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Abstract

We have recently introduced a new and very simple action for three-dimensional massive gravity. This action

is written in a first order formulation where the triad and the connection play a manifestly symmetric role, but

where internal Lorentz gauge symmetry is broken. The absence of Lorentz invariance, which in this model is the

mechanism underlying the propagation of a massive graviton, does however prevent from writing a purely metric

non-linear action for the theory. Nonetheless, in this letter, we explain how to disentangle, at the non-linear level,

the metric and non-metric degrees of freedom in the equations of motion. Focusing on the metric part, we show

that it satisfies modified Einstein equations with higher derivative terms. As a particular case, these equations

reproduce a well-studied model known as minimal massive gravity. In the general case, we obtain new metric field

equations for massive gravity in three dimensions starting from the simple first order action. These field equations

are consistent through a mechanism known as “third way consistency”, which our theory therefore provides a new

example of.

1 Introduction

In a recent article [1], we have introduced a new ac-
tion for three-dimensional massive gravity. This action is
written in the so-called first order formalism, and simply
differs from the usual Hilbert–Palatini action with cos-
mological constant by the addition of two terms (without
derivatives). The presence of these extra two terms gives
a seemingly symmetric role to the triad and the con-
nection, but does however break internal Lorentz gauge
invariance. As explained through the Hamiltonian anal-
ysis [1], this breaking of Lorentz invariance is the mecha-
nism which is responsible for the propagation of a single
massive degree of freedom in this theory.

Such a mechanism is of course far from being new
in field theory. In electromagnetism for example, one
can give a mass to the photon by adding to the Maxwell
action a term which breaks the internal U(1) gauge sym-
metry. This leads to the so-called Proca action [2], which
describes the dynamics of a massive spin-1 field propa-
gating in Minkowski spacetime.

The extension of this mechanism to gravity (at the
non-linear level) is an old issue, which was initially
thought to be intractable because of the Boulware–Deser
ghost [3], but finally successfully addressed by de Rham,
Gabadadze, and Tolley [4–6], with the proof of the ab-
sence of ghost given in [7]. They have proposed a theory
which propagates the five degrees of freedom of a massive
(four-dimensional) graviton, but which is not invariant
under diffeomorphisms since it requires external fields in

order to be defined (which can in turn be made dynam-
ical, leading to bi-metric theories). This is the price to
pay in order to have a non-linear theory propagating a
massive spin-2 field in four spacetime dimensions.

When spacetime is three-dimensional, the story is
rather different, as one can write non-linear theories
of massive gravity while retaining diffeomorphism in-
variance. This was initially achieved by topologically
massive gravity (TMG) [8–10], a third order parity-
breaking theory which is obtained by adding to the
Einstein–Hilbert action a Chern–Simons term for the
Levi–Civita connection. This was then extended in [11]
to a fourth order parity-invariant theory known as new
massive gravity (NMG), and then in [12] to general mas-
sive gravity (GMG), which interpolates between TMG
and NMG. Importantly, NMG propagates two coupled
massive gravitons, and in this sense cannot be seen as
a fundamental theory propagating an irreducible par-
ticle. This has in turn motivated the search for the
most general theory of three-dimensional massive grav-
ity propagating a single graviton, and lead to minimal
massive gravity (MMG) [13]. Interestingly, there cannot
exist a purely metric action for MMG (at the difference
with TMG and NMG), and the action is written instead
in a so-called Chern–Simons-like formulation [14, 15],
where the dynamical variables are three (in the case
of MMG) Lorentz algebra-valued one-forms. Neverthe-
less, it is possible to recast the equations of motion in a
form involving a metric only (and featuring the Einstein,
Cotton, and Schouten tensors). This Chern–Simons-
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like formulation also allows to define theories known
as generalized minimal massive gravity (GMMG) [16]
and exotic massive gravity (EMG) [17]. In spite of the
non-existence of metric actions for MMG, GMMG, and
EMG, these theories have consistent (i.e. covariantly-
conserved) metric field equations thanks to a mechanism
known as “third way consistency” [18]. This is simply
the statement that geometrical tensors appearing in the
metric field equations may be conserved by virtue of the
field equations themselves.

In this letter, we derive the metric field equations
underlying the simple theory of massive gravity intro-
duced in [1]. We will show that in a particular case (for
a specific value of a combination of the four-coupling
constants of the theory) this produces the equations of
MMG, while otherwise it gives rise to new modified and
third-way-consistent Einstein equations (given in (3.7)
below) which do not fall into the class of theories men-
tioned above. This therefore gives a new perspective on
MMG, and shows in particular that we can interpret its
massive graviton as arising from a breaking of internal
Lorentz invariance in the first order formulation.

2 The simple action for 3d massive gravity

The simple action for three-dimensional massive gravity
is written in terms of a triad e and a connection ω as

S = mp

∫

e ∧ dω +
λ0

6
e ∧ [e ∧ e] +

λ1

2
ω ∧ [e ∧ e]

+
λ2

2
e ∧ [ω ∧ ω] +

λ3

6
ω ∧ [ω ∧ ω], (2.1)

where a trace in the Lorentz algebra so(2, 1) is under-
stood [1]. Each coupling constant λn has the dimension
of a mass to the power (2 − n). As explained at length
in [1], this theory is topological when λ0λ3 = λ1λ2, and
propagates the single degree of freedom of a massive
graviton otherwise.

This action can also be written in the general Chern–
Simons-like formulation introduced in [14]. However, at
the difference with the Chern–Simons-like theories which
have been studied so far (see e.g. [15]), the action (2.1)
contains only two sets of dynamical variables and a single
kinetic term. This is why one can think of it as being
“simple”. Notice also that, importantly, this action is
not Lorentz-invariant.

Let us now turn to the key point of this letter, which is
the study and the rewriting of the equations of motion.
They are given by

dω +
λ0

2
[e ∧ e] + λ1[ω ∧ e] +

λ2

2
[ω ∧ ω] = 0, (2.2a)

de+
λ1

2
[e ∧ e] + λ2[e ∧ ω] +

λ3

2
[ω ∧ ω] = 0. (2.2b)

One can clearly see in these equations and in the action
the symmetric role played by the variables e and ω. In-
deed, one could declare that e transforms as a Lorentz

connection and ω as a tensor under internal gauge trans-
formations (which in any case are not symmetries of this
theory), or the other way around, without affecting the
physics.

However, in order to write down metric field equa-
tions, one would like to start by unambiguously iden-
tifying a triad variable (from which the metric is then
constructed). In order to force a connection-triad in-
terpretation upon this theory, one can look for linear
combinations

E := ae+ bω, A := ce+ dω,

where (a, b, c, d) are constant, such that A is the Levi–
Civita connection associated with E. One can easily
show that this is indeed possible if the ratio z := b/a
satisfies the equation

λ3 − λ2z − λ1z
2 + λ0z

3 = 0, (2.3)

which always admits at least one real solution
z(λ0, λ1, λ2, λ3). If a 6= 0 (which we will assume from
now on), we can fix its value to a = 1 without loss of
generality. In this case, taking

c =
1

2
(λ1 + zλ0), d =

1

2
(2λ2 + λ1z − λ0z

2)

enables to rewrite the equations of motion (2.2) in the
desired form, i.e.

dE + [A ∧ E] = 0, (2.4a)

dA+
γ1
2
[A ∧ A] +

γ2
2
[E ∧ E] + γ3[A ∧E] = 0, (2.4b)

where the new coefficients are given by

(λ2 − λ0z
2)γ1 := λ2 − 2λ1z + λ0z

2, (2.5)

4(λ2 − λ0z
2)γ2 := 4λ0λ

2
2 − 3λ2λ

2
1 + 2(λ0λ1λ2 − λ3

1)z

+ (λ0λ
2
1 − 3λ2

0λ2)z
2 + λ3

0z
4,

(λ2 − λ0z
2)γ3 := (λ1 − λ0z)(λ2 + λ1z).

This of course requires that λ2 − λ0z
2 6= 0, which by

virtue of (2.3) is always the case if the massive condition
λ0λ3 6= λ1λ2 is satisfied.

As a consequence of this change of variables, we get
the new equation of motion (2.4a), which shows that A
is the torsion-free connection compatible with E. This
equation can therefore be solved to write A(E), and sub-
stituting this solution into (2.4b) then leads to

F +
γ2
2
[E ∧ E] +

γ1 − 1

2
[A ∧ A] + γ3[A ∧E] = 0,

(2.6)

where now F = dA+[A∧A]/2 is the curvature of the con-
nection A(E). The first two terms describe usual three-
dimensional gravity with a cosmological constant, while
the last two terms, which are not Lorentz-invariant, are
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responsible for the appearance of the propagating mas-
sive graviton. These are the field equations which we
are now going to study and from which we are going to
extract the modified Einstein equations for the metric
only.

3 Modified Einstein equations

After integrating out the connection variable by solving
(2.4a) and writing A = A(E), the dynamics of the theory
is governed by the nine equations (2.6) for the remain-
ing nine components1 Ei

µ of the variable E. In principle,
these components can be separated into two sets: six of
them are the components of the metric gµν = Ei

µE
j
νηij

and the three others are the extra non-metric compo-
nents which are not gauge-invariant. In the equations
of motion (2.6), the dynamics mixes these two sets of
components in a very non-trivial way. However, we are
going to show how to extract from (2.6) equations for the
metric components only. As we are going to see, these
are new modified Einstein equations for massive gravity,
with higher order terms. We study separately the cases
γ1 = 1 and γ1 6= 1, which correspond to the cases when
the equations of motion (2.6) are respectively linear and
quadratic in A(E).

3.1 Case γ1 = 1: a MMG theory

In the case γ1 = 1, we get from (2.5) the condition that
z(λ1 − λ0z) = 0. This equation admits two solutions.
First, if λ1 = λ0z, we get from (2.3) that λ3 = λ2z,
which corresponds to the topological sector λ0λ3 = λ1λ2

with no massive graviton. Therefore we want to focus on
the other solution, z = 0, which from (2.3) then implies
that λ3 = 0. In this case the equations of motion (2.6)
become

F − λ[E ∧ E] + λ1[A ∧ E] = 0, (3.1)

where we have introduced the cosmological constant

λ :=
1

2

(

3

4
λ2
1 − λ0λ2

)

,

in agreement with the analysis carried out in [1], and
where once again A = A(E) is the Levi–Civita connec-
tion compatible with E.

The non-metric degrees of freedom are hidden in the
term proportional to λ1 in equation (3.1). To get rid
of these non-metric degrees of freedom and obtain an
equation for the metric only, we proceed in three steps.

First, we isolate the Levi–Civita connection A in (3.1)
by using the fact that the equation [A∧E] = W (for any
Lie-algebra valued two-form W ) is equivalent to

Ai
µ = εijkW

j
µνÊ

νk +
1

4
Ei

µεj
klW j

νρÊ
ν
k Ê

ρ
l , (3.2)

1Here and in what follows µ, ν, ρ, . . . are spacetime indices, and
i, j, k, . . . are internal so(2, 1) indices.

provided that the inverse Ê of E exists. Using the fact
that here W = λ−1

1 (λ[E ∧E]− F ), we obtain that (3.1)
is identically equivalent to an equation for the triad E
of the form

E(E) := A(E)−B(E) = 0, (3.3)

where B(E) can be written as

Bi
µ := −

1

λ1
BµνÊ

νi, Bµν := Sµν − λgµν .

Here Sµν := Rµν − Rgµν/4 is the three-dimensional
Schouten tensor expressed in terms of the Ricci tensor
Rµν and the Ricci scalar R.

The second step consists in extracting directly from
the full set of equations E = 0 (3.3) those involving
the metric components only. In order to achieve this,
one can notice that the rewriting (3.3) of the equation
of motion (3.1) is an equation for a connection, and as
such is not gauge-invariant. This absence of gauge in-
variance in (3.3) is of course the same as the absence of
gauge invariance in (3.1). However, we now have a very
natural way of transforming the equation (3.3) for the
connection into a tensorial equation, namely by comput-
ing its curvature. We are therefore led to considering the
quantity

dE +
1

2
[E ∧ E ] = 0, (3.4)

which is again trivially vanishing since it is built out of
the equations of motion.

The third and final step consists in rewriting (3.4) in a
way which depends explicitly only on the metric. After
some lengthy manipulations, one obtains the following
six equations for the metric:

λ2
1ε

αβρRµναβ + 4λ1∇[µSν]
ρ + 2εαβρBµαBνβ = 0,

were Rµνρσ is the Riemann tensor, ∇µ the covariant
derivative, ε the anti-symmetric tensor (not the symbol),
and [µν] denotes anti-symmetrization of indices (with
weight 1/2). One can then contract these equations with
the anti-symmetric tensor εµνσ, and use the fact that
εµνσεαβρRµναβ = 4Gρσ, where Gµν := Rµν − Rgµν/2
is the Einstein tensor, to obtain the modified Einstein
equations

λ2
1Gµν + λ1Cµν +

1

2
εµ

αβεν
ρσBαρBβσ = 0,

which upon expanding the last term are equivalent to

(λ2
1 − λ)Gµν + λ1Cµν − λ2gµν + Jµν = 0. (3.5)

Here Cµν := εµ
ρσ∇ρSσν is the Cotton tensor, and follow-

ing [13] we have introduced Jµν := εµ
αβεν

ρσSαρSβσ/2.
One can now finally recognize that (3.5) are the field
equations of MMG given in [13], with the coupling con-
stants there mapped to λ and λ1 here. In other words,
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the simple theory (2.1) with λ3 = 0 is equivalent to a
theory of MMG2

However, we can now appreciate a crucial difference
between the action (2.1) and the Chern–Simons-like for-
mulation of MMG [14]: this latter uses three fields and
is Lorentz-invariant, while (2.1) uses two fields only and
is not Lorentz-invariant. Furthermore, (2.1) reduces to
MMG only when λ3 = 0, and in the general case pro-
duces new modified Einstein equations, as we will show
in the following section.

Finally, we can investigate the fate of the three (non-
metric) degrees of freedom which are contained in the
initial field equations (3.1) but not in the six equations
(3.5). It turns out that these extra degrees of freedom
can in fact be determined completely from the metric it-
self, and in this sense are not independent. Indeed, after
solving (3.5) for the metric gµν , one can choose a cor-
responding triad Ē. This triad is of course determined
only up to a Lorentz transformation u acting in the fun-
damental representation as E = u−1Ēu. This group
element u contains precisely the non-metric part of the
triad. In order to access it, one can plug E = u−1Ēu in
the equations of motion (3.1) to obtain

F (Ā)− λ[Ē ∧ Ē] + λ1[Ā ∧ Ē] + λ1[U ∧ Ē] = 0,

where Ā := A(Ē) and U := u−1du is the Lorentz flat
connection associated to u. Then, using (3.2) allows to
express U and finally u in terms of Ē only. Therefore,
as announced, the extra three variables are determined
by the metric itself.

3.2 Case γ1 6= 1: a new massive gravity theory

The case γ1 6= 1 is much more interesting because
it leads to new modified Einstein equations for three-
dimensional massive gravity.

In equation (2.6), we now have the last two terms
which are not Lorentz-invariant, and which feature a
quadratic part in the Levi–Civita connection A(E). As
in the previous subsection, in order to eliminate these
terms and to obtain an equation for the metric we pro-
ceed in three steps.

We start by isolating the connection. For this we first
introduce the new variable

A := A+ ξ3E, ξ3 :=
γ3

γ1 − 1
= −

λ2 + λ1z

2z
,

such that (2.6) becomes

F +
ξ2
2
[E ∧ E] +

ξ1
2
[A ∧A] = 0, (3.6)

2Note that in (3.5) it is possible to further constrain the pa-
rameters λ0,1,2 (i.e. by setting some of them to zero for example),
as long as one preserves the massive condition λ0λ3 = λ1λ2.

with the new coefficients ξ given by

ξ1 := γ1 − 1 =
2z(λ0z − λ1)

λ2 − λ0z2
,

ξ2 := γ2 −
γ2
3

γ1 − 1
=

(λ1 + λ0z)(2λ2 + λ1z − λ0z
2)

4z
.

Then we write the components of (3.6) explicitly as

ξ1εijk ε̃
µνρAj

νA
k
ρ = Wµ

i := −ε̃µνρ(Fiνρ + ξ2εijkE
j
νE

k
ρ ),

where ε̃ is now the anti-symmetric symbol, which is in
turn equivalent to the equation

Ai
µ = −2ξ1(detA)Ŵ i

µ,

where Ŵ is the inverse of W . From this, we finally get
that (3.6) is equivalent to the equations

E(E) := A(E) + ǫŴ (E)

(

−
detW (E)

2ξ1

)1/2

= 0,

which generalize (3.3), and where ǫ = ±1 is a sign in-
herited from the fact that (3.6) is quadratic in A.

The second step consists in isolating the equations in-
volving the metric only. Again, this can be done by con-
sidering the curvature (3.4) of the form of the equations
of motion which we have just obtained.

The last step is then once again to massage this curva-
ture equation until it takes a simple enough form. After
a long manipulation, we arrive at new modified Einstein
equations for three-dimensional massive gravity reading

(ξ1 − 1)Gµν +
(

ξ2 − ξ1ξ
2
3

)

gµν + Lµν = 0, (3.7)

where we have introduced the tensors

Lµν := −ξ1εµαβ∇
αAβ

ν − ξ1ξ3(Aµν −Agµν), (3.8)

Aµν := Ai
µEνi = ǫ

(

det(Hβ
α)

ξ1

)1/2

H−1
µν ,

Hµν := Gµν − ξ2gµν .

These new Einstein equations feature the Einstein ten-
sor, a cosmological term, and the new tensor Lµν . Let us
now say a word about the consistency of these equations
and their solution space.

Consistency of the equations of motion, which can be
checked by taking their covariant divergence, requires
that ∇µLµν

!

= 0. This condition does however not follow
from the above definition (3.8) of the tensor Lµν , which
means as expected that these equations of motion cannot
be derived from a purely metric action. Instead, consis-
tency is achieved via the so-called “third way” of [18],
i.e. using the equations of motion themselves. Indeed,
by taking the divergence of (3.8) one finds that3

∇µLµν = −εµαβ∇
µ∇αAβ

ν − ξ3(∇
µAµν −∇νA)

!

= 0,

3We consider here that ξ3 6= 0 since ξ3 = 0 corresponds to the
topological sector.
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and one can then show by an explicit calculation that
the first term is identically vanishing, while the second
one is simply the anti-symmetric part of the equations of
motion (obtained by contracting (3.7) with the ε tensor).
Upon using the anti-symmetric part of the equations of
motion, the field equations therefore have a vanishing
covariant divergence. This makes these field equations
consistent, and provides another example of the third
way consistency. Note however that in the present case
this consistency is different from the examples which
have been given previously in the literature, since here
it involves a non-trivial anti-symmetric contribution to
the equations of motion.

This then raises the question of the role of this anti-
symmetric part of the equations of motion, since a pri-
ori (3.7) are nine equations for the six components of
the metric. Indeed, one could therefore worry that the
equations of motion over-determine the metric in an in-
consistent way. However, we have just shown that the
equations of motion are consistent, and in the conclud-
ing section which follows we explain that this theory
does admit maximally symmetric solutions. This there-
fore opens the possibility of studying perturbations over
these backgrounds, and and we plan to come back to
this in future work. Note that such anti-symmetric con-
tributions to equations of motion in first order theories
were also present and understood in [19].

Finally, note that the MMG field equations (3.5) can-
not be obtained from the general form (3.7) since the
limit γ1 = 1 implies that ξ1 = 0 and is therefore degener-
ate. Furthermore, since the couplings ξ1,2,3 appearing in
(3.7) depend on z, which is the real solution to (2.3), one
might wonder what happens in the case λ0 = 0 (the case
λ3 = 0 poses no problem, since then one has z = 0, and
this is the case of MMG treated in the previous section).
In fact, it is easy to see from the symmetry of (2.1) un-
der the simultaneous swaps (e ↔ ω, λ0 ↔ λ3, λ1 ↔ λ2)
that the case λ0 = 0 will actually lead back to the MMG
theory (3.5), but where now we have E = ω instead of
E = e.

4 Perspectives

Now that we have extracted metric field equations from
the theory (2.1), it is easy to look for exact solutions
(as opposed to working with the Lorentz non-invariant
connection and triad field equations). In particular, we
immediately see that the new theory admits maximally
symmetric solutions defined by

Gµν + Λgµν = 0,

where Λ is an effective cosmological constant to be deter-
mined in terms of the coupling constants of the theory.
Substituting this equation in (3.7) tells us that Λ is de-

termined by the quadratic equation

Λ2 +
2(ξ1ξ

2
3 + ξ21ξ

2
3 − ξ1ξ2)

ξ1 − 1
Λ +

(ξ2 + ξ1ξ
2
3)

2

ξ1 − 1
= 0.

For example, flat metrics exist only if Λ = 0 is a solution
of this equation, which implies that ξ2+ ξ1ξ

2
3 = 0, which

can be shown to be equivalent to the condition derived
in [1], providing a good consistency check.

The BTZ black hole, being locally isometric to anti-
de-Sitter spacetime, is therefore also a solution of the
field equations (3.5). It would be very interesting to
study the stability of this solution under linear pertur-
bations, and its holographic description (possibly using
the framework of [20]) in view of understanding its ther-
modynamical properties.

Going further, one should also investigate the pos-
sible off-shell ambiguities which may distinguish (2.1)
from already existing massive gravity models [21]. This
is particularly important for understanding the unitarity
properties of the theory and the properties of its bound-
ary holographic dual.

Finally, let us recall that we have obtained a new the-
ory of massive gravity in three dimensions based on the
breaking of internal Lorentz invariance in the first order
formalism. We have managed to integrate out the non-
metric degrees of freedom and to find modified Einstein
equations involving the metric tensor only. This suggests
that this new mechanism to generate a massive graviton
could potentially be transposed to higher dimensions.
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