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On the Angular Resolution Limit Uncertainty

Under Compound Gaussian Noise
Maria S. Greco and Remy Boyer

Abstract

The Angular Resolution Limit (ARL) is a fundamental statistical metric to quantify our ability to resolve two

closely-spaced narrowband far-field complex sources. This statistical quantity, is defined as the minimal angular

deviation between the two sources to be separated for a prefixed detection-based performance. In this work, we

assume that the sources of interest are corrupted by a compound-Gaussian noise. In the standard literature, denoting

with δ the true distance between the two sources, the derivation of the ARL is based on the statistical distribution

of the Generalized Likelihood Ratio Test (GLRT) for a binary test where there is only one source under the null

hypothesis (i.e., δ = 0) and two sources under the alternative hypothesis δ 6= 0. In literature, the true angular distance

(TAD) is generally considered as an unknown deterministic parameter, then a maximum likelihood-based estimation

of δ is exploited in the GLRT. In this paper, breaking away from existing contributions, we suppose that the TAD is a

random variable, Gaussian distributed, meaning that δ ∼ N (δ0, σ
2
δ ). The TAD uncertainty can have many causes as

for instance moving sources or/and platform, antenna calibration error, etc. In this work, a generic and flexible (but

common) statistical model of the uncertain knowledge of the TAD is preferred instead of a too much specified error

model. The degree of randomness (or uncertainty) is quantified by the ratio ξ = δ20/σ
2
δ . The standard framework of

the GLRT is no longer feasible for our problem formulation. To cope with the compound Gaussian noise modeling

and the random model of the TAD, a powerful upper bound from information/geometry theory is exploited in this

work. More precisely, a new expected Chernoff Upper Bound (CUB) on the minimal error probability is introduced.

Based on the analysis of this upper bound, we show that the expected-CUB is highly dependent on the degree of

uncertainty, ξ. As a by-product, the optimal s-value in the Chernoff divergence for which the expected-CUB is the

tightest upper bound is analytically studied and the role of the mean value δ0 in the ARL context is analyzed.

I. INTRODUCTION

Estimator-independent performance metrics are essential and powerful statistical tools to study a sensing system.

Maybe the most popular bounds are due to the pioneer work of Cramér and Rao [27] in an estimation point of view

and due to Smith in the detection/resolution perspective [1]. Such quantities allows to (i) characterize the highest

estimation/detection accuracy than we can hope to reach, (ii) avoid costly Monte-Carlo simulations dedicated to

a particular estimator, (iii) identify the key model parameters involved in the design of the sensing system and

(iv) get more insight into the physic of the underlying problem. It is worth noting that the two contexts are in fact

closely related as demonstrated in [4].

The resolvability of closely spaced signals, in terms of parameter of interest, for a given scenario (e.g., for a

given Signal-to-Noise Ratio - SNR -, a given number of snapshots and/or a given number of sensors) is a former

and challenging problem which was recently updated by Smith [1], Liu and Nehorai [4], Amar and Weiss [2],
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Sharman and Milanfar [13]. More precisely, the concept of statistical Angular Resolution Limit (ARL), i.e.,

the minimum distance between two closely spaced signals embedded in an additive noise that allows a correct

resolvability/parameter estimation, is rising in several applications especially in problems such as array processing

[9,10,12], MIMO radar [6]–[8], multidimensional harmonic estimation [11] or dictionary learning [23]. In the

literature, several authors have focused their effort on the study of the Fisher information [24]–[26], but in most

of the contributions, the ARL is derived from the asymptotic performance of the Generalized Likelihood Ratio

Test (GLRT) where the unknown deterministic angular distance between the two sources has been replaced by its

Maximum Likelihood (ML) estimate. Specifically, the GLRT is considered for a binary test where there is only

one source under the null hypothesis (i.e., δ = 0) and two sources under the alternative hypothesis δ 6= 0.

When the number of measurements grows, the MSE between the estimated angular distance and the TAD decreases

to zero at the rate of the deterministic Cramér-Rao Bound (CRB) [22]. This partially explains why the “separation”

of the distributions of the GLRT under the two hypotheses is completely characterized by the value of the non-

centrality parameter which is a function of the TAD, the array manifold and the SNR. This framework is based

on an ideal knowledge of the model and on an infinite number of measurements. We think that there is a lack

of contributions on the more realistic problem where the knowledge of the TAD is uncertain. To the best of our

knowledge, only [12] tackles this problem. Indeed, the ARL is derived in the context of an uncertain steering

matrix. In other words, this model-based analysis is limited to a class of array model error and cannot take into

account other causes of error as for instance on the measured sources. Finally, in [3] the sources are assumed to

be stochastic. This means that the mathematical formalism of the hypothesis test could be close to the one used in

this work. But, as a major difference with the proposed methodology, the TRL in [3] is a deterministic quantity.

Breaking away from existing contributions, in this work, a more generic and flexible model of error is considered.

Specifically, we suppose that the true angular distance (TAD) δ between the two sources is not deterministic,

but random, Gaussian distributed, such that δ ∼ N (δ0, σ
2
δ ). The randomness of δ can be due to many factors, as,

for instance, the non-perfectly compensated slow movement of the receiver platform, or of the sources or both.

Consequently, the distance changes from one observation to the other. We adopted here the Gaussian model for the

randomness of δ, as usual for the observation error in radar tracking scenarios [15]. The degree of randomness or

of uncertainty is quantified by the ratio ξ = δ2
0/σ

2
δ . Indeed, for ξ →∞, δ → δ0 and it tends to be deterministic. On

the contrary, for ξ → 0, our degree of uncertainty tends to be maximal. The detection performance for a random

quantity in terms of minimal error probability is often analytically intractable [14], particularly if the useful signal

is embedded in non-Gaussian noise. To alleviate this technical difficulty, we exploit some powerful tools from the

information theory [17,18] and in particular the Chernoff Upper Bound (CUB) on the minimal error probability

[16,17]. More precisely, the class of compound-Gaussian noise is of interest in this work due to its ability to

accurately model physical phenomena in the context of several important applications as for instance [19]–[21].

To cope with this difficult context, a new expected CUB is introduced, derived and studied. To the best of our

knowledge, only the single contribution [28] derives the ARL for non-Gaussian disturbance, i.e., in the MIMO

radar context with K-distributed clutter. Our work has two main differences. First, our approach of the problem is

developed in the information geometric framework. The second main difference resides on the fact that the TAD
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is considered random.

The remainder of this paper is organized as follows. In section 2, the array processing model and the linearized

hypothesis test are introduced. In Section 3, after a brief presentation of the the state-of-art, the detection problem at

hand for the considered framework is presented. In particular, the Chernoff Upper Bound (CUB) is derived in both

Gaussian and compound-Gaussian cases. In section 4 some results are shown and commented, and final conclusions

are given. The appendix contains the formalism of the CUB tacking into account random nuisance parameters.

II. ARRAY PROCESSING MODEL AND LINEARIZED HYPOTHESIS TEST

A. Array processing model

We consider the context of two probing sources far-field narrowband deterministic sources denoted by s1(k) and

s2(k) where k stands for the k-th snapshot with s1(k) 6= s2(k). Probing sources are known at the emitter (see

for instance [31,32]). The two source vectors s1 and s2 are collected over K snapshots on a L sensors array .

Each source is associated to a steering vectors denoted by a(ω1) and a(ω2) characterized by two unknown angular

frequencies, denoted by ω1 and ω2, respectively. Consequently, the observation vector for the k-th snapshots on the

L sensors of the array is given by

y(k) = a(ω1)s1(k) + a(ω2)s2(k) + w(k) (1)

where w(k) is the additive noise for the k-th snapshot. For K observation vectors, we obtain the following (KL)×1

long vector:

y =
[
y(1)T . . . y(K)T

]T
= a(ω1)⊗ s1 + a(ω2)⊗ s2 + w (2)

where ⊗ stands for the Kronecker product and w is the (KL)× 1 noise vector. The statistical noise model will be

discussed in the sequel.

B. Formulation of the detection test

Let δ = ω2−ω1 be the TAD between the two sources. The problem of resolving two closely spaced sources can

be formulated as a binary hypothesis test as follows: H0 : δ = 0, “only one source is detected at ωc”,

H1 : δ 6= 0, “two sources are detected with different angular-frequencies”.
(3)

The hypothesis H0 represents the case where the two sources exist but are combined into a single signal, whereas

the alternative hypothesis H1 embodies the situation where the two sources can be separated.

The scenario where the two sources are largely separated in angle is meaningless since our aim is to evaluate the

smallest AD. So, it makes sense to assume that the two sources are closely-spaced in angle. In other words, assuming

a small δ is a realistic assumption meaning that terms O(δ2) are discarded from our analysis. Let ωc = ω1+ω2

2 be

the known central angular-frequency. This “physical” assumption allows to considerably simplify the mathematical
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formulation of the problem of interest. Indeed, recall that a(ω1) = a
(
ωc − δ

2

)
and a(ω2) = a

(
ωc + δ

2

)
are two

non-linear functions of δ but after linearization around ωc, we obtain two nice relations linear in δ such as

a(ω1) =
1
≈ a(ωc)−

j

2
δȧ(ωc) +O(δ2), (4)

a(ω2) =
1
≈ a(ωc) +

j

2
δȧ(ωc) +O(δ2), (5)

where symbol
1
≈ stands for first-order approximation and ȧ(ωc) = −j ∂a(ω)

∂ω

∣∣∣
ω=ωc

. It is straightforward to obtain

the linear approximation of model (2) [10]:

y
1
≈ µδ + w (6)

where µδ = a(ωc)⊗ (s1 + s2) + j
2δȧ(ωc)⊗ (s2 − s1).

Discarding the known signals, we define the new observation vector z = y − a(ωc)⊗ (s1 + s2). In this case the

hypothesis test (3) becomes

H0 : z = w

H1 : z = δp + w.

(7)

where p = j
2 ȧ(ωc)⊗ (s2 − s1).

III. NEW PROPOSED FRAMEWORK: UNCERTAIN TAD IN COMPOUND GAUSSIAN NOISE

A. Brief description of the state-of-art

In the sequel, we briefly recall two standard methodologies in the case of a deterministic unknown TAD in white

Gaussian noise and in colored signal-dependent noise. The purpose of these two paragraphs is to point out the

limitations of the existing methods.

1) Deterministic unknown TAD in white Gaussian noise: In the standard literature (see for instance [10]), the

binary hypothesis test is

z ∼

p0(z) = CN (0, σ2I),

p1(z; δ) = CN (δp, σ2I).

(8)

The GLRT is defined as

T (z) = log
maxδ∈R p1(z; δ)

p0(z)
. (9)

The MLE integrating the constraint of a real δ of the TAD is given by [7,10]:

δ̂(z) =
<{pHz}
||p||2

. (10)

Using the above expression in T (z), and if KL→∞,

T (z) ∼

H0 : χ1

H1 : χ1(λ(Pfa, Pd))

(11)
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when χ1 (resp. χ1(λ(Pfa, Pd))) denotes the centered (resp. non-central) Chi-squared distribution with a single

degree of freedom [14] characterized by the probabilities of false alarm Pfa and of detection Pd. The ARL is given

by

δARL =

√
2σ
√
λ(Pfa, Pd)

||s2 − s1||||ȧ(ωc)||.
(12)

After setting the desired performance of the test (Pfa and Pd), the above result shows that the ARL is derived

as a function of the true source vectors, the ideal array manifold and for KL→∞.

2) Deterministic unknown TAD in signal-dependent noise: In [12], we assume that the steering vectors are

corrupted by an additive error, ei ∼ CN (0, σ2
eI), such as

ã(ωi) = a(ωi) + ei, 1 ≤ i ≤ 2. (13)

So, the array processing model was

y = a(ω1)⊗ s1 + a(ω2)⊗ s2 + w̃ + w (14)

where the signal-dependent noise is given by

w̃ = s1 ⊗ e1 + s2 ⊗ e2. (15)

Then, the binary hypothesis test is

z ∼

p0(z) = CN (0,R),

p1(z; δ) = CN (δp,R)

(16)

where R = σ2I+ σ2
e(s1s

H
1 + s2s

H
2 ). So, the same methodology can be exploited as in the above section since the

formulation of the two problems is similar, i.e., a deterministic signal of interest corrupted by a white or colored

Gaussian noise. The limitation of this work lies in its not enough flexible specification of the error model. In the

sequel, the aim is to tackle this problem in a more generic and flexible way.

B. Breaking away from existing contributions

We think that the contributions of our work is twofold. Firstly, we consider a very generic modeling of the

uncertainty on the TAD and secondly, a very popular non-Gaussian noise model is considered.

1) Random TAD: In our scenario we suppose that we do not have full knowledge of the true angular distance

δ = ω2 − ω1 between the two sources. We only know its mean value δ0. To deal with this uncertainty, we model

the amplitude of the vector p as a Gaussian random variable with mean value δ0 and variance σ2
δ , i.e.,

δ ∼ N (δ0, σ
2
δ ). (17)

We think that our modeling of the problem is more general than the two frameworks described before in the

sense that a large panel of uncertainty causes can be encompassed.
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2) Compound-Gaussian noise: To generalize this scenario, in this paper we relax this hypothesis and we consider

a colored compound-Gaussian (CG) noise as for instance it is standard in high resolution radar detection [19]–[21],

in MIMO radar target localization [5] or in astronomical robust imaging [29,30]. The CG distribution family has

many applications and is quite often used, for instance, to model the radar clutter in which targets and other

interferences are embedded. With this model the vector w is the product between two terms, that is

w =
√
τx (18)

where the positive random variable τ , called texture, takes into account the local variations of the power, and the

complex vector x called speckle is complex Gaussian distributed, i.e.,

x ∼ CN (0,M) (19)

where M =E
{
xxH

}
is its covariance matrix (see for instance [19]–[21].) For ease, the speckle power is supposed

equal to one, then the elements along the main diagonal of the speckle covariance matrix are [M]i,i = 1. It is worth

noting that E
{
wwH

}
= E {τ}E

{
xxH

}
= µM and E

{
wwH |τ

}
= τM.

3) Derivation of the expected CUB: The considered binary hypothesis test is

z ∼

p0(z|τ) = CN (0,M0),

p1(z|τ) = CN (0,M1)

(20)

where M0 = τM and M1 = τM + σ2
δpp

H . The detection theory framework cannot deal efficiently with the

considered scenario since an analytical closed expression of the error probability is mathematically not tractable.

So, we follow the methodology of the expected CUB introduced in a general way in the Appendix. With this

model we can now derive Γ(z|τ) and solve the integral in (55). It is possible to prove that

Γ(z|τ) = log

(
p1(z|τ)

p0(z|τ)

)
= log

|M0|
|M1|

− (z− δ0p)
H
M−1

1 (z− δ0p) + zHM−1
0 z

= log
|M0|
|M1|

− zH
(
M−1

1 −M−1
0

)
z + 2Re

{
δ0z

HM−1
1 z

}
− δ2

0p
HM−1

1 p. (21)

Using Woodbury’s identity [27], we can derive that

M−1
1 = M−1

0 −
σ2
δM
−1
0 ppHM−1

0

1 + σ2
δp

HM−1
0 p

(22)

Replacing eq. (22) in (21) we obtain

Γ(z|τ) = log
|M0|
|M1|

+
σ2
δ

∣∣zHM−1
0 p

∣∣2
1 + σ2

δp
HM−1

0 p
+ 2Re

{
δ0z

HM−1
0 p

1 + σ2
δp

HM−1
0 p

}
− δ2

0p
HM−1

0 p

1 + σ2
δp

HM−1
0 p

(23)

Observing that |M1|=|M0|
(
1 + σ2

δp
HM−1

0 p
)

and recalling that M0 = τM we can write

Γ(z|τ) = log
τ

τ + a
+
σ2
δ

∣∣zHM−1
0 p

∣∣2
τ (τ + a)

+
2δ0
τ + a

Re
{
zHM−1

0 p
}
− b

τ + a
(24)

where a = σ2
δp

HM−1p and b = δ2
0p

HM−1
0 p.

The key statistic that appears in the previous equation is t = zHM−1p = tI + jtQ, that, conditioned on the

r.v. τ , is the output of a whitening matched filter [20,27], where tI = Re
{
zHM−1p

}
and tQ = Im

{
zHM−1p

}
.
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Under the null hypothesis, and again conditioned on τ , E {tI |τ,H0} = E {tQ|τ,H0} = 0, var (tI |τ,H0) =

var (tI |τ,H0) = τ
2p

HM−1p and the two random variables tI and tQ are Gaussian distributed and independent

[20,27]. With these observations we can rewrite eq. (24) as

Γ(z|τ) = log
τ

τ + a
+

σ2
δ

τ (τ + a)

(
tI +

δ0τ

σ2
δ

)2

+
σ2
δ

τ (τ + a)
t2Q −

ξτ

τ + a
− b

τ + a
(25)

where we define the parameter ξ= δ20
σ2
δ

, that is, the ratio between the square mean value of the TAD and its variance.

From (25) we obtain that

Ez|τ,H0
{exp (sΓ(z|τ))} =

τs

(τ + a)
s exp

(
−sξτ + b

τ + a

)
My1|τ,H0

(s)My2|τ,H0
(s) (26)

where Y1|τ,H0 =
σ2
δ

τ(τ+a)

(
tI + δ0τ

σ2
δ

)2

, Y2|τ,H0 =
σ2
δ

τ(τ+a) t
2
Q and Mx (s) = exp (sx) is the Moment Generating

Function of the random variable X .

We can now prove that Y1|τ,H0 is a scaled non-central random variable χ2
1 (d, λ) where d = a

2(τ+a) is the scale

parameter and λ = 2 ξτa is the non-centrality parameter. Conversely Y2|τ,H0 is a scaled central χ2
1 (d) random

variable with the same scale parameter. Now, we are able to derive My1|τ,H0
(s) and My2|τ,H0

(s) according to

My1|H0
(s) =

1√
1− a

τ+as
exp

ξ τ

τ + a

s(
1− a

τ+as
)
 (27)

My2|H0
(s) =

1√
1− a

τ+as
(28)

Replacing (27) and (28) in (26) we obtain

Ez|τ,H0
{exp (sΓ(z|τ))} =

τs

(τ + a)
s exp

ξ τ

τ + a

s(
1− a

τ+as
)
 exp

(
−sξτ + b

τ + a

)
1

1− a
τ+as

. (29)

Replacing now (29) in (53) we finally get the CUB

Pe ≤
1− α
βs

Eτ

 τs

(τ + a)
s exp

ξ τ

τ + a

s(
1− a

τ+as
)
 exp

(
−sξτ + b

τ + a

)
1

1− a
τ+as

 (30)

The final value of the CUB for the CG noise depends on the PDF that we choose for modeling the texture τ .

In order to vary the uncertainty on the value of the TAD, we have defined the parameter ξ= δ20
σ2
δ

. For low values

of ξ the variance of the TAD is large, so the uncertainty is high. Conversely, for high values of ξ the uncertainty

is small.

Define now the random variable ρ = τ
a+b . Observing that ξ = b/a, it results that τ = b(1+ξ)

ξ ρ, then for the mean

value Eτ {·} in eq. 30 we can write

Eτ {·} = Eρ

{
[(1 + ξ) ρ]

s

[(1 + ξ) ρ+ 1]
s−1

1

(1 + ξ) ρ+ 1− s
exp

[
ξs (s− 1)

(1 + ξ) ρ+ (1− s)

]}
(31)
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It is apparent from the previous equation that Eρ {·} does not depend on δ2
0 and σ2

δ separately, but only on their

ratio ξ.

If σ2
δ = 0, that is the TAD is deterministic, a = 0, ξ →∞, and the CUB reduces to

Pe ≤
1− α
βs

Eρ

{
exp

[
s

ρ
(−1 + s)

]}
(32)

a) Gaussian noise: The Gaussian distribution is a particular case of the compound-Gaussian family. As a

matter of fact, if the noise is Gaussian distributed with power σ2, the probability density function of the variable

τ is a delta of Dirac centered in τ = σ2, then, from eq. (30) the probability of error satisfies the inequality

Pe ≤
1− α
βs

(
σ2
)s

(σ2 + a)
s

1

1− s a
σ2+a

· exp

[
− s

σ2 + a

(
ξσ2 + b

)]
exp

− ξσ2s

σ2 + a

1(
1− s a

σ2+a

)
 (33)

For ease, let’s define SNR at the output of the whitening matched filter t = zHM−1p.

SNR =
E
{∣∣δpHM−1p

∣∣2}
E
{
|dHM−1p|2

} =

(
δ2
0 + σ2

δ

)
σ2

pHM−1p =
a+ b

σ2
= γ (34)

Observing that, with the definition (34) σ2 = b (ξ + 1) /(ξγ) we can rewrite eq. (33) as

Pe ≤
1− α
βs

(1 + ξ)
s

[1 + ξ + γ]
s

1

1− s γ
1+ξ+γ

exp

[
− ξγ (1− s) s

1 + ξ + γ (1− s)

]
(35)

It is now evident that the CUB does not depend on δ2
0 and σ2

δ separately, but only on their ratio ξ.

For low values of SNR, γ << 1. Under this hypothesis eq. (33) can be approximated as

Pe ≤
1− α
βs

exp

[
sξγ

1 + ξ
(−1 + s)

]
(36)

and the value of s for which the bound is minimum is s = 1
2 + 1+ξ

2ξγ log(β). When Pr(H0) = Pr(H1), β = 1

and smin = 1
2 .

Conversely, when γ >> 1, eq. (33) can be approximated as

Pe ≤
1− α
βs

(1 + ξ)
s

γs
1

(1− s)
exp [−sγ] (37)

and smin = 1− 1
ξ+log(βγ/(1+ξ)) .

In the general case smin, the value of s that minimizes the CUB, can be obtained first calculating the logCUB

and then derivating it with respect to s. After some calculations it turns out that smin can be calculated as the

unique solution in the range (0,1) of the 2nd order equations

s2 −
[
γ2 − 2K0γ (1 + ξ + γ)

K0γ2

]
s+

K0 (1 + ξ + γ)
2 − (1 + ξ + γ) [(1 + ξ) ξ + γ]

K0γ2
= 0 (38)

where K0 =
[
ξ − log (1+ξ)

β(1+ξ+γ)

]
.

In the purely deterministic case of δ = δ0, a = 0, γ = b/µ and ξ →∞, then
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Pe ≤
1− α
βs

exp [γs (−1 + s)] (39)

and the value of s for which the bound is minimum is s = 1
2 + 1

2γ log(β). When β = 1 again smin = 1
2 .

b) K-distributed noise: For analyzing the behavior of the Chernoff Bound in a CG general case, we used the

K model, a particular case of the Compound-Gaussian family, characterized by a Gamma-distributed texture τ , then

p (τ) =
1

Γ (ν)

(
ν

µ

)ν
τν−1 exp

(
−ν
µ
τ

)
u (τ) (40)

The parameter ν characterizes the spikyness of the noise: the lower ν, the spikier the K-distributed noise [20,21].

For ν → ∞ the K distribution degenerates into the Rayleigh one. The parameter µ represents the power of the

noise. Recalling eq.(31) and that ρ = ξ
b(1+ξ)τ , with a Gamma-distributed texture, the PDF of ρ is given by

p (ρ) =
1

Γ (ν)

(
ν

µ

)ν [
b (1 + ξ)

ξ

]ν
ρν−1 exp

(
−ν
µ

b (1 + ξ)

ξ
ρ

)
u (ρ) (41)

Since the power of the noise is defined by the parameter E {τ} = µ, the SNR is now a+b
µ = γ. Then, similarly

to the Gaussian case, µ = b (ξ + 1) /(ξγ). Replacing this expression in eq. (41) yields to

p (ρ) =
1

Γ (ν)
(νγ)

ν
ρν−1 exp (−νγρ)u (ρ) (42)

The new expression of p (ρ) depends only on the shape parameter ν and on the signal-to-noise power ratio γ. As

a consequence eqs. (31) and (30) depends only on ν,γ and ξ. As for the Gaussian case, the CUB does not depend

on δ2
0 and σ2

δ separately, but only on their ratio ξ.

In the purely deterministic case of δ = δ0, a = 0, γ = b/µ and ξ →∞, then from 32

CUB =
1− α
βs

Eρ

{
exp

[
s

ρ
(−1 + s)

]}
=

1− α
βs

2

Γ (ν)
(νγs (1− s))ν/2Kν

(
2
√
γs (1− s) ν

)
(43)

To find the s for which the “deterministic” CUB is the tightest we can calculate the logCUB and then derivate

with respect to s, that is

∂ logCUB

∂s
= − log β+

ν

2

(1− 2s)

s (1− s)
+

1

Kν (z)

∂Kν (z)

∂z

∂z

∂s
= − log β+

ν

2

(1− 2s)

s (1− s)
+

(1− 2s)

Kν (z)

∂Kν (z)

∂z

√
γν

s (1− s)
(44)

where z = 2
√
γs (1− s) ν. If β = 1, the only solution of eq. 44 is s = 1/2. Then, for equiprobable hypotheses

and deterministic ARL, the tightest bound is the Batthacharya Upper Bound (BUB) [17],

BUB =
1

2Γ (ν)
(γν)

ν
2 Kν (

√
γ) (45)

whatever ν, b and µ.
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IV. ANALYSIS OF RESULTS

In the following figures 1-5 we show the smin as a function of the SNR for Gaussian (G) and K-distributed noise

(K) with varying values of ν, β = 1 (the two hypotheses are equipropable) and different values of the parameter

ξ. As expected for low values of SNR, in the Gaussian case smin = 0.5, while, in the K noise case, smin > 0.5,

with increasing values corresponding to increased spikyness (i.e. decreasing ν).

It is worth observing that the behavior of smin highly depends on ξ . To highlight the dependence of the CUB on

the parameter ξ, in figure 6 we show the Pe as a function of ξ for SNR = 30dB . The curves for all tested values

of ν are quite close. It is worth noting that in our example for ξ = 0.5 σ2
δ = 0.1, while for ξ = 10 σ2

δ = 10−3

and the TAD can be almost considered deterministic. This figure shows that, ignoring the randomness of δ, we can

make a largely wrong prediction on the system performance, even of some order of magnitude in term of Pe.

To complete our analysis in figure 7 we set σ2
δ = 0.1 and we show the SNR necessary for guaranteeing Pe = 10−3

as a function of δ0. Looking at this figure we can conclude that, even for a small variance, while for resolving two

sources whose average distance is δ0 = 1 only 20 dB are necessary, for an average angular distance of δ0 = 0.1,

more than 40 dB are required, for both Gaussian and K-distributed clutter. For a certain fixed σ2
δ , δ0 in this figure can

be interpreted in the same way as the statistical angular resolution limit ARL of the case of deterministic unknown

TAD. It provides the average TAD that guarantees the fixed detection performance. As expected, it depends on the

Pe and the SNR.

V. CONCLUSIONS

Usually, the limit in terms of angular resolution for array processing is studied based on the hypothesis that the

angular separation is unknown and deterministic. In the context of a convenient associated binary hypothesis test,

the distribution of the GLRT for an asymptotic number of measurements/sensors can be characterized in closed-

form. This allows to derived the TAD with respect to the SNR, the array manifold and a non-centrality parameter

parameterized by the probabilities of false alarm and detection. In realistic context, the knowledge on the array

manifold or on the sources is often uncertain. Based on this observation, we adopt a generic and flexible error

model on the TAD by considering it as a Gaussian random variable, i.e., δ ∼ N (δ0, σδ). The degree of randomness

(or uncertainty) is deduced and quantified by the ratio ξ = δ2
0/σ

2
δ . The usual asymptotic characterization of the

GLRT is no longer adapted to take into account efficiently a general error cause. To cope with this limitation, we

adopt an alternative strategy based on the Chernoff Upper Bound (CUB) on the error probability. In this work, the

CUB is extended to take into account nuisance parameters since we assume that the background noise follows a

compound Gaussian model. This model is very popular in many signal-based applications as for instance radar robust

processing or robust imaging for astronomical data. Our derivations allow to propose analytic closed-forms of the

CUB and the BUB (Batthacharya Upper Bound). In particular, we show that the SNR to resolve two closely-spaced

sources for a given error probability is highly dependent on the average TAD.
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VI. APPENDIX: CUB WITH RANDOM NUISANCE PARAMETERS

A. The Bayes’ detection theory

Let Pr(Hi) be the a priori hypothesis probability with Pr(H0) + Pr(H1) = 1. Let Pr(y|Hi) and Pr(Hi|y) be

the i-th conditional hypothesis and the posterior probabilities, respectively. The Bayes’ detection rule chooses the

hypothesis Hi associated with the largest posterior probability Pr(Hi|y). Introduce the indicator hypothesis function

according to φ(y) ∼ Bernou(α) where Bernou(α) stands for the Bernoulli distribution of success probability

α = Pr(φ(y) = 1) = Pr(H1). Function φ(y) is defined on X → {0, 1} where X is the data-set of cardinality |X |

enjoying the following decomposition X = X0 ∪ X1 where X0 = {y : φ(y) = 0} = X \ X1 and

X1 = {y : φ(y) = 1} =

{
y : Ω(y) = log

Pr(H1|y)

Pr(H0|y)
> 0

}
(46)

where Ω(y) is the log posterior-odds ratio. Let ε be a random nuisance parameter unconditioned with respect to

the hypothesis in set Ω, i.e., pi(ε) = p(ε|Hi) = p(ε). The average probability of error is

Pe = Ey {Pr(Error|y)} = EyEε|y{Pr(Error|y, ε)} (47)

with

Pr(Error|y, ε) =

 Pr(H0|y, ε) if y ∈ X1,

Pr(H1|y, ε) if y ∈ X0.
(48)

The standard strategy to minimize Pr(Error|y, ε) for a given y is min {Pr(H0|y, ε),Pr(H1|y, ε)} [27]. So

using (47), the minimal average error probability can be expressed according to

Pe = Ey,ε

{
min {Pr(H0|y, ε),Pr(H1|y, ε)}

}
(49)

Using the Bayes’ relation and the statistical independence of ε, we have

Pr(Hi|y, ε) = gi(y; ε)f(y, ε) (50)

where gi(y; ε) = pi(y|ε)Pr(Hi) is conditioned to the hypothesis and f(y, ε) = p(ε)
p(y,ε) is unconditioned. This

implies that f(y, ε) plays no role in the minimization of eq. (49). Thus,

Pe =

∫
Ω

∫
X

min
{
g0(y; ε), g1(y; ε)

}
f(y, ε)p(y, ε)dydε (51)

= Eε

∫
X

min
{

(1− α)p0(y|ε), αp1(y|ε)
}

dy (52)

B. Chernoff Upper Bound (CUB)

Using the property [17] that min {a, b} ≤ asb1−s with a, b > 0 and s ∈ (0, 1) in (52) the minimal error

probability is upper bounded according to

Pe ≤
1− α
βs

Eε

{
exp[−Cy|ε(s)

}
] (53)

where β = 1−α
α and

Cy|ε(s) = − log

∫
X
p0(y|ε)1−sp1(y|ε)sdy (54)
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is the (Chernoff) s-divergence. Term Cy|ε(s) characterizes the exponential rate of the error exponent of Pe. The

Chernoff information, denoted by Cy|ε(s), is a characterization on the best achievable Bayes’ error probability

[17]. It is worth observing that the integral in (54) can be reformulated as

∫
X
p0(y|ε)1−sp1(y|ε)sdy =

∫
X

p1(y|ε)s

p0(y|ε)s
p0(y|ε)dy =

∫
X

exp [sΓ(y|ε)] p0(y|ε)dy

= Ey|ε,H0
{exp (sΓ(y|ε))} = MΓ(y|ε,H0) (s) (55)

where Γ(y|ε) = log
(
p1(y|ε)
p0(y|ε)

)
, and MX (s) is the Moment Generating Function (MGF) of the random variable

X .
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Fig. 1. smin vs SNR for K and Gaussian noise, ξ = 0.25,β = 1
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Fig. 2. smin vs SNR for K and Gaussian noise, ξ = 10, β = 1
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Fig. 3. smin vs SNR for K noise, ν = 0.5, β = 1
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Fig. 5. smin vs SNR for Gaussian noise, β = 1
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Fig. 6. CUB vs ξ for K and Gaussian noise, SNR = 30dB, β = 1
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