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EQUIVARIANT TAMAGAWA NUMBER CONJECTURE FOR
ABELIAN VARIETIES OVER GLOBAL FIELDS OF POSITIVE

CHARACTERISTIC

FABIEN TRIHAN AND DAVID VAUCLAIR

Abstract. We state and prove certain cases of the equivariant Tamagawa number
conjecture of a semistable Abelian variety over an everywhere unramified finite
Galois extension of a global field of characteristic p > 0 under a semisimplicity
hypothesis.

1. Introduction

The Iwasawa theory and main conjecture for Abelian varieties over cyclotomic
extensions of number fields first appeared in a celebrated paper of Mazur ([Ma]). In
the recent years, Kato ([Ka]) and Skinner and Urban ([SU]) gave a full proof of the
conjecture for elliptic curves over the rationals. Let us mention also the development
of these conjectures to non commutative extensions. Meanwhile, it is possible to
develop an analogous theory over function fields of characteristic p > 0. Up to now,
and over such fields, the results obtained by both authors are as follows: the Iwasawa
main conjecture is known in the following cases:

(1) A/K is semistable and the extension is a profinite Galois extension without p-
torsion, everywhere unramified and factoring through the unique Zp-extension
everywhere unramified ([LLTT1], [TV2]).

(2) A/K is a constant ordinary Abelian variety and the extension is a profinite
Abelian Galois extension, ramified at a finite set of places ([LLTT2]).

Note that the first result is based on the use of crystalline methods while the
second more or less can be reduced to the case of the trivial motives. Note also that
in [BK], a Tamagawa number conjecture is moreover proved in case (2), using the
previous results of the first author concerning this conjecture for the trivial motive,
the Iwasawa main conjecture, as well as a descent theorem due to [BV2]. In this
paper, we use again the descent theorem of [BV2] as well as our proof of the IMC
([TV2]) to establish, under some hypothesis on the µ -invariant of the Abelian variety
as well as a weaker form of the hypothesis of the finiteness of the Tate-Shafarevich
group, the equivariant Tamagawa number conjecture of a semistable Abelian variety
over an everywhere unramified finite Galois extension of a global field of characteristic
p > 0. In the first section we fix the notations and recall the tools of algebraic K-
theory that will be used later on. In Section 2, we state the equivariant Tamagawa
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2 FABIEN TRIHAN AND DAVID VAUCLAIR

number conjecture for a semistable Abelian variety and a finite Galois, unramified
everywhere extension of our base field. In Section 3, we recall the results of [TV2]
(using also [TV1]) and in particular the proof of the Iwasawa Main conjecture for a
semistable Abelian variety and a profinite Galois, everywhere unramified extension.
In the final section, we prove our main theorem (Theorem 5.2).

Acknowledgements. The first author is supported by JSPS. Both authors thank
the referee for her/his careful reading.

2. Preliminaries

In this section we shall, for the reader’s convenience, recall some basic background
material relating to relative algebraic K-theory, refined Euler characteristics, the
Iwasawa algebras of certain kinds of non-commutative p-adic Lie groups.

2.1. Relative algebraic K-theory and Picard category. Throughout this arti-
cle, modules are always to be understood, unless explicitly stated otherwise, as left
modules.

For any associative, unital, left noetherian ring R we write D(R) for the derived
category of R-modules. We also write Dp(R) for the full triangulated subcategories of
D(R) comprising complexes that are isomorphic to an object of the categories Cp(R)
of bounded complexes of finitely generated projective R-modules.

For any homomorphism R→ R′ of rings as above we write K0(R,R′) for the relative
algebraic K0-group that is defined in terms of explicit generators and relations by
Swan in [Sw, p. 215]. We recall in particular that this group fits into a canonical
exact sequence of Abelian groups of the form

(1) K1(R)→ K1(R′)
∂R,R′−−−→ K0(R,R′)→ K0(R)→ K0(R′).

Here, for any ring A, we write K1(A) for its Whitehead group and K0(A) for the
Grothendieck group of the category of finitely generated projective A-modules, and
the first and last arrows in (1) denote the homomorphisms that are naturally induced
by the given ring homomorphism R → R′. (For more details about this sequence,
and a proof of its exactness, see [Sw, Chap. 15]).

We recall ([BV1], [BV2]) that one can define a Picard category CR of R which is
endowed with a binary operation . and a unit object 1R for which all objects are
invertible. There exists also a functor called the determinant functor

dR : Dp(R)→ CR
satisfying the following properties:

(1) 1R = dR(0).
(2) For any exact sequence of perfect complexes

0→ C ′ → C → C”→ C ′[1]→ 0,
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we have
dR(C) = dR(C ′).dR(C”).

(3) Any acyclic complex C ∈ Cp(R) induces a canonical isomorphism can : 1R →
C in CR.

(4) Any ring homomorphism R→ R′ induces a functor

R′ ⊗R . : CR → CR′
sending the unit object to the unit object.

(5) K0(R) is isomorphic to the isomorphism classes of objects of CR.
(6) K1(R) is isomorphic to the group of automorphisms of the unit object of CR.
(7) K0(R,R′) is isomorphic to the isomorphism classes of objects of the fiber cate-

gory CR×CR′ C0. In particular this group is represented (via this isomorphism)
by objects of the form [L, t : R′ ⊗R L→ 1R′ ], where L ∈ CR and t is a map in
CR′ called a trivialization.

Via the description of the K groups in terms of Picard categories, the connecting map
∂R,R′ can be reinterpreted as the map sending an automorphism β : 1R′ → 1R′ to the
object [1R, β].

2.2. Euler characteristics. For a ring homomorphism R → R′, we denote Dp
R′(R)

the full subcategory of Dp(R) of object P such that R′ ⊗L
R P is the zero object in

Dp(R′).
We denote

χ0 : Dp
R′(R)→ K0(R,R′)

the functor sending an object P in Dp
R′(R) to [dR(P ), can−1 : dR′(R

′ ⊗L
R P )→ 1R′ ].

We denote
χ1 : {automorphisms of Dp(R′)} → K1(R′)

sending an automorphism β : P → P to dR′(β) (via the identification of AutCR′ (1R′)
with AutCR′ (P )).

Note that if Θ is an endomorphism of Dp(R) with cone D ∈ Dp
R′(R), then we have

([FK], 1.3.15)

(2) ∂(χ1(Θ⊗R R′)) = −χ0(D).

2.3. Semisimplicity. Let A be a noetherian regular ring. Let Θ : P → P be an
endomorphism in Dp(A) and denote D := Cone(Θ). Following [BV2], Appendix B,
we say that Θ is semisimple if the chain complex (called the Bockstein complex of Θ)
H i(D) with boundary operators the composed maps

βiΘ : H i(D)→ KerH i+1(Θ)→ H i+1(P )→ H i+1(D)

is acyclic. Note that if Θ is semisimple, then dA(D) is endowed with a trivialization
(see [BV2], (55))

tΘ : dA(D)→ 1A.
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2.4. Iwasawa algebras. Let G be a p-adic Lie group without p-torsion. For any finite
extensionO of Zp we write ΛO(G) for theO-Iwasawa algebra lim←−U O[G/U ] of G, where

U runs over the set of open normal subgroups of G (partially ordered by inclusion)
and the limit is taken with respect to the obvious transition homomorphisms. We
also write QO(G) for the total quotient ring of ΛO(G), and if O = Zp, then we omit
the subscripts ‘O’ from both ΛO(G) and QO(G).

We assume that G lies in a group extension of the form

(3) {1} → H → G πG−→ Γ→ {1}
in which Γ is (topologically) isomorphic to the additive group of p-adic integers Zp.
We also fix an algebraic closure Qc

p of Qp and write O for the valuation ring of a finite
extension of Qp in Qc

p.
We write S for the subset of ΛO(G) comprising elements f for which the quotient

ΛO(G)/ΛO(G)f is finitely generated as a module over the ring ΛO(H) and we also set
S∗ :=

⋃
i≥0 p

iS.
We recall that in [CFKSV, §2] it is shown that S and S∗ are both multiplicatively

closed left and right Ore sets of non-zero divisors and so we can write ΛO(G)S and
ΛO(G)S∗ = ΛO(G)S[1

p
] for the corresponding localisations of ΛO(G).

We often use the fact that the long exact sequence (1) is compatible with scalar
extensions in the sense that there exists a commutative diagram

(4)

K1(ΛO(G)) −−−→ K1(ΛO(G)S∗)
∂−−−→ K0(ΛO(G),ΛO(G)S∗)∥∥∥ x x

K1(ΛO(G))
α−−−→ K1(ΛO(G)S)

∂−−−→ K0(ΛO(G),ΛO(G)S)

We recall that since G has no element of order p, and Σ denotes either S or
S∗, then the group K0(ΛO(G),ΛO(G)Σ) is naturally isomorphic to the Grothendieck
group of the category of finitely generated ΛO(G)-modules M with the property that
ΛO(G)Σ ⊗ΛO(G) M vanishes (for an explicit description of this isomorphism see, for
example, [BV2, §1.2]).

In particular, if G is also Abelian then the determinant functor induces a natural
isomorphism between K0(ΛO(G),ΛO(G)Σ) and the multiplicative group of invertible
ΛO(G)-lattices in ΛO(G)Σ. For any (finitely generated torsion) ΛO(G)-module M as
above, this isomorphism sends the element χ0(M) defined above to the (classical)
characteristic ideal of M .

2.4.1. Leading terms. We now fix a topological generator γ of the group Γ that occurs
in the extension (3) and also an Ore set Σ ∈ {S, S∗}.

Then for the valuation ring O′ of any finite extension of Qp in Qc
p which contains

O, and any continuous homomorphism of the form

(5) ρ : G → GLn(O′)
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there is an induced ring homomorphism

ΛO(G)Σ → Mn(O′)⊗O′ QO′(Γ) ∼= Mn(QO′(Γ))

that sends every element g of G to ρ(g) ⊗ πG(g). This ring homomorphism in turn
induces a homomorphism of Abelian groups

(6) ΦO,G,Σ,ρ : K1(ΛO(G)Σ)→ K1(Mn(QO′(Γ))) ∼= K1(QO′(Γ))

∼= QO′(Γ)× ∼= Q(O′[[u]])×

where we write O′[[u]] for the ring of power series over O′ in the formal variable
u, the first isomorphism is induced by Morita equivalence, the second by taking
determinants (over the ring QO′(Γ)) and the last by sending γ− 1 to u. In the sequel
we shall abbreviate ΦO,G,Σ,ρ to ΦG,ρ if we feel that O and Σ are both clear from
context.

For any element ξ of the Whitehead group K1(ΛO(G)Σ) and any representation ρ
as in (5), one then defines the ‘value’ ξ(ρ), resp. the ‘leading term’ ξ∗(ρ), of ξ at ρ to
be the value, resp. the leading term, at u = 0 of the series ΦO,G,Σ,ρ(ξ). In particular,
one has ξ∗(ρ) ∈ Qc

p \ {0} for all ρ and one regards the value ξ(ρ) to be equal to ‘∞’
if the algebraic order of ΦO,G,Σ,ρ(ξ) at u = 0 is strictly negative.

We recall finally that a continuous representation ρ as in (5) is said to be an ‘Artin
representation’ if its image ρ(G) is finite.

3. Equivariant Tamagawa Number conjecture for semistable Abelian
variety and finite unramified extensions

3.1. Setting. In this section, we formulate the Equivariant Tamagawa Number con-
jecture for a semistable Abelian variety A/K over a global field of characteristic p with
field of constant a finite field k and a finite Galois unramified extension KG/K. Let C
be the projective smooth geometrically connected curve with function field K. Then
the extension KG/K corresponds one to one to a finite étale covering π : CG → C
with Galois group G.

We denote A/C the Néron model of A/K and Z the finite set of closed points of C
where A/K has bad reduction. We denote C] the log scheme with underlying scheme

C and log structure induced by Z. Similarly, we denote C]
G the log scheme with

underlying scheme CG and log structure induced by the closed points of CG above
those in Z. In [TV1] is associated to A/K a log Dieudonné crystal D(A), that is
a locally free finite rank crystal in the crystalline topos (C]/Zp)crys endowed with a
Frobenius and Vershiebung operator F and V satisfying the relations F ◦V = V ◦F =
p. It is moreover shown that one has a canonical epimorphism

D(A)→ Lie(A)
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where Lie(A) is naturally considered as an object of the crystalline topos. We denote
Fil1D(A) the kernel of this epimorphism.

3.2. In [TV2], the two following distinguished triangles of Dp(Zp[G]) have been con-
structed:

(7) NG → IG
1−ϕ−−→ PG → NG[1]

(8) IG
1−→ PG → LG → IG[1]

where the objects PG, IG, LG and NG and operators 1 and ϕ are respectively defined
as follows:

(1) PG := RΓcrys(C
]
G/Zp, π∗D(A)(−Z)), that is the log-crystalline cohomology

functor of the log Dieudonné crystal D(A) associated to A/K and twisted by
−Z as defined in [TV1].

(2) IG := RΓcrys(C
]
G/Zp, π∗Fil1D(A)(−Z)).

(3) LG := RΓZar(CG, π
∗Lie(A)(−Z)).

(4) NG = RΓZ(CG, π
∗TpA), where RΓZ(CG, .) is the derived functor of flat section

vanishing at Z as defined in [TV1] and TpA = R lim
←
A[pn].

(5) 1 is induced by the canonical inclusion Fil1D(A) ⊂ D(A) and is compatible
with the identity map on D(A) after inverting p.

(6) ϕ is a linear operator corresponding after inverting p to the operator p−1FD(A).

Note that the cohomology groups of LG are finitely generated Fp-vector spaces so
that Qp[G]⊗Zp[G] LG is acyclic.

We make the following conjecture:

Conjecture 3.1. ETNC(A/K,KG/K)

(1) The endomorphism ΘG := Qc
p[G]⊗Zp[G](1−ϕ) on Qc

p[G]⊗Zp[G]PG is semisimple
and induces therefore an object [dZp[G]NG, tΘG ] in K0(Zp[G],Qc

p[G]).
(2) We denote Irr(G) the Qc

p-valued irreducible finite dimensional characters of
G. Then the Wedderburn decomposition induces (see [BV2], 1.5) an isomor-
phism

K1(Qc
p[G]) '

∏
Irr(G)

Qc,×
p .

Via this isomorphism, we define

L∗p,A,Z,G :=

(
L∗Z(A, ρ, 1)

(−log(p))rρ

)
ρ∈Irr(G)

∈ K1(Qc
p[G]),

where L∗Z(A, ρ, s) is the leading coefficient at s = 1 of the Hasse-Weil L-
function of A/K twisted by the character ρ and without Euler factors at Z
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and rρ is the order of vanishing at s = 1 of LZ(A, ρ, s). Assuming that the
first part of the conjecture holds, then

∂Zp[G],Qcp[G](L
∗
p,A,Z,G) = [dZp[G]NG, tΘG ] + [dZp[G]LG, can

−1]

Remark 3.1. (1) When G is the trivial group, the semisimplicity hypothesis in
Θ is equivalent to say that the corank of the p-Selmer group is equal to the
order of vanishing of the Hasse-Weil L-function of A/K at s = 1 (see [KT],
section 3.5).

(2) If we assume that the Tate-Shafarevich group of A/K is finite (which implies
the semisimplicity hypothesis), then our conjecture is related to the equivari-
ant form of the Birch and Swinnerton-Dyer conjecture. We refer the reader to
[LLTT1], Theorem 1.4 where the precise relation between the Iwasawa Main
Conjecture of A/K over the arithmetic extension (that is, the family of Equi-
variant Tamagawa Number Conjectures for A over the extensions K/K.Fpnq ,
for n ≥ 0) and the Birch and Swinnerton-Dyer conjecture has been worked out
in detail.

(3) We hope that this formulation in terms of Selmer complex is more motivic in
the sense that it adapts easily to more general motives than the sole case of
Abelian varieties (even when arithmetic invariants like Mordell-Weil or Tate-
Shafarevic groups are not well-defined). For example, the reader can imagine
another equivariant Tamagawa number conjecture by replacing A/K by a p-
divisible group over C or more generally by any log-Dieudonné crystal over C.
The most general form of the coefficients, would be that of non-degenerated
crystals of level N (that is crystals endowed with Frobenius and Verschiebung
operators F and V satisfying FV = V F = pN). It seems however a difficult
problem to construct Selmer (or syntomic) complex for such coefficients.

4. The Iwasawa Main conjecture for an Abelian variety over an
unramified profinite extension of global fields of characteristic

p > 0

In this section, we recall the main result of [TV2]. Let A/K be a semistable Abelian
variety and consider the intermediate extension KG/Kar/K such that Kar/K is the
unique unramified Γ = Zp-extension of K and KG/K is a Galois extension with group
G a profinite group satisfying the hypothesis of the section 2.4.

By passing to the derived inverse limit functor over the open subgroups of G, we
can define two distinguished triangles in Dp(Λ(G))

(9) NG → IG
1−ϕ−−→ PG → NG[1]

(10) IG
1−→ PG → LG → IG[1]
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as well as the analogue distinguished triangles in Dp(Λ(Γ)).
We recall that the p-Selmer group of A over any algebraic extension F/K is defined

to be

Selp(A/F ) := Ker(H1
fl(F,A[p∞])→

∏
v

H1
fl(Fv, A)),

where Hfl denotes the cohomology in the big flat topos and in the product, v runs
over all places of F . We denote Xp(A/F ) the Pontrjagin dual of Selp(A/F ). It has
been proved in [OT] that Xp(A/Kar) is a finitely generated torsion Λ(Γ)-module.

We will need the following hypothesis:

Assumption 4.1. ”µ ' 0”
The Abelian variety A/K is isogenious to an Abelian variety A′/K such that

Xp(A
′/K) has trivial µ-invariant.

Theorem 4.1. ([TV2], 5.9)

(1) Λ(G)Qp ⊗Λ(G) LG is acyclic.
(2) Assume that the assumption ”µ ' 0” holds. Then Λ(G)S∗ ⊗Λ(G) NG is acyclic.

As a consequence, [dΛ(G)NG, can
−1] and [dΛ(G)LG, can

−1] are two well-defined
elements of K0(Λ(G),Λ(G)S∗) and L := χ1((1−ϕ)Λ(G)S∗ ◦ (1Λ(G)S∗ )

−1) a well-
defined element of K1(Λ(G)S∗).

The main theorem of [TV2], Theorem 5.14 is under the assumption ”µ ' 0” the
proof of the Iwasawa Main conjecture for A/K and the extension KG/K:

Theorem 4.2. (IMC(A/K,KG/K))

(1) For any Artin representation ρ of G with field of definition a totally ramified
extension of Qp, we have L(ρ) = LZ(A, ρ, 1).

(2) ∂Λ(G),Λ(G)S∗ (L) = [dΛ(G)NG, can
−1] + [dΛ(G)LG, can

−1].

5. The main theorem

We take the same setting as in the section 3. We denote (HYP) the following
hypotheses and data:

(1) A/K is a semistable Abelian variety.
(2) KG/K a finite Galois everywhere unramified extension with Galois group a

finite p−group G.
(3) We also assume given a p-adic Lie group G satisfying the hypothesis of section

2.4 and admitting G as quotient.

The existence of such p-adic Lie group results of the following

Lemma 5.1. Consider a finite etale Galois covering CG/C with group G. There
exists a pro etale Galois covering CG/CG such that CG/C is p-adic Lie Galois without
p-torsion.
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Proof. For each non trivial σ ∈ G, says of order n we chose Cσ between CG and C
such that Gal(CG/Cσ) =< σ > so that CG/Cσ corresponds to a cyclic subgroup, say
< a >, of H1(Cσ,Z/pn). Since H2(Cσ,Zp) = 0, we can lift a to some ã∈H1(Cσ,Zp).
Let us denote b ∈ H1(CG,Zp) the restriction of ã to CG. The sub Zp[G]-module of
H1(CG,Zp) generated by b corresponds to a multiple Zp-extension say C ′σ/CG which
is such that C ′σ/C is Galois, p-adic Lie and Gal(C ′σ/Cσ) has no torsion (indeed C ′σ
is a multiple Zp-extension of Cã where Cã is the Zp-extension of Cσ defined by a).
Composing all C ′σ/CG’s, we find a multiple Zp-extension CG/CG which is such that
Gal(CG/C) is p-adic Lie without torsion. Indeed a non trivial torsion element of
G := Gal(CG/C) would have some non trivial σ as image in G but then its image in
Gal(C ′σ/C) would lie in Gal(C ′σ/Cσ), which is torsion free.

�

In this section, we will prove the following theorem:

Theorem 5.2. Under the assumptions (HYP), ”µ ' 0” and assuming that ΘG is
semisimple, the conjecture ETNC(A/K,KG/K) holds.

We will need the following lemmas:

Lemma 5.3. Let Σ := {n1, . . . , nk} be a finite set of natural integers and set Γ =
lim←−n Γn. Then, the natural ring honomorphism

i : Λ(Γ) ↪→
∏
n6∈Σ

Zp[Γn]→
∏

n6∈Σ,χ∈Γ̂n

Oχ

factors through the localization of Λ(Γ) by the multiplicative system

S := {h ∈ Λ(Γ), h(χ) 6= 0, except for those χ ∈ Γ̂n,with n ∈ Σ}
and induce a ring monomorphism

iS : Λ(Γ)S →
∏

n6∈Σ,χ∈Γ̂n

Lχ,

with Lχ := Frac(Oχ).

Proof. Observe first that the map iS is well-defined since i(S) ⊂
∏

n 6∈Σ,χ∈Γ̂n
L×χ . More-

over the map iS is injective. Indeed, if a
b
∈ ΛS is sent to 0 by the map iS , then for

all but finitely many χ’s, we must have a∗(χ) = 0. By the Weierstrass preparation,
we can write a as the product of a unit and a polynomial in one variable. Then this
polynomial must be zero since it will admit infinitely many roots.

�

Lemma 5.4. For any Artin representation ρ of G,

L∗(ρ) =
L∗Z(A, ρ, 1)

(−log(p))rρ
.
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Proof. We denote Fρ(u) = Φρ(L) and Gρ(u) := LZ(A, ρ, p−1u) both seen as elements
of QOρ(Γ)× ' QOρ(Zp[[u]])×. To prove the lemma it is enough to prove that Fρ(u) =
Gρ(u). Indeed, on the one hand the leading term of Fρ(u) is L∗(ρ) by definition while
on the other hand the leading term of Gρ(u) is

limu→0 u
−rρGρ(u) = (−log(p))−rρ lims→0 s

−rρGρ(p
−s − 1)

= (−log(p))−rρL∗Z(A, ρ, 1)
.

For all but finitely many characters χ ∈ Γ̂, Fρ.χ(0) 6= 0: to see that, write Fρ(u) = aρ(u)

bρ(u)

so that Fρ.χ(u) = aρ.χ(u)

bρ.χ(u)
; if aρ.χ(0) = 0 for infinitely many χ, then aρ(u) = 0, ie.

Fρ(u) = 0. Choose Σ to be the finite set of integers n such that there exists some

χ ∈ Γ̂n with Fρ.χ(0) = 0. Let us denote S, the multiplicative set corresponding to
Σ as constructed in Lemma 5.3. Then, by injectivity of the map iS , it is enough to
prove that the respective image of Fρ(u) and Gρ(u) ∈ Λ(Γ)S coincides. But we have
iS(Fρ(u)) = (LZ(A, ρ.χ, 1))n6∈Σ,χ∈Γ̂n

by the first assertion of Theorem 4.2, which is
also the image of Gρ(u) by the map iS so we are done.

�

6. Proof of the main theorem

Recall that we need to prove that

∂Zp[G],Qcp[G](L
∗
p,A,Z,G) = [dZp[G]NG, tΘ] + [dZp[G]LG, can

−1].

Now by Lemma 5.4, we have

∂Zp[G],Qcp[G](L
∗
p,A,Z,G) = ∂Zp[G],Qcp[G]({χ1((1− ϕ)Λ(G)S∗ ◦ 1

−1
Λ(G)S∗

)∗(ρ)}ρ∈Irr(G)).

By [TV2], Lemma 3.2, we know that there exists an endomorphim ΦG : PG → PG
such that

ΦG ◦ 1 = dG ◦ (1− ϕ),

where dG : PG → PG is the multiplication by some power of p on PG. After extending
the scalar to Λ(G)S∗ , we deduce that

(1− ϕ)Λ(G)S∗ ◦ 1
−1
Λ(G)S∗

= d−1
G,Λ(G)S∗

◦ ΦG,Λ(G)S∗ .

We want to apply the descent theorem [BV2] 2.2 to ξ = −χ1(dG ⊗ Λ(G)S∗) and to
ξ = χ1(ΦG ⊗ Λ(G)S∗). Using the equality ΦG ◦ 1 = dG ◦ (1− ϕ), an easy chase in the
following diagram of distinguished triangles
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IG
1−φ //

1

��

PG //

dG
��

NG[1]

��

+1 //

PG
ΦG //

��

PG //

��

C(ΦG)

��

+1 //

LG //

+1

��

C(dG) //

+1

��

(?)
+1 //

+1

��

shows that the cones of both maps are in Dp
Λ(G)S∗

(Λ(G)). Moreover, we deduce from

the same diagram the following relation in K0(Λ(G),Λ(G)S∗)

(11) [C(dG), can
−1]− [LG, can

−1] = [C(ΦG), triv] + [NG, can
−1]

We are thus reduced to check that those two cones are semisimple at ρ, for any ρ ∈
Irr(G) in the sense of [BV1], 3.11. The latter condition is described in [BV2], Lemma
5.5, (iii): the multiplication by γ − 1 on Λ(G × Γ) induces for any M ∈ Dp(Λ(G)) a
distinguished triangle in Dp(Λ(G× Γ))

twG(M)H
γ−id→ twG(M)H → Zp[G]⊗Λ(G) M → twG(M)H [1]

with twG(M)H := Λ(G × Γ) ⊗L
Λ(G×G) twG(M) and twG(M) = Zp[G] ⊗Zp M . Then

M is called semisimple at ρ for any ρ ∈ Irr(G) if and only if (H i(Zp[G]⊗Λ(G) M)⊗
Qp, βγ−id) is acyclic. This is obvious for the cone of dG and for LG since both complexes
become acyclic after inverting p. We deduce from the relation (11) and from the
multiplicativity of Bockstein complexes in distinguished triangles that the cone of ΦG
is semisimple at ρ, for any ρ ∈ Irr(G) if and only if the same assertion holds for
NG[1]. We prove the latter assertion in the next lemma:

Lemma 6.1. NG[1] is semisimple at ρ, for any ρ ∈ Irr(G).

Proof. Thanks to our semi-simplicity hypothesis, we know that the endomorphism
1 − ϕ is semisimple on PG ⊗ Qc

p[G], which means that the complex (H i(NG[1]) ⊗
Qp, β1−ϕ) is acyclic (note that the ring Qc

p[G] is regular noetherian). By [KT], Lemma

6.10 applied to the Abelian variety A/KG we deduce that (H i(NG[1])⊗Qp, βγ−id) is
also acyclic. By Theorem 2.23 (ii) of [TV2], Zp[G] ⊗Λ(G) NG[1]) = NG[1] and so we
conclude that NG[1] is semisimple at ρ, for any ρ ∈ Irr(G).

�

Applying the descent theorem 2.2 of [BV2] to both cones, we deduce (for simplicity,
we omit the trivializations):
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∂Zp[G],Qcp[G](L
∗
p,A,,Z,G) = [dZp[G]Zp[G]⊗L

Λ(G) C(dG)]− [dZp[G]Zp[G]⊗L
Λ(G) C(ΘG)]

= [dZp[G]Zp[G]⊗L
Λ(G) LG] + [dZp[G]Zp[G]⊗L

Λ(G) NG]

and we conclude by applying again the descent theorem 2.23 of [TV2] to LG and
NG.

�
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