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EA-Matrix integrals and cyclic cohomology

Serguei Barannikov

Abstract The localization of the EA-matrix integrals from [B4], see also [B1], is calculated via determinants and

⌧� functions of KP-type hierarchies in the case of associative algebras with even scalar product.

Introduction

In this paper I calculate the EA-matrix integrals from [B4] of associative algebras with scalar product via determinants

and ⌧� functions of integrable hierarchies.

Notations

For a Z/2Z -graded vector space A = A0�A1 denote via ⇧A the parity inversed vector space, (⇧A)0 = A1 , (⇧A)1 =

A0 . For an element a from Z/2Z -graded vector space A denote by ⇡a 2 ⇧A the same element considerd with inversed

parity.

1 Equivariantly closed matrix De Rham di↵erential form.

Let A = A0 � A1 denotes a Z/2Z� graded associative algebra, dimk A0 = r < 1 , char(k) = 0 , with multiplication

denoted by m2 : A⌦2 ! A . Let A is endowed with odd invariant scalar product h·, ·i : A0⌦A1 ! k . The multiplication

tensor can be viewed then as the Z/3Z - cyclically invariant linear function on (⇧A)⌦3

2 The integral

I consider the integral of the closed di↵erential form  (X) from [B4].

F(Y ) =

Z

�
exp

1

i
(TrhY,Xi+ 1

3!
mÃ⌦glN

(X,
@

@X
)) `

Q
↵,i,j

dX↵,j
i

Consider also the normalized integral

bF(Y ) =

Z

�
exp

1

i
(TrhY,Xi+ 1

3!
mÃ⌦glN

(X,
@

@X
)) `

Q
↵,i,j

dX↵,j
i /F[2](Y ) (2.1)

where F[2](Y ) is the corresponding Gaussian integral of the quadratic part at critical point (�2Y )
1
2 .

Let the algebra Ã with odd scalar product is the tensor product Ã = A ⌦ Q (1) of the even associative algebra A

with scalar product, denoted ⌘ (y1, y2) , and the algebra Q(1) =
�
1, ⇠ | ⇠2 = 1

 
with the odd scalar product h1, ⇠i = 1 .
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2.1 The cycle of integration and the anti-involution

Let the associative algebra A has an anti-involution a ! a†

(ab)
†
= b†a†, (ca)

†
= ca†, tr

�
a†
�
= tr (a),

�
a†
�†

= a (2.2)

This anti-involution is extended naturally to glN (C)⌦A . Then the Lie subalgebra of anti-hermitian elements in

uN (A) =
�
Y † = �Y | Y 2 A⌦ glN (C)

 
(2.3)

glN (C)⌦A is a real form of glN (C)⌦A . And the space of hermitian elements in the dual space

� =
�
X† = X | X 2 A_ ⌦ glN (C)

 
(2.4)

is invariant under the action of uN (A) . Then the “real-slice” � is the natural choice of the cycle for the equivariant

integration.

3 The localization of the integral

The localization formula for equivariant cohomology reduces the integral of the equivariantly closed form ⌦ over � to

the integral over the fixed locus F , Z

�
⌦ =

Z

F

⌦

eu (NF )
(3.1)

where eu (NF ) is the euler class of the normal bundle of F in � , see [BV],[AB].

Let the natural scalar product on the Lie algebra u1 (A) of anti-hermitian elements in A is positive definite

�⌘ (y, y) = ⌘
�
y, y†

�
> 0, y 2 u1 (A) . (3.2)

Proposition 1 The Lie algebra uN (A) is reductive.

Proof The pairing on the Lie algebra induced from the invariant nondegenerate scalar product on the associative algebra

is invariant and nondegenerate. It follows that the adjoint representation of the Lie algebra is completely reducible.

Proposition 2 The induced pairing on the subspace of hermitian elements is invariant and positive definite.

3.1 Maximal abelian subalgebra of the reductive Lie algebra.

Let H ⇢ A denotes maximal abelian Lie subalgebra of the Lie algebra u1 (A) .

Proposition 3 The subspace H is a commutative subalgebra of A with respect to the associative product.

Proof The product of any two elements h1h2 commutes with all other elements in H . Since H is maximal abelian Lie

subalgebra therefore h1h2 2 H .

The Lie algebra HN of anti-hermitian diagonal matrices with values in H

t = diag(Y 1
1 , . . . , Y

N
N ), (Y i

i )
† = �Y i

i , Y
i
i 2 H, (3.3)

acts naturally on � .
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3.2 The fixed locus

The fixed locus F ⇢ � of the t� action consists of hermitian diagonal matrices with values in iH , i.e. the subspace of

� spanned by elements

diag
⇣
X↵H ,1

1 , . . . , X↵H ,N
N

⌘
⌦ e↵H

(3.4)

Without loss of generality it can be assumed that the basis elements in A satisfy

(e↵)
†
= e↵ (3.5)

Then the linear functions X↵H ,i
i are the R -valued coordinates on F and

X↵,j
i = 0 onF , for i 6= j. (3.6)

The euler class of the normal bundle eut (NF ) is invertible over some localization of the ring H⇤
t (pt) . Hence the

pushforward ⇢⇤ of the inclusion ⇢ : F ,! � on the equivariant cohomology is injective over the localized ring. Also the

pushforward ⇢⇤ is surjective, since diag (i�1, . . . , i�N )⌦1A0 and the maximal abelian subalgebra in which it is contained

does not have fixed points outside of F . It follows, see [AB], that the integral of the t -equivariantly closed form equals

the integral over F (3.1).

4 The localization formula in the commutative algebra case.

In this section for simplicity it is assumed that H ⌦ C = A i.e. that the algebra is abelian.

4.1 The restriction of the di↵erential form to F

The only nonzero terms in the restriction of

exp
1

i
(TrhY,Xi+ 1

3!
mA⌦glN (X,

@

@X
)) `

Y
dX↵,j

i (4.1)

to F come from the terms which can contain only X↵,j
i with i = j and in which all dX↵,j

i with i 6= j are killed by

the multiple insertions of the bivector

1

2

X

↵,�,�

(mA)
��
↵

X

i,j,l

(X↵,i
l

@

@X�,j
l

^ @

@X�,i
j

). (4.2)

The di↵erential dX�,i
j is killed by the insertion of @

@X�,i
j

taken from the term

1

2

X

�1,�2,↵

(mA)
�1�2
↵

X

i 6=j

(X↵,i
i

@

@X
�1,j
i

^ @

@X
�2,i
j

) =

=
1

2

X

(�1,�2),↵

X

i<j

((mA)
�1�2
↵ X↵,i

i � (mA)
�2�1
↵ X↵,j

j )
@

@X
�1,j
i

^ @

@X
�2,i
j

(4.3)

The resulting coe�cient in front of the top ( dimF ) degree nonzero product is the product over pairs of i < j of

pfa�ans of the matrices

 
0 (

P
↵ X↵,i

i e↵)(e
�1e�2)� (

P
↵ X↵,j

j e↵)(e
�2e�1)

(
P

↵ X↵,j
j e↵)(e

�1e�2)� (
P

↵ X↵,i
i e↵)(e

�2e�1) 0

!

or

(�1)
n(n�1)

2 det
�1�2

⇣
Xi

i (e
�1e�2)�Xj

j (e
�2e�1)

⌘
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which coincides with

(�1)
n(n�1)

2 det
�1�2

⇣
(Xi

i �Xj
j )(e

�1e�2)
⌘
.

After identification A_ = A induced by the even scalar product ⌘ , ⌘(e↵, e�) :

X

↵

X↵e↵(e
�1e�2) =

X

↵

X↵⌘(e↵, e�1e�2) = X↵⌘(e↵e�1 , e�2) = (lX)�1�2

where lX is the operator of left multiplication by X 2 A acting on A . Therefore the restriction of the di↵erential form

4.1 to the fixed locus F is

exp
1

i
(
X

k

hYk, Xki+
1

3!
m↵��(Xk↵Xk�Xk�))

Y

k<j

(�1)
n(n�1)

2 det
A

((Xk �Xj)⇤)
Y

dXk↵ (4.4)

where Yk 2 U , Xk 2 S , Xk = Xk↵e
↵ are the entries at the k�th places of the diagonal matrices Y = diag (Y1, . . . , YN )

, Y 2 t , X = diag (X1, . . . , XN ) , X 2 F .

4.2 The equivariant Euler class of the normal bundle

The normal bundle to F in � is the direct sum of N(N�1)
2 real t -invariant subspaces of dimension 2 dimA

Vkj = (Ej
k + Ek

j )⌦ S � (iEj
k � iEk

j )⌦ S, j < k (4.5)

where S = iU denotes the subspace of hermitian elements in A and Ej
k are the elementary matrices. These subbundles

are topologically trivial. The euler class is determined by the action of t on a generic fiber. The matrix of the action of

Y = diag (iy1, . . . , iyN ) , yi 2 S

on Vkj is
 

0 �(lyk
� lyj

)

(lyk
� lyj ) 0

!

The euler class of Vkj is given by the pfa�an :

eut(Vkj) = (�1)
n(n�1)

2 det
S

((yk � yj)⇤) (4.6)

4.3 The integral over the fixed point set F .

From (4.4)(4.6) I get the following formula for the integral:

Z

F
exp

1

i
(
X

i

hiyi, Xii+
1

3!
m↵��(Xi↵Xi�Xi�))

Q
i<j detS ((Xi �Xj)⇤)Q
i<j detS ((yk � yj)⇤)

Y
dXi↵

The matrices of linear operators Xj⇤ , Xj 2 S commute. Therefore the product
Q

i<j detA ((Xi �Xj)⇤) coincides with

the generalized Vandermond determinant consisting of blocks of matrices of linear operators (Xj⇤)l

Y

i<j

det
A

((Xi �Xj)⇤) = det A⌦CN

0

BB@

(X1⇤)0 . . . (XN⇤)0
...

. . .
...

(X1⇤)N�1
. . . (XN⇤)N�1

1

CCA
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Then

Z

F
exp(

X

k

hyk, Xki �
i

3!
m↵��(Xk↵Xk�Xk�))

Y

k<j

det
S

((Xk �Xj)⇤)
Y

k,↵

dXk↵ = det A⌦CN

0

BB@

�0(y1) . . . �0(yN )
...

. . .
...

�N�1(y1) . . . �N�1(yN )

1

CCA

where �k(y) , iy 2 U is the dimA⇥ dimA matrix of the linear operator of multiplication by the element

Z

S
exp(hy, xi � i

3!
m↵��(x↵x�x�))x

⇤k
Y

↵

dx↵

so that the localized integral is the ratio of determinants:

det A⌦CN

0

BB@

�0(y1) . . . �0(yN )
...

. . .
...

�N�1(y1) . . . �N�1(yN )

1

CCA /
Y

i<j

det
A

((yk � yj)⇤) (4.7)

4.4 Tau function.

Let for hi 2 A , i = 1, . . . , N , define

tk,↵ =
1

k

i=NX

i=1

(h⇤k
i )↵

and consider the operator

⇢ (tk) = exp
⇣
��ktk⇤

⌘
=

NY

i=1

✓
1� (hi⇤)

�

◆�1

acting on A((�)) , the space of series in variable � with values in A , and on its semi-infinite wedge space

⇤
1
2 (A((�)))

The tau-function associated with a subspace W ⇢ A((�)) with base given by series

wj(�) =
X

n=�j

wjn�
n, wjn 2 gl(A) (4.8)

is defined in the standard way as the determinant:

⌧ (tk,↵) = det

2

666666666664

⇢ (tk)

0

BBBBBBBBBBB@

. . . wj(�j) . . . w0n

...
...

. . . wj0 . . . w00

...
...

. . . wjn . . . w0n

. . .
... · · ·

...

1

CCCCCCCCCCCA

3

777777777775

+

of the part of the matrix corresponding to the projection on the subspace A
⇥⇥
��1⇤⇤ .

Theorem 1 The ⌧ -function ⌧ (tk,↵) , tk,↵ = 1
k

Pi=N
i=1 (h⇤k

i )↵ associated with the subspace with base (4.8) with

wjn(e
�) = w�

jn,�(e
�⇤) coincides with the ratio of determinants

⌧ (tk,↵) = det A⌦CN (wj(hk)) /
Y

i<j

det
A

((hk � hj)⇤) . (4.9)
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Define
�
@2�

k
=
X

↵

e↵m↵��
@2

@tk,�@tk,�

and similarly
�
@3�

k
,
�
@4�

k
, etc. And similarly the operators Dk acting on the tensor products ⌧ (t)⌦ ⌧ (s)

Theorem 2 The ⌧ -function ⌧ (tk,↵) satisfies the Hirota bilinear equation:

(D4
1 + 3D2

2−4D1D3)⌧ ·⌧ = 0

4.5 The asymptotic series developpment of �k(y) and the semi-infinite subspace.

Proposition 4 Let y = � 1
2z

⇤2 then �k(y(z))/�0,[2] (z) = �̃k (z) is a function of z with values in A whose (�n)� th

coe�cient in the asymptotic development is linear in z⇤n

Let ⌧W� (tk,↵) , tk,↵ = 1
k

Pi=N
i=1 (z

⇤(�k)
i )↵ be the ⌧ -function associated with the subspace with base given by the series

�̃k(�) =
P

n �
n�̃kn

Theorem 3 The normalized integral

�
F[2](Z)

��1
Z

�
exp

1

i
(�1

2
TrhZ⇤2, Xi+ 1

3!
mA⌦glN (X,

@

@X
)) `

Y
dX↵,j

i

coincides with the ⌧ -function ⌧W� (tk,↵) .

4.6 The nonabelian case and the Zacharov-Shabat method.

In the case of A which is not abelian, the fixed locus of t� action to which the integral localizes is the subspace of

hermitian diagonal matrices with values in the maximal abelian subalgebra of A . The localization formula gives the ratio

of determinants similar to (4.7). The integrable hierarchy can be constructed in the same way, using the Zacharov-Shabat

method, see[DS], for the abelian Lie subalgebra H ⇢ A , and the localized integral coincides with the ⌧ -function of this

hierarchy, and satisfies the Hirota quadratic equations.
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