met only in the left

eye, in which case the left eye was imaged. A horizontal B-scan
(08) of 8.9 mm (composed of 768 A-scans) was acquired
through the center of the ONH for all the subjects using
spectral-domain OCT (Spectralis; Heidelberg Engineering,
Heidelberg, Germany). Data averaging was set to 48 and
enhanced depth imaging was used for all scans.

Correction of Light Attenuation Using Adaptive

Compensation

To remove the effects of light attenuation from OCT images, all
B-scans were postprocessed using adaptive compensation
(AC).26 For OCT images of the ONH, AC has been shown to
remove blood vessel shadows, improve tissue contrast, and
increase the visibility of several features of the ONH.28,29 For all
B-scans, we used a threshold exponent of 12 (to limit noise
overamplification at high depth), and a contrast exponent of 2
(to improve overall image contrast).23

Manual Segmentation of OCT Images

We performed manual segmentation of all compensated OCT
images to train our digital staining algorithm to identify and
highlight tissues, and to validate the accuracy of our
approach. Specifically, each compensated OCT image were
manually segmented by two expert observers (SD and KC)
using Amira (version 5.4; FEI, Hillsboro, OR, USA) to identify
the following classes: (1) the RNFL and the prelamina (in red,
Fig. 1); (2) the RPE (in pink); (3) all other retinal layers (in
cyan); (4) the choroid (in green); and (5) the peripapillary
sclera and the LC (in yellow). Noise (below the peripapillary
sclera and LC) was color-coded in blue. Note that in most
cases, a full-thickness segmentation of the peripapillary sclera
and of the LC was not possible due to limited visibility.29

Therefore, we segmented only the visible portions of the
sclera/LC as detected from the compensated OCT signal, and
no effort was made to capture their accurate thickness. The
manual segmentation assigned a label (defined between 1 and
6) to each pixel of each OCT image to indicate the tissue
class.

FIGURE 1. Manual segmentation of a compensated OCT image of the ONH. The RNFL and prelamina are shown in red, the RPE in pink, all other
retinal layers in cyan, the choroid in green, the peripapillary sclera and LC in yellow, and noise in blue.
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Digital Staining of the ONH Using Deep Learning

In this study, we developed a custom deep learning approach
to automatically stain ONH tissues in OCT images of the ONH.
In recent years, deep learning has been extensively used in the
field of medical imaging for diagnosis and segmentation
applications. Although the concept of deep learning for
medical image segmentation is not new for other imaging
modalities such as magnetic resonance imaging,30,31 its
application to OCT is still relatively recent.31–34 Although a
number a studies have shown the successful segmentation of
retinal31,33,34 and macular edema32 in OCT images using deep
learning, to the best of our knowledge, no studies have been
able to simultaneously stain neural and connective tissues in
OCT images of the ONH. To this end, we used a two-
dimensional convolution neural network (CNN) that was
trained with manually segmented OCT images to recognize
the most representative features of each tissue (present in
small image patches). When our CNN was presented with an
OCT image it had not yet seen, it was able to identify patches in
the new image with features that ‘‘matched’’ those from the
training set; each patch was then assigned a color code in its
center (or probability to belong to a given tissue; one color per
tissue between 1 and 6), to generate a digitally stained image of
the ONH.

Network Architecture

For this study, we used an eight-layer CNN that was composed
of three convolution layers, three max-pooling layers, and two
fully connected layers (see detailed architecture in Fig. 2).
Overlapping patches (quantity: approximately 2700; size: 50 3

50 pixels; stride length: 1 pixel) were extracted from each OCT
image (size: 497 3 768 pixels) and fed as a single channel gray-
scale image to the input layer.Each of the three convolution
layers extracted 32 feature maps with filters of size 5 3 5, 3 3 3,
and 3 3 3 pixels, respectively. The feature maps from the
hidden layers (all layers except the input and output layers)
were activated using a rectified linear unit (ReLu) function.
Two fully connected layers with 100 neurons each were used
to connect all the activations in the previous layers and funnel
their excitations to the output layer. The output layer had six
neurons, each corresponding to one class of tissue (i.e., RNFL,
RPE, all other retinal layers, choroid, peripapillary scleraþ LC,
and noise). A softmax activation function was then applied to
the output layer to obtain the class-wise probabilities (to
belong to a given class) for each patch. For simplicity, every
patch was assigned the class label with the highest probability
in its center.

The proposed CNN was composed of 130,000 trainable
parameters and was able to learn the initially unknown weights
and biases during training using a standard cross-entropy loss
function and an ADAM gradient descent optimization algorithm
(learning rate: 0.001).35 To reduce overfitting, a dropout of 35%
was used in the last layer before the softmax activation. The
loss function was scaled during the training using class weights
for each output class of tissue to circumvent the fact that
tissues covering large areas in OCT images (e.g., RNFL þ
prelamina) were represented by more patches. Specifically, the
class weights assigned to each class of tissue were inversely
proportional to the number of patches representing it in the
training set (i.e., the more patches representing a particular
class of tissue, the lesser its weight). Due to the limited size of
our dataset, we performed online data augmentation (as is
common in machine learning) by rotating (108; clockwise and
counterclockwise), flipping (horizontally), and translating (5
pixels; vertically and horizontally) our patches. The proposed
CNN learned the specific features for each class of tissue in
batches of 50 patches over 100 epochs (iterations). Note that
in each epoch, all the patches in a batch underwent data
augmentation before the start of the training. The CNN was
developed using the Python programming language (Python
Software foundation, https://www.python.org/) and imple-
mented using the Keras36 framework for deep learning with
Tensorflow37 as backend. We trained and tested the proposed
CNN on an NVIDIA GTX 1080 (Nvidia, CA, USA) founder’s
edition GPU with CUDA v8.0 (Nvidia) and cuDNN v5.1
(Nvidia) acceleration.

Hyperparameter Tuning

The proposed architecture design was finalized purely on a
heuristic basis after performing several experiments with
varying kernel sizes, number of kernels, and depth. Due to
the scarcity of available segmented OCT images, we have used
the whole dataset for fine-tuning the architecture of the
network. The regularization techniques of data augmentation
and dropout layer were manually designed after observing the
results over multiple experiments (for training set of size 10
images). With low (5%–10%) or no dropout, we observed that
the network was overfitting. Thus, we kept increasing the
dropout (35%) until we achieved a network that does not
overfit. For training the network, we used an ADAM optimizer
with a learning rate of 0.001.

Training and Testing of Our CNN

Once a robust network architecture was found and then fixed
until the end of the study, we carried out several set of cross-

FIGURE 2. The deep learning architecture is an eight-layer CNN composed of three convolution layers, three max-pooling (subsampling) layers, and
two fully connected layers.
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validation experiments for assessing the accuracy of the
segmentation outputs and estimating the impact of the number
of training examples on the accuracy of the network. In each of
the cross-validation experiments, an equal number of compen-
sated glaucoma and healthy OCT images were used in each of
the training sets. We carried out experiments with training
datasets of size 10, 20, 30, and 40 B-scans. In each one of these
experiments, the accuracy was evaluated on the remaining set
of images that were not part of the training sets. To study the
effect of compensation on the accuracy of the segmentation, a
similar set of experiments were performed with uncompen-
sated images. We would like to emphasize one more time,
though, that the entire dataset of images was initially leveraged
for fine-tuning the architecture of the network. Consequently,
there indeed is a small leakage of the test sets of images in the
training procedures.

Digital Staining Performance: Qualitative
Assessment

All digitally stained images were reviewed manually by the
expert observers (SD and KC) for all training sets (with
compensated and uncompensated images) and compared
(qualitatively) with their corresponding manual segmenta-
tions.

Digital Staining Performance: Quantitative
Assessment

To estimate the accuracy of digital staining in identifying
individual ONH tissues in OCT images during the testing
process, the following metrics were computed for each tissue
and for each entire image: the dice coefficient, sensitivity,
specificity, intersection over union (IU), and accuracy.

It is important to emphasize that these metrics could not
be directly applied to the peripapillary sclera and LC, as their
through-thickness visibility varied considerably across images.
Instead, staining of the sclera and LC was assessed qualita-
tively.

The dice coefficient is a standard measure of similarity
between two shapes and was used to assess the ‘‘overlap’’
between manual segmentation and digital staining. The dice
coefficient is typically defined between 0 and 1, where 1
represents a perfect overlap and 0 no overlap. The dice
coefficient DCi was calculated for each tissue i (1: RNFL and
prelamina, 2: RPE, 3: all other retinal layers, and 4: choroid),
and for each B-scan in each testing set. It was defined as
follows:

DCi ¼
2 � jDSi \MSij

DSij j þ MSij j ; ð1Þ

where DSi is the set of pixels representing the ONH tissue i in
the digitally stained B-scan, and MSi is that in the correspond-
ing manually segmented B-scan.

Specificity, also defined as true negative rate (TNR) can
assess the false predictions made by digital staining, and was
calculated for each ONH tissue i and for each B-scan in each
testing set as follows:

S:pi ¼
jDSi \MSij
j MSij

; ð2Þ

where DSi is the set of all pixels not belonging to tissue i in the
digitally stained B-scan and MSi is that in the corresponding
manually segmented B-scan.

Sensitivity, also defined as the true positive rate (TPR), can
assess the ability of digital staining to accurately stain a given

ONH tissue, and was calculated for each ONH tissue i and for
each B-scan in each testing set. It was defined as in Equation
3:

S:ni ¼
jDSi \MSij
jMSij

ð3Þ

We also computed two other metrics, namely the IU and the
accuracy, both of which can assess the area of overlap between
digital staining and manual segmentation. They are defined as
follows:

IU ¼ TPR

TPRþ FPRþ FNR
ð4Þ

Accuracy ¼ TPRþ TNR

TPRþ TNRþ FPRþ FNR
; ð5Þ

where FNR is the false negative rate (FNR¼ 1� TPR) and FPR
the false positive rate (FPR ¼ 1 � TNR).

Specificity, Sensitivity, IU, and accuracy were reported on a
scale of 0 to 1.

Effect of Training Set Size on Digital Staining
Accuracy

We used a 1-way ANOVA to assess differences in dice
coefficients, sensitivities, and specificities (mean) for a given
tissue across training set sizes (data were pooled for a given
training set size). The test was performed in MATLAB (R2015a;
MathWorks, Inc., Natick, MA, USA) and statistical significance
was set at P < 0.05.

Digital Staining Reliability

We assessed the reliability of digital staining using the manual
segmentations from the two expert observers. For this
experiment, two CNNs were trained: one with the manual
segmentation from the first observer, and the other with the
manual segmentation from the second observer. Note that 10
images were used for training for each CNN. Dice coefficients
(averaged for all tissues) were then calculated for the four
following cases:

A. Manual segmentation from the first observer versus
digital staining trained with the first observer.

B. Manual segmentation from the second observer versus
digital staining trained with the first observer.

C. Manual segmentation from the first observer versus
digital staining trained with the second observer.

D. Manual segmentation from the second observer versus
digital staining trained with the second observer.

Paired t-tests were then used to assess the differences in
dice coefficients between cases A and B; and between cases C
and D. In addition, we aimed to understand differences in
manual segmentations between the two expert observers by
calculating the dice coefficient for the following case:

E. Manual segmentation from the first observer versus
manual segmentation from the second observer.

Performance Comparison Between Glaucoma and
Healthy Subjects

We used unpaired Student’s t-test to quantitatively compare the
performance of digital staining when testing was performed
either on healthy or glaucoma OCT images. Specifically, for a
training set of size 10, we used unpaired t-tests to assess the
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differences in the mean values of dice coefficients, specificities
and sensitivities, IUs, and accuracies for each tissue (for a
training set of size 10, data were pooled across all datasets
separately for glaucoma and healthy images).

Effect of Compensation on Digital Staining
Accuracy

We used paired t-tests to assess whether our digital staining
algorithm exhibited improved performance when trained with
compensated images (as opposed to uncompensated images).
Specifically, for a training set size of 10, we used t-tests to assess
the differences in the mean values of dice coefficients,
sensitivities, and specificities for each tissue (data were pooled
for the training set of size 10).

RESULTS

Qualitative Analysis

Baseline, compensated, manually segmented, and digitally
stained images (with training performed on 10 compensated
or 10 baseline images) for four selected subjects (1: Healthy, 2
and 3: POAG, 4: PACG) can be found in Figure 3.

When compensated images were used for training (Fig. 3,
fourth row), we found that our digital staining algorithm was
able to simultaneously highlight the RNFLþprelamina (in red),
the RPE (in pink), all other retinal layers (in cyan), the choroid
(in green), the sclera þ LC (in yellow), and noise (in blue).
Digitally stained images were similar to those obtained from
manual segmentation, and the results were consistent across all
subjects and for all testing sets. Overall, the anterior LC was

well captured, but our algorithm had a tendency to always
identify LC insertions into the sclera that were not always
present in the manual segmentations (e.g., subject 4). Small
errors were sometimes observed. For instance, a small portion
of the central retinal trunk was identified as choroidal tissue
(green) in subject 2. Interestingly, although we provided a
‘‘smooth’’ delineation of the choroid-scleral interface, our
algorithm had a tendency to follow the ‘‘undulations’’ of
choroidal vessels.

When baseline images were instead used for training (Fig. 3,
fifth row), more errors were observed. For instance, parts of
the retina and prelamina were identified as scleral tissue
(yellow) in subject 1.

Quantitative Analysis

Across all tests (with training performed on compensated
images), we found that the average dice coefficient was 0.82 6

0.05 for the RNFLþ prelamina, 0.84 6 0.02 for the RPE, 0.86
6 0.03 for all other retina layers, and 0.85 6 0.02 for the
choroid. Sensitivity and specificity were high for all tissues:
0.89 6 0.04 and 0.99 6 0.00 for the RNFLþprelamina, 0.90 6

0.03 and 0.99 6 0.00 for the RPE, 0.98 6 0.02 and 0.99 6 0.00
for all other retina layers, and 0.91 6 0.02 and 0.99 6 0.00 for
the choroid, respectively. The IU and accuracy were also
relatively high for all tissues: 0.87 6 0.06 and 0.93 6 0.02 for
the RNFL þ prelamina, 0.86 6 0.04 and 0.93 6 0.02 for the
RPE, 0.97 6 0.02 and 0.98 6 0.01 for all other retina layers,
and 0.87 6 0.03 and 0.93 6 0.01 for the choroid, respectively.

For a given training set size, results were highly consistent
across all tests (see Fig. 4 showing dice coefficients,

FIGURE 3. Baseline (first row), compensated (second row), manually segmented (third row), digitally stained images (trained on 10 compensated
images; fourth row), and digitally stained images (trained on 10 baselined images; fifth row) for four selected subjects (1: Healthy, 2 and 3: POAG, 4:
PACG).
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sensitivities, and specificities for each tissue, five tests per

tissue, training set size: 10).

Dice coefficients, sensitivities, specificities, IU, and accura-

cy (mean 6 SD) for all training set sizes and all tissues are listed

in the Table. For all tissues but RPE, we found that the training

set size had no significant impact on the dice coefficient and on

sensitivity (P > 0.05 for all cases). However, increasing the

training set size from 10 to 40 significantly improved the dice

coefficient for RPE (P < 0.001) from 0.81 6 0.04 to 0.87 6

0.03. Finally, the training set size had a significant impact on

specificity for all tissues (P < 0.001 for all cases); however, we

noted that specificity values were always higher than 0.98 for
all cases.

No significant differences (P > 0.05 for all cases) were
observed in the dice coefficients, specificities, sensitivities, IUs,
and accuracies (means) between glaucoma and healthy OCT
images (see Fig. 5; showing dice coefficient, sensitivity,
specificity, IU, and accuracy for each tissue and a training set
of size 10; data were pooled across all datasets).

There was no significant difference (P > 0.05) in dice
coefficient when digital staining was compared against the
manual segmentations from both expert observers irrespective
of whose manual segmentation was used for training (A versus

FIGURE 4. (A–C) Dice coefficients, sensitivities, and specificities represented as box plots for each tissue (RNFL in red, all other retina layers in
green, RPE in blue, and the choroid in magenta) for each of five testing sets per tissue (training images per set: 10; testing images per set: 90). (D–F)
Same as above except that 20 images were used for each training set, and 80 images for each testing set. (G–I) Thirty images were used for each
training set, and 70 images for each testing set. (K–L) Forty images were used for each training set, and 60 images for each testing set.
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B, and C versus D in Fig. 6). Thus, digital staining was deemed
reliable.

Overall, we found that digital staining performed signifi-
cantly better when compensated images where used for
training (as opposed to baseline or noncompensated images).
Specifically, dice coefficients, sensitivities, and specificities
were always significantly higher when our algorithm was
trained with compensated images (versus baseline images; P <
0.001 for all cases; Fig. 7).

DISCUSSION

In this study, we have developed a custom deep learning
algorithm to digitally stain tissues in OCT images of the ONH.
Our algorithm was tested and validated using OCT images from
100 subjects, and was found to exhibit relatively good
performance across all tissues for both glaucoma and healthy
images. Digital staining also was found to be significantly
reliable when validated against the manual segmentations from
the two expert observers. Furthermore, there was a good
agreement in the manual segmentations between the two
observers (averaged dice coefficient for all tissues¼ 0.89). We
also found that our algorithm performed significantly better
when it was trained with enhanced (i.e., compensated) OCT
images. Our method is attractive because it identifies all tissue
layers simultaneously, and because it is ‘‘universal,’’ in the
sense that the exact same processing approach is being used to
identify each tissue layer individually. Our work could have
applications for the clinical management of glaucoma using
OCT. To the best of our knowledge, no deep learning
techniques have yet been proposed for OCT images of the
ONH.

In this study, we found that our digital staining algorithm
was able to simultaneously isolate the RNFL þ prelamina, the

RPE, all other retina layers, the choroid, and the peripapillary
scleraþ LC. Our results were consistent across all subjects and
we obtained relatively good agreements with respect to
manual segmentations (for all tissues, averaged dice coeffi-
cients varied between 0.82 and 0.86, averaged sensitivities
between 0.89 and 0.97, averaged specificities were always
higher than 0.98, averaged IU varied between 0.87 and 0.96,
and averaged accuracy varied between 0.93 and 0.98). We
believe our work offers a framework to automatically measure
structural parameters of the ONH. Typically, ONH tissues
exhibit complex three-dimensional (3D) structural changes
during the development and progression of glaucoma,
including, but not limited to, changes in RNFL thickness and
minimum rim width,38 changes in LC depth,5 changes in LC
curvature,39 changes in LC global shape index,40 changes in
choroidal thickness,2,3 peripapillary atrophy,41,42 scleral canal
expansion,6 migration of the LC insertion sites,43,44 LC focal
defects,45,46 and scleral bowing.7 On digital staining there
might exist imperfections and tissue discontinuities due to
false predictions that can be eliminated using simple nearest
neighbors–based post processing technique. Following such a
postprocessing approach, one can attempt to automatically
extract several important structural parameters of the ONH.
For instance, choroidal thickness and RNFL thickness maps
could be derived from our choroid and RNFL þ prelamina
staining (simply as the number of colored pixels in each A-scan
times a physical scale factor). To compute Bruch’s membrane
opening (BMO)–minimum rim width, one could first isolate
the two BMO points (from our RPE staining) and compute the
minimum distance from the inner limiting membrane (anterior
boundary that can be obtained from our RNFL þ prelamina
staining).47 One also could compute the amount of scleral
bending in the scleral flange, LC curvature (nasotemporal and
inferosuperior), and LC global shape index from our peripap-
illary sclera þ LC staining.40,48 Finally, LC depth could be

TABLE. Mean Dice Coefficient, Sensitivity, Specificity, IU, and Accuracy for All Tissues Across All Datasets for All Sizes of Testing Set When Evaluated
With Respective Training Sets

Training Set Size, Metric
Mean 6 SD

Tissue 10 20 30 40

Dice coefficient

RNFL 0.824 6 0.051 0.831 6 0.04 0.819 6 0.061 0.821 6 0.038

Retinal layers (all others) 0.858 6 0.028 0.856 6 0.024 0.861 6 0.022 0.872 6 0.031

RPE 0.812 6 0.040 0.828 6 0.001 0.853 6 0.045 0.867 6 0.030

Choroid 0.836 6 0.013 0.839 6 0.021 0.854 6 0.031 0.862 6 0.035

Sensitivity

RNFL 0.889 6 0.030 0.891 6 0.060 0.899 6 0.014 0.897 6 0.048

Retinal layers (all others) 0.969 6 0.029 0.973 6 0.021 0.978 6 0.019 0.981 6 0.009

RPE 0.890 6 0.029 0.889 6 0.034 0.901 6 0.021 0.915 6 0.031

Choroid 0.899 6 0.024 0.898 6 0.022 0.887 6 0.006 0.889 6 0.029

Specificity

RNFL 0.981 6 0.001 0.988 6 0.005 0.986 6 0.001 0.989 6 0.007

Retinal layers (all others) 0.991 6 0.001 0.984 6 0.002 0.988 6 0.000 0.991 6 0.003

RPE 0.991 6 0.002 0.989 6 0.002 0.989 6 0.002 0.992 6 0.011

Choroid 0.990 6 0.001 0.989 6 0.002 0.991 6 0.001 0.993 6 0.002

IU

RNFL 0.873 6 0.043 0.859 6 0.080 0.873 6 0.078 0.868 6 0.062

Retinal layers (all others) 0.966 6 0.028 0.970 6 0.022 0.968 6 0.023 0.967 6 0.022

RPE 0.851 6 0.035 0.848 6 0.051 0.890 6 0.044 0.861 6 0.048

Choroid 0.859 6 0.041 0.855 6 0.031 0.869 6 0.033 0.879 6 0.041

Accuracy

RNFL 0.935 6 0.022 0.926 6 0.041 0.927 6 0.040 0.932 6 0.001

Retinal layers (all others) 0.982 6 0.014 0.984 6 0.011 0.984 6 0.011 0.983 6 0.023

RPE 0.925 6 0.017 0.923 6 0.025 0.941 6 0.020 0.930 6 0.011

Choroid 0.929 6 0.021 0.926 6 0.017 0.939 6 0.017 0.929 6 0.021
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automatically computed from our RPE (to identify BMO) and
LC staining.49 We believe these parameters may prove critical
for glaucoma diagnosis, management, and risk profiling. Our
approach thus may be of high importance for glaucoma
diagnosis, management, and risk profiling.

Although accurate automated segmentation tools exist for
retinal layers,50,51 for the choroid,12,13,18,52–54 or the choroid-
scleral interface,54 and to a lesser extent, for the LC,55–57 there
exists no ‘‘universal’’ tool to isolate both connective and neural
tissues simultaneously. Each tissue currently requires its own
specific algorithm, each of which may be computationally
expensive.53 It is interesting to note that a number of existing
automated segmentation tools are prone to segmentation
errors in images with pathology (e.g., AMD, optic disc
edema).58 On the contrary, our algorithm exhibited the same
performance when tested on healthy or glaucoma images
(while the training was performed on a mix of healthy and
glaucoma images). This could have significant advantages for
clinical translation of our tools; however, more work should be
carried out to understand whether this would remain true for
all glaucoma severities, and for ONHs with specific character-
istics, such as peripapillary atrophy. Our current digital staining
approach highlights all tissues simultaneously with the exact
same deep learning backbone and requires only a few seconds

of processing time for each image on a standard GPU card.
Note that our group is currently developing a real-time digital
staining solution to make it more attractive for glaucoma
clinics.

We found that the quality of digital staining was relatively
poor when our deep learning network was trained with
baseline (uncompensated) images (Fig. 5). On average (all
tissues) the dice coefficient was 0.56 6 0.06 (versus 0.84 6

0.03 when training with compensated images), sensitivity 0.65
6 0.261 (versus 0.92 6 0.03), and specificity 0.93 6 0.02
(versus 0.99 6 0.00). This is not surprising, as baseline images
(versus compensated images) typically exhibit lower intra- and
interlayer contrasts, low visibility at high depth, and strong
blood vessel shadow artifacts.26 Our work illustrates that
adaptive compensation26 may be a necessary first step toward
a simple solution to automatically segment the ONH tissues.

Interestingly, we found that increasing the size of our
training set (from 10 to 40 images) did not significantly
improve digital staining accuracy, except for the RPE. This
result may appear counterintuitive. However, contrary to most
deep learning applications, our situation is intrinsically low
dimensional: most OCT scans of the ONH are fundamentally
similar to each other (e.g., the sclera is always posterior to the
choroid). Furthermore, we would like to emphasize that, on

FIGURE 5. (A–E) Dice coefficient, sensitivity, specificity, IU, and accuracy represented as box plots for each tissue (RNFL, all other retina layers, RPE,
and the choroid) for a training set of size 10 (data were pooled across all datasets) for glaucoma (green) and healthy OCT images (yellow).
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average, approximately 2700 patches of size 50 3 50 pixels for
a stride of 1 pixel were extracted from each image. Thus, we
effectively trained our deep learning network with a large
amount of data (for 10 images, 10 images 3 2700 patches ¼
27,000 patches in total). And because each ONH tissue exhibits
similar texture at different locations, a patch that, for example,
represents the nasal part of the choroid also can be used to
identify the temporal part of the choroid during testing. These
reasons may potentially explain why our results were accurate
(while circumventing overfitting) even when training was
performed on a small number of subjects (10). This can be
seen as a strong advantage, as obtaining access to images is one
the largest limiting factors for deep learning applications.
However, we believe that more validations are required, and
we aim to study much larger populations in the near future.

Finally, to the best of our knowledge, there are very few
traditional image processing and machine learning approaches
that have been proposed to simultaneously segment connec-
tive and neural tissues in OCT images of the ONH. In our
previous study,59 we proposed a histogram-based algorithm to
digitally stain connective and neural tissues; such an approach
was limited, as it was not able to fully separate different
connective tissue layers (e.g., sclera from choroid). It also was
found that techniques such as K-means clustering were not
able to accurately dissociate neural from connective tissues. In
all, we believe that a deep learning approach may be the
preferred technique for OCT images of the ONH.

Several limitations in our study warrant further discussion.
First, our algorithm was trained with OCT images from a single
device (Spectralis), and it is currently unknown if our approach
could be directly applied to images captured with other OCT

devices. However, one could consider retraining the network
for each device separately. We are currently exploring such an
approach.

Second, given the limitation in dataset size (100 images), we
did use the whole dataset for fine-tuning the global architecture
of the network. Thus, there was an overall mixing of training/
testing sets across all the experiments. Given a slightly larger
dataset, our future works can definitely have an exclusive
testing set. Nevertheless, we offer here a proof of principle of
ONH digital staining that also could be used by other groups
for further validation.

Third, we were unable to provide an additional validation of
our algorithm by comparing our stained images with those
obtained from histology. This is extremely difficult to achieve,
as one would need to image a human ONH with OCT, process
it with histology, and register both datasets. Note that the
broad understanding of OCT ONH anatomy to histology has
been based on a single comparison with a normal monkey eye
scanned in vivo at an IOP of 10 mm Hg and then perfusion
fixed at time of euthanasia at the same IOP.60 The tissue
classification derived from our algorithm matches the expected
relationships observed in this canonical work. At the time of
writing, there have been no published experiments matching
human ONH histology to OCT images. Although the absence of
this work prevents an absolute validation of our technique, the
same shortcoming necessarily applies to every other in vivo
investigation of deep OCT imaging of the human ONH, many
publications of which predate even the publication of the
comparison with the monkey ONH.

Fourth, in some subjects, we observed false predictions for
a few pixels in the LC. This shortcoming could potentially be
addressed with the use of a deeper network, a more advanced
neural network architecture, a 3D CNN, or a simple
postprocessing approach to filter tissue discontinuities follow-
ing the digital stain step. Further work is required to explore all
these options.

Fifth, in the patch-based approach, overlapping patches
result in multiple convolutions on similar sets of pixels, which
are a waste of computational memory and time. Recently
developed architectures61–64 for other biomedical imaging
applications have circumvented these issues, which could be
explored for OCT images of the ONH.

Sixth, in this study, the number of neurons in the two fully
connected layers was less than the number of features in the
last pooling layer. However, please note that we used a
completely heuristic approach to identify the optimum
number of neurons required in each of the fully connected
layers after several experiments. When we increased the
number of neurons (in the range of 500–1000) in the fully
connected layers, the model became computationally expen-
sive and was overfitting. When we used a smaller number of
neurons, the accuracy was compromised. Thus, after several
experiments, we have heuristically concluded that, for digital
staining using the proposed architecture, we required two fully
connected layers, each with 100 neurons to provide a good
accuracy without overfitting.

Seventh, in some subjects, the LC insertions into the sclera
highlighted by the algorithm that were not visible to the
expert observer during manual segmentations makes it
unclear if our algorithm was able to identify faint signals that
resembled LC insertions, or whether it was introducing
artifacts. A 3D validation may be required to address this
phenomenon.

In conclusion, we have developed a custom deep learning
algorithm to digitally stain nervous and connective tissues in
OCT images of the ONH. Because these tissues exhibit
significant structural changes in glaucoma, digital staining
may be of interest in the clinical management of glaucoma.

FIGURE 6. Digital staining reliability. Two CNN models were trained:
one with the manual segmentation from the first observer, and the
other with the manual segmentation from the second observer. Note
that 10 images were used for training for each CNN. Dice coefficients
(averaged for all tissues) were then calculated for the five following
cases: (A) manual segmentation from the first observer versus digital
staining trained with the first observer; (B) manual segmentation from
the second observer versus digital staining trained with the first
observer; (C) manual segmentation from the first observer versus
digital staining trained with the second observer; (D) manual
segmentation from the second observer versus digital staining trained
with the second observer; (E) manual segmentation from the first
observer versus manual segmentation from the second observer.
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