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Deformation Field in Diametrically Loaded Soft Cylinders

T.L.Vu'.J.Barés' - S.Mora' .S.Nezamabadi'

Abstract

Deformation fields at the surface of diametrically squeezed shallow cylinders in the large deformation regime are measured
experimentally and numerically for different material behaviour in the large deformation regime. By means of a digital
image correlation method optimized for large displacements, strain fields are measured and compared with finite element
simulations. Assuming a neo-Hookean behaviour for cylinders made of rubber silicone, the strain field is found to be in
quantitative agreement with non-linear finite element simulations up to the highest deformations reached in our experiments
(15%). For materials that follow an elastoplastic constitutive law, agreement is lost after few percents of deformation and
location of the strain field differences are identified up to strains as high as 30%. Strain field evolution is also measured for
solid foam cylinders up to 60% of global deformation strain. This method that can be applied to a broad variety of materials,
even in the occurrence of large deformations, provides a way to study quantitatively local features of the mechanical contact.

Keywords Soft particle - Finite strain - Digital image correlation

Introduction

The contact between a deformable cylinder and a rigid
wall is the onset of contact mechanics [1, 2]. Very early,
this problem has been approached in the limit of small
deformations by the Hertzian contact theory [1, 3] giving at
the global scale a linear relation between the compression
force F and the applied cumulative stain ¢ (see Fig. 1).
Later this law has been extended to the frictional and
adhesive contact cases [3—6]. Nowadays these simple,
though accurate, law is still widely used in fields of physics
and mechanics as different as atomic force microscope
explorations [7, 8], granular matter [9—13], chemistry [14],
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geophysics [15], bio-mechanics [8, 16], etc. However, while
the Hertzian contact theory gives a clear description of the
contact in the ubiquitous limit of infinitesimal deformations,
for finite deformations a wide range of behaviours is
observed depending on the material properties (see Fig. 1).
In many cases when this contact law is used, the limit
of validity is not precisely defined and the systems can
even be highly strained [8, 16]. For example, the Hertzian
contact theory is widely used for analysis of atomic force
microscope data [7] whereas the phenomenons at the
cantilever tip happen very often in the highly deformed
regime [8]. The lack of a net demarcation line separating
the regime of small deformations with a regime where it
is necessary to take into account large deformations within
the material is a source of confusion. This confusion mainly
comes from the fact that beyond the small deformation
regime a large variety of very different behaviours may
rise. As presented in Fig. 1, considering 3 materials —
Agar hydrogel (with an elastoplastic behaviour), Silicone-
rubber (an elastic and quasi-incompressible material) and
Solid foam (a highly compressible material) — compressed
as presented in the bottom inset of Fig. 1, very different
stress-strain curves in the large deformation regime.
Different attempts have been made to model and explore
these large deformation contact situations. For example, the
Tatara’s model [17] for homogeneous spheres predicts that
beyond a deformation §/D of 10% between two spheres
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Fig. 1 (color online) Quasi-static dimensionless compression force
F/DLE* (with E* = E/(1 — v?), E is the Young’s modulus and
v the Poisson’s ratio) as a function of true cumulative compressive
strain ¢ (¢ = In(1+4/D)) for the diametrical compression of
cylinders (diameter D and thickness £) made of materials with different
constitutive laws: silicone rubber (triangles), Agar hydrogel (circles)
and polyurethane foam (stars). The linear prediction obtained from the
Hertzian contact theory for the contact between two cylinders with
parallel axes [3] is reported as a guide for the eyes (plain line). Inset:
Schematic view of a cylinder compression geometry. A cylinder of
diameter D is slowly compressed to a strain ¢ and force F'. y-axis is in
the compression direction while x-axis is its perpendicular

(8 is the contact deflection and D the diameter), the force
varies as 83, and for even higher deformations as 83,
The particle deformations have also been the subject of
experimental studies at large deformations. First the Tatara’s
model has been experimentally checked for elastomer
spheres [18]. In the case of the elastoplastic spheres, the
plastic deformation has also been shown to be initiated at the
edges of the contact zone and the strain continues with the
stress in these zones remaining equal to the plastic threshold
[19, 20]. Very different experimental approaches have been
used for these studies including diametric compression,
macro-, micro- and nano-compression such as biological
particles and vesicles [21, 22] or granular matter [23—
26]. The shape change of elastic particles has also been
investigated. For example, Lin et al. (2008) [27] studied the
deformation of compressible and incompressible particles
subjected to compression between two platens. They find
that the particle shape outside the contact zone can be well
approximated by an ellipse and the lateral extension of the
particles is greater in the incompressible case. However,
experimental and quantitative investigations of the strain or
stress field is still lacking.

In this paper, we study experimentally the deformation
of shallow cylindrical samples diametrically compressed
between two platens (see inset of Fig. 1). The cylinders are
homogeneous, made of rubber-like, elastoplastic, or highly

compressible materials. As shown in Fig. 1, various kinds
of stress-strain curves are observed with these different
materials. Due to the centimetric size of the samples,
the rigidity and the nature of the materials that we use,
capillarity [28, 29] and adhesion forces [4, 5, 22] are here
negligible. We study local and global behaviours of these
deformed shallow cylinders, including finite deformations.
The initially flat bottom of these shallow cylinders made
it possible to measure, by means of bi-dimensional images
correlation techniques, the deformation field of the bottom
of these samples. Indeed, we introduce an imaging set-
up able to follow the system from the small scales (~
10 um) to the whole sample size (~ 10 cm). We also use
a digital image correlation (DIC) algorithm able to deal
with large deformations (up to ~ 60%), and also suitable
for material with non-smooth rheological properties (e.g.
shear localization). A comparison with the results obtained
with finite element modeling (FEM) in the case of rubber-
like materials, validates the relevance of the experimental
method for the measurement of the deformation field.
Hence, this study enlightens the compression features of
materials as different as silicone rubber, Agar hydrogels and
solid foam, and the possibility to capture these behaviours
by the FEM simulations.

In the following, we first introduce the experimental and
numerical tools in “Experimental Method” and “Numerical
Simulations”, respectively. Then, the case of rubber-like
materials is addressed in “Rubber-like Material”. Samples
with elastoplastic features are investigated in “Particle with
Elastoplastic Behaviour”. In these two last sections, the
experimental method is discussed, validated and limitations
are evidenced. Next, “Foam” deals with the specific case
of the compression of a solid foam and is followed by a
concluding discussion and perspectives of this work.

Experimental Method
Experimental Set-up

The experimental set-up, already introduced in our previous
work [30], consists in a compression machine positioned
on a horizontal flatbed scanner as shown in Fig. 2(a). The
compression machine is composed of three rigid and fixed
vertical plates and a mobile one moving perpendicularly
to the two lateral plates. This mobile plate is driven step-
wisely by a stepper motor and a linear screw mechanism.
It is also equipped with two force sensors to measure the
radial force F applied to the sample with an acquisition
frequency of 100 Hz. The sample which is a shallow
cylinder, lays on the glass surface of the scanner. It is
diametrically and quasi-statically squeezed in between two
rigid parallel plates far enough from the lateral ones not
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Fig. 2 (color online) (a) Sketch of the experimental set-up. A cylindrical sample (D = 59 mm diameter and £ = 9.5 mm thickness) lays on
a flatbed scanner lubricated with oil. An original compression machine squeezes the sample step by step while the lower face of the sample is
scanned and the compression force F' is measured. (b) Black and white scanned bottom view of the sample. A thin pattern made of micrometric
metallic glitter has been deposited on the sample. The images from left to right show zoomed view of the pattern to the size of a correlation length

(20 px x20 px). Pixel size is 5.29 um

to touch them. After each compression step and a given
waiting time (see below), the lower surface of the deformed
sample is captured with the scanner. We use a CanoScan
9000F Mark /I with a resolution tunable from 70 dpi
to 4800 dpi and a numerical depth being tunable from
8 bits to 16 bits for each color, on an area of 210 mm
x 297 mm. This image scanner constitutes a stable and
accurate measurement apparatus as assessed by the results
presented later. In this paper, the results were obtained
with a resolution of 2400 dpi x 4800 dpi for 8 bits depth
on black and white images /(x, y). The accuracy of the
images is shown in Fig. 2(b). Such sharp images are used to
perform Digital Image Correlation (DIC) and measure the
displacement field related to the compression. This method
requires a random pattern attached to the sample’s surface
with a correlation length of about few pixels and a strong
contrast.

Three kinds of shallow cylindrical samples are studied
experimentally:

1. Silicone rubber sample was casted with MoldStar 15!
and colored in black with SilkPig.? It is a shallow
cylinder of diameter D = 59 mm and thickness £ =
9.5 mm. This sample allows studying the rubber-like
hyperelastic cylinders. Before casting the silicone, the
mould bottom is coated with a shiny very thin glitter,
namely Cast-magic Silver Bullet? whose average size is
5 pum (see Fig. 2(b)-right). Before laying the sample on
the top of the scanner glass, a thin layer of vegetable oil
with a low viscous coefficient (60 mPa.s) is coated on
the glass surface in order to almost suppress static basal
friction and to improve optic transmission.

2. Agar hydrogel sample was casted in the same mould
as before with the same dimension. It permits to study

Thttps://www.smooth-on.com/products/mold-star- 1 5-slow/
Zhttps://www.smooth-on.com/product-line/silc-pig/

3https://www.smooth-on.com/tutorials/
create-metallic- glitter-effects-cast-magic-casting-system/

a cylinder with elastoplastic irreversible deformations.
The sample is composed in mass of 98.67% of
deionized (DI) water, 0.99% of dry agar powder®,
0.29% of black Indian ink and 0.05% of thin metallic
glitter as used with silicone sample. The whole is
heated to 90 °C before casting. Once again the glitter
produces a thin random pattern with correlation length
of about 10 px. Before being squeezed, the sample is
kept covered in a fridge at 5 °C for one hour. In order to
avoid evaporation of the water contained in the sample
all along the experiment, the Agar hydrogel is regularly
and gently moistened dropping DI water on the top of it
so that it is saturated in water. Before laying the sample
on the top of the scanner glass, DI water is dropped for
lubrication and optic purposes.

3. Solid foam sample is cut out of Bultex foam of density
52 kg/m®. The sample is a cylinder of diameter D =
120 mm and thickness £ = 30 mm. In this case,
no external ingredients are used to create a random
pattern as we directly take advantage of the natural one
induced by the foam bubbles whose characteristic size
is about 0.2 mm (10 px for a scan at 1200 dpi). This
characteristic size is much higher than the ones of the
silicone rubber and agar hydrogel samples that is why
we used a larger foam sample to keep a comparable DIC
measurement accuracy. Also, the friction coefficient
between the glass and this foam is low enough not to
add any lubricant.

Each compressive step starts by a slow loading at
2 mm/min. Then, once the targeted displacement increment
6 = 0.5 mm is reached, the loading plates are kept at rest
during 20 min to let the system relax and to make the global
force return to an equilibrium steady state. This waiting
time is necessary before scanning the lower surface of the
sample because of the different viscous processes at play.

4A10752 agar powder from Alfa Aesar.



On one hand, the material by itself can have an intrinsic
viscous behaviour due to internal relaxation processes. On
the other hand, wet lubrication is a viscous process and
the dynamics must be slow enough to consider the basal
friction coefficient as vanishing. Two cases are analyzed:
frictionless and frictional wall contacts. For the frictionless
contact, the confining plates are covered with oil for the
silicone sample, and DI water for the agar hydrogel sample.
In the second case, the plates are covered with sand paper
to avoid any sliding between the sample and the plates. The
compressive loading continues until the sample is expelled
out due to an out-plane instability.

Image Post-processing

In order to study the local deformation at the lower
surface of the sample, we analyze the displacement field
u(x, y, t) corresponding to the in-plane displacement of its
lower surface. Here, x and y are the in-plane Lagrangian
coordinates of a material point located at the lower surface,
and ¢ denotes time. For this purpose, the displacement is
measured from the N scanned images (I,,(x, ¥),n € [0, N])
by means of DIC techniques [31-33]. DIC is commonly
used to deal with small deformations. Large deformations
can also be addressed by adapting the method [34, 35]. In
this context, a DIC technique was developed to deal with
large images and large displacements, as described below.
Let define a regular grid on the undeformed initial image
Ip(x, y) (Fig. 3(a)). Here, the considered cell size is 50 px
x 50 px. The nodes of the grid inside the sample form the
centers of the correlation cells as the one marked with a
red dot in Fig. 3(a). These points should be tracked from
one image to another one to get the displacement field
u,(x, y) at step n. Let’s follow the cyan mark as shown in
Fig. 3(b) from image n to image n + 1. Its position goes
from (x,, y») = (x0,Y0) + W,(x0, Yo), with (xo, yo) the

position on the undeformed initial image, to (X,+1, Yn+1) =
(Xn, yn) + Au,(xy,, y,). So determining the displacement
field u,41 = v, + Au, ends up by measuring sequentially
the displacement increment Au,,.

This is done by correlating a small enough squared area
around the desired point on the image n with the same area
on the image n + 1. The center of this area on the image
n + 1 is the new position of the desired point. It is worth
noting that if this area, defined as the correlation cell, is
too large, the correlation will be averaged and displacement
accuracy will be low. On the contrary, if the displacement
field is larger or the same as the correlation cell size, the
correlation cell will not have enough pattern to allow the
proper correlation between two images. Hence, in order to
be able to measure the (large) displacements accurately, we
consider a decremental size of the correlation cells from
300 px to 40 px cut into 8§ decrements. So as shown in
Fig. 3(b) and (c), we look for the translation that maximizes
the correlation between the image inside the largest square
centered around (x,, y,) in both images. This translation
gives the center of a medium sized square on the image
n—+1. The same optimization is repeated for the image inside
these squares which gives the position of a smaller square
on the image n + 1. Repeating this again by taking smaller
and smaller cells, the correlation maximization gives the
new position of the random pattern element in image n + 1:
(Xn+1> Yn+1)- This is computed with a 1 px accuracy, using
a Fourier transform based algorithm [33].

Since the random pattern is inhomogeneous, the smallest
cell size is not systematically the best one everywhere. We
so choose the correlation cell size which gives the best
correlation. In this way, the correlation cell dimension can
be adapted for each step and for each correlation point.
At this point, we get the optimal correlation cell size
and so, the displacement with 1 px precision. Finally, the
measurement is improved to sub-pixel accuracy by means

}.‘\\ u, \.\ Alln
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Fig. 3 (color online) Schematic view of the digital image correlation algorithm for large deformations. On the undeformed image (n = 0) (a), a
regular grid of correlation cell centers is plotted. The system is deformed from image n (b) to image n 4 1 (¢) by a dé compression increment.

See text for more details about the DIC procedure



of an optimization approach [31] which is computationally
more expensive. Indeed, the center of the correlation cell
on I,11, (Xp+1, Ynt1), 1S optimized by maximizing the
correlation

D> UnCey) x L (x, )2
(x,y)ecell
through a Nelder-Mead algorithm [36]. Our DIC technique
is performed using a homemade Python code. Parallelized
on twelve 3 GHz processors, the computational time is
about 6 hours for 30 compression steps.

Numerical Simulations

In addition to the experiments, numerical simulations are
carried out with the aim of determining how they can mimic
the experimental observations. These comparisons will
provide the basis for future simulations of systems involving
more particles or complex geometries and materials.
Note that since our experimental method provides only
local information at the lower surface of the cylindrical
sample and not in the whole system, the deformation
comparison between the numerical and the real systems
can be performed only at the sample’s lower surface. We
performed simulations of a cylinder compressed between
two rigid walls as shown in Fig. 1 using a non linear
finite element model implemented in the LMGC90 code
[37]. This model is combined the Finite Element Method
for accounting the particle deformation with the Contact
Dynamics (CD) method for the treatment of Coulomb
frictional contacts [38]. The sample is discretized using
about 71000 hexahedral elements (8 nodes). As in the
experimental case, the compression is applied with both
frictional and frictionless contact conditions for different
material constitutive laws.
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The silicone rubbers undergoing finite strains can be well
described by a neo-Hookean model [39, 40]. The strain
energy density of this model is given by:
W:%(Il—S)—uan+%(an)2, (1)
with I; = Tr(FTF) and J = det(F). F is the deformation
gradient tensor defined as F = Vu + I (I being the second-
order identity tensor and u the displacement field). Here, A
and p are the Lamé parameters and p denotes also the shear
modulus. From this energy (Eq. 1), the Cauchy stress o can
be obtained as:
0=§[MB+(MHJ—H)I]7 2
where B = FF is the left Cauchy-Green strain tensor. B =
FF7 | is a rotation-independent measure of the deformation.

In order to determine the material parameters for our
silicone sample, a frictionless axial compression test (using
a LLOYD compression machine 01/LFLS/LXA/EU) was
performed on a cylindrical sample (10 mm height and 10
mm diameter) made of silicone rubber. The frictionless
axial compression ensures that the sample undergoes a
homogeneous strain. The obtained stress-strain curve is
shown in Fig. 4. First, the Poisson’s ratio v has been
determined by measuring the volume changes of the
samples for the various compressive strains. They are quasi-
incompressible; ie. v 0.5. Then, the experimental
stress-strain curve has been well fitted by a neo-Hookean
model in the whole range of tested compressive strain,
e € [0,40%] with a Young modulus of E 045 +
0.01 MPa (see Fig. 4). Note that A and u are related to
E and v through & = g and u = ﬁ
Hence, in the numerical simulations of the silicone cylinder,

Young modulus and Poisson’s ratio were set to E
0.45 MPa and v = 0.495. This value for the Poisson’s ratio
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Fig.4 (a) Strain-stress curve of agar hydrogel measured from a compressive test performed on a parallelepiped sample of agar (30 x 30 x 10 mm?)
with frictionless contact condition. The waiting time between two measurements is 24 minutes. The elastic and plastic domains are identified and
fitted (solid straight lines). (b) Strain-stress curve of a silicone cylinder determined in a frictionless compression test. The waiting time between
two measurement of the force is 1 min. The stress calculated for an incompressible neo-Hookean solid is fitted on the experimental curve (solid
straight line). Vertical error bars are derived from the 95% accuracy of the force sensors



amounts to consider the case of an almost incompressible
material whose deformations are not expected to differ
significantly from the incompressible case, and avoid to
consider numerical divergences for A. The material density
is p = 990 kg/m?>.

The mechanical response of the agar hydrogels has
been also determined using a similar process. In this
case, to be in the same experimental conditions, these
tests require longer waiting time between each steps in
the compression process so that the equilibrium solvent
concentration is reached before each force measurement.
Moreover, special care has to be paid in order to prevent the
sample from drying. For these reasons, compressive tests
have been performed on parallelepipedal Agar hydrogel
samples (30 mm x 30 mm x 10 mm) with the same
concentrations as the ones of the Agar hydrogel cylinder,
placed on a horizontal glass surface slowly compressed
along one of the larger (horizontal) dimension between
the two walls linked to the stepper motor used for the
compression of the cylinders. Thanks to lubrication of
the glass surface and confining walls with DI water, the
parallelepipedal sample undergoes a homogeneous strain.
The corresponding stress-strain curve is plotted in Fig. 4(a).
A rate-independent elastoplastic model based on the bilinear
isotropic hardening was used [41]. This model uses the
von Mises yield criteria coupled with an isotropic work
hardening assumption. It is called bilinear because just
two lines define the stress-strain curve with a transition
point defined as yield stress oy: one to describe the linear
elastic region with Young modulus, E, and another to
the plastic with tangent modulus, E,. This behaviour is
consistent with the stress-strain behaviour of the Agar
hydrogel sample; see Fig. 4(a). This model, by setting £ =
10 kPa, v = 0.15, E, = 1.8 kPa and o, = 500 Pa,
described well the Agar hydrogel stress-strain behaviour.
Note that the small value of the Poisson’s ratio (large
compressibility) is a consequence of the water expelled
out from the sample due to the local stress. Moreover,
since the Agar hydrogel sample is mainly composed of
the DI water (see “Experimental Set-up”), the mass density
was set to be p = 1000 kg/m> for the Agar hydrogel
simulations.

Concerning the foam sample, because of the occurrence
of strain localization induced by micro-buckling under
compression [42, 43], it is not straight forward to describe
the material behaviour with a simple constitute law. Hence,
the foam numerical simulations would be beyond the scope
of this paper and we have not performed any simulations
related to this sample.

In the numerical simulations, to apply a quasi-static
loading, the applied velocity ¢ of the mobile wall was

chosen in a way to ensure that it fulfills the following
condition:

cK Vs, 3

where Vs = ./u/p is the velocity of the shear waves
propagating in the sample. Note that this velocity is slower
than the velocity of compressive waves. Accordingly, the
applied velocity in all our simulation was set to be ¢ =
0.02 m/s.

Rubber-like Material

Experiments have been first carried out with the silicone
sample introduced in “Experimental Set-up”. The shallow
cylinder is gradually compressed step by step up to
an applied cumulative compressive strain ¢ = 14% ,
with ¢ = —In(l —4§/D) the cumulative compressive
strain, § being the total deflection and D the initial
diameter of the sample (see Fig. 1). Beyond this value,
the sample buckles up. For each step in the compression,
the lower face is scanned and the confining force is
measured by the force sensors. The displacement field is
obtained thanks to the image correlation method described
in “Image Post-processing”. In the following, several
fields (displacement, strain...) obtained experimentally are
compared with the predictions coming from the simulations
by considering the infinitesimal (“A Tentative Comparison
with Predictions of the Infinitesimal Strain Theory”) and
finite strain theories (“Comparison with a Neo-Hookean
Solid”).

A Tentative Comparison with Predictions
of the Infinitesimal Strain Theory

At first, a FEM simulation for the silicone rubber sample
(cylinder of diameter D = 59 mm and thickness ¢ =
9.5 mm) is carried out in the context of the infinitesimal
strain theory i.e. the kinematic equations have been
linearized in the implementation of these FEM simulations
and the constitutive law reduces to the Hookean model.
Here, as mentioned before, Young’s modulus, Poisson’s
ratio and density of the sample were set to £ = 0.45 MPa,
v = 0.495 and p = 990 kg/m?, respectively. Figure 5(a)
shows the dimensionless contact force F/DCE* (with E* =
E/(1 — vz)) as a function of cumulative strain &. The
experimental and numerical results are in good agreement
until ¢ >~ 10%. However, deviation from the Hertzian
prediction is observed for ¢ > 3% for both experiment
and simulation. Indeed, this prediction is derived from
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Fig.5 (color online) (a) Dimensionless force F/DLE™ as a function of the true cumulative compressive strain ¢ obtained from the force sensor in
the experiments compared with the infinitesimal FEM simulation and prediction of the Herztian contact theory. Vertical error bars are derived from
the 95% accuracy of the force sensors. (b)—(c) Dimensionless displacement field along the x direction (u, /D) at ¢ = 14% for experiment with
silicone rubber sample and infinitesimal FEM simulation, respectively. Both are in frictionless contact condition. The Lagrangian displacement
field is plotted in this figure as a function of the Eulerian coordinates in order to show the system in its deformed configuration. (d) Dimensionless
displacement field u, /D as a function of the Lagrangian radial position w reported in ¢ for several values of ¢. Solid lines present results for the
infinitesimal FEM simulation whereas the triangles show the experimental results

the Hertzian contact theory for the contact between two
cylinders with parallel axes [3]:

F/DUE* = %e . )

This law is obtained under the plane strain hypothesis,
contrary to our experimental conditions where the plane
strain approximation is relevant only when §/¢ < 1. One
infers from Fig. 5(a) that this condition is not fulfilled
anymore for ¢ > 3%.

The agreement between linear elastic simulations and
experiments gets worse at the local scale. Figure 5(b)
presents the dimensionless displacement field along the
transverse direction u,/D (where u, is the displacement
in the perpendicular direction to the global compression)
of the lower surface of the deformed cylinder, for ¢ =
14%, while Fig. 5(c) shows the same field obtained
from the simulations. A detailed comparison of these
two fields shows quantitative discrepancies. This point
is emphasized by Fig. 5(d) with the variations of u,/D
along the transverse direction w (as indicated in Fig. 5(c))
for both the experiment and the simulation at several
compressive cumulative strain levels. Indeed, the numerical
and experimental results diverge when & increases, if
their global tendencies remain similar. This implies
that even if the simulations based on the infinitesimal
strain theory can reproduce almost well the experiments
from a global point of view, at higher values of the
compressive strain, the local scale results diverge. So, it is
necessary to simulate the silicone sample using a model in
which the finite deformations are appropriately taken into
account.

Comparison with a Neo-Hookean Solid

The FEM simulation of the silicone rubber sample in the
context of the infinitesimal strain theory, as mentioned
above, is unable to suitably mimic the experimental local
fields although the experimental global responses seem
to be reproduced quite well by this simulation. In order
to model appropriately the silicone rubber sample, we
also carried out FEM simulations in the context of the
finite strain theory by using an hyperelastic neo-Hookean
model (see equation (2)). For this simulation, a sample
with the same geometry and material properties as in “A
Tentative Comparison with Predictions of the Infinitesimal
Strain Theory” were considered. The comparison between
numerical and experimental results in this context are
described in the following.

Displacement field

Figure 6(a) and (b) show the dimensionless displacement
field along the compression direction u, /D for the experi-
ments and the FEM simulations, respectively, for € = 14%.
Figure 6(c) and (d) present the perpendicular displacement
u,/D in the same conditions. The agreement between the
experimental and numerical results is quantitatively good.
According to these fields, the sample deformation is con-
sistent with an incompressible material. Thus, the material
displacement in the middle vertical band of the sample
follows linearly the vertical displacement implied by com-
pression, while the matter on the left move leftward and the
matter on the right move rightward.

In a more quantitative manner, Fig. 6(e) shows the
variations of uy /D along an eccentric vertical line presented
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Fig. 6 (color online) Dimensionless displacement fields along the y direction (u,/D) ((a), (b)), and along the x direction (u, /D) ((c), (d)) at
& = 14% of the global cumulative compressive strain for experiment with silicone rubber cylinder and finite element simulation with neo-Hookean
material, respectively. The Lagrangian displacement fields in (a-d) are plotted as a function of the Eulerian coordinates. The frictionless contact
conditions were considered for both experiment and simulation; (e) Dimensionless displacement field u,/D as a function of the Lagrangian
vertical position v reported in (b) for several values of ¢; (f) Dimensionless displacement field u, /D as a function of the Lagrangian transverse
position w reported in (d) for several values of €. In both (e) and (f), solid lines present results for the neo-Hookean simulations whereas the

triangles show the experimental results

in Fig. 6(b). Here, the experimental and numerical values
of uy/D are displayed as a function of v for several
compression levels. Both approaches are in quantitative
agreement even for compressive strains as high as 14%. The
same conclusion is observed for Fig. 6(f) presenting u, /D
along the eccentric horizontal line w introduced in Fig. 6(d)
for both experiment and FEM simulation.

We have also tested the friction effect of the confining
walls on the local fields. In Fig. 7, we compare the displace-
ment fields for experiments in frictionless and frictional
(confining walls coated with sand paper) contact condi-
tions. We observe no significant difference between results
obtained for both frictional conditions. One can hence con-
clude that the friction at the boundaries does not modify
significantly the local deformations, up to the resolution
considered here. Then, only slippery (frictionless) boundary
conditions will be consider to the end of this article.

Stress and strain fields

Experiments gives the in-plane components of the displace-
ment field at the bottom of the sample. So, the deformation

gradient of these in-plane components can be computed
from these measurements, contrary to the out-of-plane
deformation gradient of the in-plane components of the dis-
placement field. Indeed, the deformation gradients along
the out-of-plane direction (z) of the in-plane displacement
components are involved in the expressions of the in-plane
components of the left Cauchy-Green strain tensor B. The
deformations can also be characterized by other tensors,
for example the right Cauchy-Green strain tensor. Here, we
deal with B because this tensor is directly related to the
Cauchy stress tensor (see equation (2)). In the following, we
assume that the deformation gradients along z are negligi-
ble. This fact has been verified using the FEM simulations.
A comparison of the in-plane components of B computed by
taking into account the out-of-plane gradients, or by neglect-
ing these contributions, yields the same values up to the
precision of the simulations, as shown in Fig. 8.

Following this approximation, the in-plane components
of B, Byy, By, and By, can be obtained from the
measured local in-plane displacement fields, u, and u,,
previously determined. Note that the spatial resolution in
the determination of the displacement field is high enough,
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Fig.7 (color online) Dimensionless displacement fields along the y direction (uy/D) (a) and the x direction (u, /D) (b) at ¢ = 14% of the global
cumulative compressive strain for experiment with silicone rubber cylinder by considering the frictional contact condition (the confining walls
are coated with sand paper to avoid sliding). The Lagrangian displacement fields in (a-b) are plotted as a function of the Eulerian coordinates; (c)
Dimensionless displacement field « /D as a function of the Lagrangian vertical position v reported in (a) for several values of ¢; (d) Dimensionless
displacement field u, /D as a function of the Lagrangian transverse position w reported in (b) for several values of €. Solid lines present the
experimental results for the frictional contact condition whereas the triangles show ones for the frictionless condition

A frictionless
— frictional

10 20 30 40

and the noise level low enough, so that no filtering has  platens. To the best of our knowledge, a deformation field
been applied to obtained the derivatives of the displacement  of a solid material subjected to large deformations as in our
field. The in-plane components of the left Cauchy-Green  experiments has never been directly measured with such a
strain tensor Byy, Byy, By, are shown in Fig. 9(a), (c), low noise level.

and (e), respectively, for a cumulative strain of ¢ = 14%. The above obtained left Cauchy-Green strain tensor
As expected, By, is maximum on the left and right of the =~ B is then compared with the FEM simulations. The
sample and minimum in the center. It is the opposite for ~ deformation gradients of the out-of-plane displacement field
B, which is maximum on a central vertical band. The term  is accounted in the simulation results. Figure 9(b), (d),
By is maximum in absolute value where the material is  and (f) give a comparison of numerical and experimental
sheared the most. This turns out to be inside four lobes  measures for several values of the compressive cumulative
pointing to the limit where the sample is in contact with the  strain. They show the evolution of By, By, and By, along
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Fig. 8 (color online) Evolution of the in-plane components of the left Cauchy-Green strain tensor (B) computed by means of non linear FEM
simulations for several values of the cumulative strain &. By, (a) and By, (b) are computed along the transverse Lagrangian axis w reported in
Fig. 7(b). By, is computed along the transverse Lagrangian axis v reported in Fig. 7(a). The triangles represent the exact computation taking the
out-of-plane deformation gradients into account, while solid lines represent the approximate one neglecting the out-of-plane deformation gradients



Fig.9 (color online) In-plane
components of the left
Cauchy-Green strain tensor (B),

Byy (a), Byy (¢) and B,y (e), at (a)
the lower surface of a laterally
compressed cylinder made of
silicone rubber (in frictionless
condition). They are presented
as a function of the Eulerian
coordinates for experiments at
& = 14%. Evolution of By, (b),
B,y (d) and By, (f) along the
transverse Lagrangian axis w
reported in (a),(c) and (e),
respectively, for several values
of ¢. In each graph, solid lines
present the neo-Hookean
simulations whereas triangles
show experimental results

the eccentric horizontal lines presented in Fig. 9(a), (c) and
(e), respectively, for ¢ varying from 0 to 14%. Once again,
a good agreement exists between the experiments and the
numerical simulations although in Fig. 9(f), experimental
curves are a bit wavy for certain horizontal positions. The
latter is due to a slight inhomogeneity of the scanner
translation speed during the imaging process.

From surface to bulk

Although as seen before, there is a good accordance
between the experimental and numerical local fields (stress,
strain...), the agreement between global parameters is not
ensured since the comparison is restricted to the sample
bottom surface. Hence, we also investigate the evolution
of the contact force F and the elastic energy £. For the
experiments, F' is measured using the force sensors and &
is estimated from the in-plane displacement fields u, and
uy at the sample bottom obtained with the DIC procedure,
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together with equation (1). Let A% and A% be the eigenval-
ues of the square matrix formed by By, Byy, By, and By,.
Because of the incompressible material assumption, J = 1
and the sum /; of the eigenvalues of B can be approximated
by )Uzc + )\i +1/ (A%)@). One an other hand, £ is indepen-
dently determined by considering the work of the contact
force F.

Figure 10 displays the dimensionless elastic energy,
&g/ D2¢E*, and contact force, F /DECE*, as a function of
cumulative strain ¢ for the numerical and experimental
results. The evolution of £/D*¢E* obtained from two
approaches (see above) is shown in Fig. 10(a). £ is
also computed from the FEM simulations (that take into
account the out-of-plane displacement field). We observe an
appropriate accordance between the numerical simulation
and the experimental measurements up to ¢ =~ 10%.
For both results, the evolutions of F/D{E* are also in
good agreement as shown in Fig. 10(b). However, the
measurements of £ and F diverge from the Hertzian
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Fig.10 (color online) (a) Evolution of the dimensionless energy £/D2¢E* as a function of cumulative strain & deduced from the force sensors and
from image correlation measurements for the silicone rubber cylinder experiment, and computed also from neo-Hookean simulations. The energy
deduced from the Hertzian contact theory is added for comparison; (b): Evolution of the dimensionless contact force F/D{E* as a function of
cumulative strain ¢ measured directly from force sensors on the silicone rubber cylinder experiment and from the neo-Hookean simulations. The
Hertzian prediction is also added for comparison. Vertical error bars are derived from the 95% accuracy of the force sensors

predictions rapidly after few percent of the compressive
strain &. As mentioned before, it can be explained that,
here, the Hertzian predictions obtained in the context of
the plane strain condition which is not the case for the
experimental and numerical results. Nevertheless, it is worth
noting that these good agreements between the simulations
and experiments show that the imaging technique coupled
with the image correlation algorithm constitutes a useful
tools for a accurate and non-invasive local measurements.

Particle with Elastoplastic Behaviour

In this section, we use the same experimental set-up to
investigate the quasi-static compression of an Agar hydrogel
cylindrical sample. The FEM simulation is also performed
considering a shallow cylinder of diameter D = 59 mm
and thickness of £ = 9.5 mm and a material with a
plastic behaviour as mentioned in “Numerical Simulations”.
At the local scale, the displacement fields computed from
the elastoplastic FEM simulation coincide adequately with
the ones from the DIC approach. Figure 11 shows the
dimensionless displacement fields along the compression
direction uy/D (Fig. 11(a) and (b)) and the transverse
direction u,/D (Fig. 11(c) and (d) at ¢ = 14% for
both experiment and simulation in the frictionless contact
condition. We note a striking difference between these
fields and the ones of the silicone sample shown in Fig. 6.
Even if the extremum values of u, are still concentrated
circularly around the contact areas, they are more localized
in the elastoplastic case. For u,, the field structure is very
different: the matter is moved toward the compression axis
near the compression areas, and in the opposite direction
away from these areas. Figure 11(e) shows the evolution of

uy/D along the compression axis v indicated in Fig. 11(a),
for the values of ¢ varying from O to 14%. This is
shown for several values of the compressive cumulative
strain ¢ for numerical and experimental measurements. The
quantitative accordance is satisfactory up to ¢ =~ 5%.
For larger strains, the agreement begins to fail near the
contact areas. Figure 11(f) presents similar results for u, /D
along the direction perpendicular to the compression axis
w illustrated in Fig. 11(c). The experimental and numerical
plots follow the same tendency as before.

The evolution of the dimensionless contact force
F/D{E* as a function of compressive cumulative strain ¢ is
displayed in Fig. 12(a) for both boundary contact conditions
(frictional and frictionless) and for the experiment and
simulation. The agreement between experimental and
numerical results fails for ¢ > 3% whereas the experimental
measurements of F follow well the prediction of the
Hertzian contact theory up to ¢ >~ 10%. We also observe
no significant effect of the contact conditions on the
sample global behaviour. Moreover, in Fig. 12(b) and (c),
the experimental displacement fields for the frictionless
and frictional contact conditions are compared. The small
differences are observed although the results have a similar
trend. However, it is worth noting that the different fields
are qualitatively similar for experiment and simulation and
for different contact conditions.

In this configuration, the displacement fields u, and u,
are qualitatively different from the ones observed for the
lower values of ¢ as shown in Fig. 11. Note that the image
analysis set-up still yields smooth fields for such high strain
levels. The in-plane components of the left Cauchy-Green
strain tensor By, Byy and By, are plotted in Fig. 13(c), (d)
and (e), respectively. Although the plotted fields are noisier
than the ones presented in Fig. 9 for the silicone sample in
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Fig. 12 (color online) (a) Evolution of the dimensionless contact force F/D{E™* as a function of cumulative strain ¢ measured directly from force
sensors for the Agar hydrogel cylinder experiment and computed from 3D elastoplastic simulations. Results are presented for the frictionless and
frictional contact conditions. The Hertzian prediction is added for comparison. Vertical error bars are derived from the 95% accuracy of the force
sensors; (b) Dimensionless displacement field u, /D as a function of the Lagrangian transverse position w reported in Fig. 11(c) for several values
of &; (¢) Dimensionless displacement field u /D as a function of the Lagrangian vertical position v reported in Fig. 11(a) for several values of ¢. In
both (b) and (c), Solid lines present the experimental results for the frictional contact condition whereas the triangles show ones for the frictional
condition
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(e), as a function of the Eulerian coordinates for highly compressed (¢ = 30%) Agar hydrogel cylinders. The displacement fields were measured
from the image correlation and the strain components are deduced from these displacement fields. Be aware that images are rotated in this figure

a less compressed situation, we can observe that the strain
tensor is qualitatively different.

Foam

Let us now study a shallow cylinder made of another
typical highly deformable material: a solid foam. The
sample has a diameter D = 120 mm and a thickness
£ = 30 mm. It is loaded using the same experimental
set-up as previously described. As mentioned before, since
the deformation in the bulk material is not homogeneous
due to strain localization, the definition of a constitutive

Fig. 14 (color online) 50
Dimensionless displacement

field along the compression ( a)

direction uy /D (a), and
components of the left
Cauchy-Green strain tensor (B),
Byy (¢) and Byy (d), for a
cylinder compression
experiment, as a function of the
Eulerian coordinates. The
cylinder is made of solid foam
and the strain level is ¢ = 30%;
(b) Evolution of the
dimensionless displacement
field uy /D along the
Lagrangian vertical line v shown
in (a) for different compression
level ¢ for the foam sample ) i

V(%)

law for the material at large deformations is beyond
the scope of this paper. For this reason, no numerical
comparison will be performed in this section. However,
linear mechanical parameters have been measured by means
of axial compression of the sample. The Young’s modulus
has been found to be £ = 0.07 £ 0.001 MPa and the
Poisson’s ratio is close to v &~ 0 since the radius of the
sample did not change significantly during the test.

Figure 14(a) shows the displacement field u, for ¢ = 30%.
This field seems qualitatively similar to the one presented
in Fig. 6 for the silicon sample. However, one can observe
local inhomogeneities in u,. They are more enlightened for
the components By, and By, of the left Cauchy-Green strain

0.00



tensor presented in Fig. 14(c) and (d), respectively. These
inhomogeneities originate from the buckling of the foam
structure at the local scale (also called micro-buckling). The
evolution of the dimensionless vertical displacement field
uy/D along an eccentric vertical line v shown in Fig. 14(a)
for several values of the compressive strains is displayed
in Fig. 14(b). The local deformation heterogeneities are
again evidenced in this graph. Contrary to silicone rubber,
it is worth noting that for high compression strain, u,
varies linearly with v. These measurements validate our
experimental method for more complex materials which can
be challenging to model.

Concluding Discussion

In this paper, an experimental set-up is presented to inves-
tigate the compression of a shallow cylinder sample. It
is composed of a homemade compression machine lay-
ing on a flatbed scanner. We determine the cylinder local
fields by applying a dedicated Digital Image Correlation
(DIC) method to the images obtained from scanning the
patterned sample’s lower surface. Three materials with dif-
ferent high deformation behaviours were used to make the
samples: silicone, Agar hydrogel and foam. The silicone
rubber-like sample is found to behave like an incompress-
ible neo-Hookean material. FEM simulations are carried out
in the context of the finite strain theory. The local and global
experimental measurements coincide well with the numeri-
cal ones whereas only the global results could be captured
by performing FEM simulations in the framework of the
infinitesimal strain theory. Agar hydrogel sample has been
found to well follow a plastic behaviour in the quasi-static
regime. FEM simulations are also performed by consid-
ering a rate-independent elastoplastic constitutive law. We
observe a good accordance between the numerical and
experimental observations for low to moderate cumulative
compressive strains. These results validate our experimen-
tal procedure: sample making, imaging and image post-
processing. Moreover, the displacement fields are measured
for the Agar hydrogel and foam samples (with in this case,
a heterogeneous behaviour) for larger values of the com-
pressive strain (¢ 2~ 30%). These measurements provide the
basis for the validation of constitutive modeling, that need
to be developed, for such non-standard materials.

Finally, this experimental method to measure the
mechanical fields in compliant 2D samples with different
material constitutive laws and geometries opens a broad
panel of new multi-scale investigation, for instance the
mechanical behaviour of a packing of soft particles with
the effect of particle shape change and space-filling beyond
the jamming state. The results could be compared to the

ones obtained from different numerical method. Moreover,
the extension of this approach to 3D is possible by using
tomography imaging.
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