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FLOCKING: PHASE TRANSITION AND ASYMPTOTIC BEHAVIOUR

XINGYU LI∗

Abstract. This paper is devoted to a continuous Cucker-Smale model with noise, which has
isotropic and polarized stationary solutions depending on the intensity of the noise. The first result
establishes the threshold value of the noise parameter which drives the phase transition. This threshold
value is used to classify all stationary solutions and their linear stability properties. Using an entropy,
these stability properties are extended to the non-linear regime. The second result is concerned with
the asymptotic behaviour of the solutions of the evolution problem. In several cases, we prove that
stable solutions attract the other solutions with an optimal exponential rate of convergence determined
by the spectral gap of the linearized problem around the stable solutions. The spectral gap has to be
computed in a norm adapted to the non-local term.

Keywords. Flocking model; phase transition; symmetry breaking; stability; large time asymp-
totics; free energy; spectral gap; asymptotic rate of convergence
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1. Introduction

In many fields such as biology, ecology or economic studies, emerging collective be-
haviours and self-organization in multiagent interactions have attracted the attention
of many researchers. In this paper we consider the Cucker-Smale model in order to
describe flocking. The original model of [8] describes a population of N birds moving
in R3 by the equations

vi(tn+∆t)−vi(tn) =
λ∆t

N

N∑
i=1

aij
(
vj(tn)−vi(tn)

)
, i= 1, 2.. . N

at discrete times tn=n∆t with n∈N and ∆t>0. Here vi is the velocity of the ith
bird, the model is homogeneous in the sense that there is no position variable, and
the coefficients aij model the interaction between pairs of birds as a function of their
relative velocities, while λ is an overall coupling parameter. The authors proved that
under certain conditions on the parameters, the solution converges to a state in which
all birds fly with the same velocity. Another model is the Vicsek model [13] which was
derived earlier to study the evolution of a population in which individuals have a given
speed but the direction of their velocity evolves according to a diffusion equation with a
local alignment term. This model exhibits phase transitions. In [9–12], phase transition
has been shown in a continuous version of the model: with high noise, the system is
disordered and the average velocity is zero, while for low noise a direction is selected.

Here we consider a model on Rd, d≥1 with noise as in [3,7]. The population is described
by a distribution function f(v,t) in which the interaction occurs through a mean-field
nonlinearity known as local velocity consensus and we also equip the individuals with
a so-called self-propulsion mechanism which privileges a speed (without a privileged
direction) but does not impose a single value to the speed as in the Vicsek model. The
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2 Phase transition and asymptotic behaviour

distribution function solves

∂f

∂t
=D∆f+∇·

(
(v−uf )f+αv

(
|v|2−1

)
f
)
, f(.,0) =fin>0 (1.1)

where t≥0 denotes the time variable and v∈Rd is the velocity variable. Here ∇ and
∆ are the gradient and the Laplacian with respect to v respectively. The parameter
D>0 measures the intensity of the noise, α>0 is the parameter of self-propulsion which
tends to force the distribution to be centered on velocities |v| of the order of 1 when α
becomes large, and

uf (t) =

∫
Rd vf(t,v)dv∫
Rd f(t,v)dv

is the mean velocity. We refer to [2] for more details. Notice that (1.1) is one-
homogeneous: from now on, we will assume that the mass satisfies

∫
Rd f(t,v)dv= 1

for any t≥0, without loss of generality. In (1.1), the velocity consensus term v−uf can
be interpreted as a friction force which tends to align v and uf . Altogether, individu-
als are driven to a velocity corresponding to a speed of order 1 and a direction given
by uf , but this mechanism is balanced by the noise which pushes the system towards
an isotropic distribution with zero average velocity. The Vicsek model can be obtained
as a limit case in which we let α→+∞: see [4]. The competition between the two
mechanisms, relaxation towards a non-zero average velocity and noise, is responsible for
a phase transition between an ordered state for small values of D, with a distribution
function f centered around u with u 6=0, and a disordered, symmetric state with u=0.
This phase transition can also be interpreted as a symmetry breaking mechanism from
the isotropic distribution to an ordered, asymmetric or polarized distribution, with the
remarkable feature that nothing but the initial datum determines the direction of uf for
large values of t and any stationary solution generates a continuum of stationary solu-
tions by rotation. We refer to [12] for more detailed comments and additional references
on related models.

So far, a phase transition has been established in [12] when d= 1 and it has been proved
in [1] by A. Barbaro, J. Canizo, J. Carrillo and P. Degond that stationary solutions are
isotropic for large values ofD while symmetry breaking occurs asD→0. The bifurcation
diagram showing the phase transition has also been studied numerically in [1] and the
phase diagram can be found in [12, Theorem 2.1]. The first purpose of this paper is to
classify all stable and unstable stationary solutions and establish a complete description
of the phase transition.

Theorem 1.1. Let d≥1 and α>0. There exists a critical intensity of the noise D∗>0
such that

(i) if D>D∗ there exists one and only one non-negative stationary distribution
which is isotropic and stable,

(ii) if D<D∗ there exist one and only one non-negative isotropic stationary distri-
bution which is instable, and a continuum of stable non-negative non-symmetric
stationary distributions, but this non-symmetric stationary solution is unique
up to a rotation.

Under the assumption of mass normalization to 1, it is straightforward to observe that
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any stationary solution can be written as

fu(v) =
e−

1
D ( 1

2 |v−u|
2+

α
4 |v|

4−α2 |v|
2)∫

Rd e
− 1
D ( 1

2 |v−u|2+
α
4 |v|

4−α2 |v|
2)dv

where u= (u1,..ud)∈Rd solves
∫
Rd (u−v)fu(v)dv= 0. Up to a rotation, we can as-

sume that u= (u,0,...0) =ue1 and the question of finding stationary solutions to (1.1)
is reduced to solve u∈R such that

H(u) = 0 (1.2)

where

H(u) :=

∫
Rd

(v1−u)e−
1
D (φα(v)−uv1)dv and φα(v) := α

4 |v|
4 + 1−α

2 |v|
2 .

Obviously u= 0 is always a solution. Moreover, if u is a solution of (1.2), then −u is also
a solution. As a consequence, from now on, we always suppose that u≥0. Theorem 1.1
is proved in Section 2 by analyzing (1.2).

The second purpose of this paper is to study the stability of the stationary states and
the rates of convergence of the solutions of the evolution problem. A key tool is the free
energy

F [f ] :=D

∫
Rd
f logf dv+

∫
Rd
f φαdv−

1

2
|uf |2 (1.3)

and we shall also consider the relative entropy with respect to fu defined as

F [f ]−F [fu] =D

∫
Rd
f log

(
f

fu

)
dv− 1

2
|uf −u|2

where fu is a stationary solution to be determined. Notice that fu is a critical point of F
under the mass constraint. Since there is only one stationary solution fu corresponding
to u=0 if D>D∗ and since F is strictly convex, in that case we know that f0 is
the unique minimizer of F , it is non-linearly stable and in particular we have that
F [f ]−F [fu]≥0. See Section 4 for more details.

To a distribution function f , we associate the non-equilibrium Gibbs state

Gf (v) :=
e−

1
D ( 1

2 |v−uf |
2+

α
4 |v|

4−α2 |v|
2)∫

Rd e
− 1
D ( 1

2 |v−uf |2+
α
4 |v|

4−α2 |v|
2)dv

. (1.4)

Unless f is a stationary solution of (1.1), let us notice that Gf does not solve (1.1). A
crucial observation is that

F [f ] =D

∫
Rd
f logf dv+

1

2

∫
Rd
|v−uf |2f dv+

∫
Rd

(α
4
|v|4 +

α

2
|v|2
)
f dv

is a Lyapunov function in the sense that

d

dt
F [f(t,·)] =−I[f(t, ·)]
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if f solves (1.1), where I[f ] is the relative Fisher information of f defined as

I[f ] :=

∫
Rd

∣∣∣∣D∇ff +αv |v|2 +(1−α)v−uf

∣∣∣∣2f dv=D2

∫
Rd

∣∣∣∣∇log

(
f

Gf

)∣∣∣∣2f dv . (1.5)

It is indeed clear that F [f(t,·)] is monotone non-increasing and d
dtF [f(t, ·)] = 0 if and

only if f =Gf is a stationary solution of (1.1). This is consistant with our first stability
result.

Proposition 1.1. For any d≥1 and any α>0, f0 is a linearly stable critical point if
and only if D>D∗.

Actually, from the dynamical point of view, we have a better, global result.

Theorem 1.2. For any d≥1 and any α>0, if D>D∗, then for any solution f of (1.1)
with nonnegative initial datum fin of mass 1 such that F [fin]<∞, there are two positive
constants C and λ such that, for any time t>0,

0≤F [f(t,·)]−F [f0]≤Ce−λt . (1.6)

We shall also prove that ∫
Rd
|f(t,·)−f0|2f−10 dv≤Ce−λt

with same λ>0 as in Theorem 1.2, but eventually for a different value of C, and
characterize λ as the spectral gap of the linearized evolution operator in an appropriate
norm. A characterization of the optimal rate λ is given in Theorem 5.1.

For D<D∗, the situation is more subtle. The solution of (1.1) can in principle converge
either to the isotropic stationary solution f0 or to a polarized, non-symmetric stationary
solution fu with u 6=0. We will prove that F [f ]−F [fu] decays with an exponential rate
which is also characterized by a spectral gap in Section 6.

This article is organized as follows. In Section 2, we classify all stationary solutions,
prove Theorem 1.1 and deduce that a phase transition occurs at D=D∗. Section 3 is
devoted to the linearization. The relative entropy and the relative Fisher information
provide us with two quadratic forms which are related by the linearized evolution op-
erator. The main result here is to prove a spectral gap property for this operator in
the appropriate norm, which is inspired by a similar method used in [5] to study the
sub-critical Keller-Segel model: see Proposition 3.1. It is crucial to take into account all
terms in the linearization, including the term arising from the non-local mean velocity.
The proof of Theorem 1.2 follows using a Grönwall type estimate, in Section 5 (isotropic
case). In Section 6, we also give some results in the polarized case.

2. Stationary solutions and phase transition

The aim of this section is to classify all stationary solutions of (1.1) as a first step of the
proof of the phase transition result of Theorem 1.1. Our proofs are based on elementary
although somewhat painful computations.

2.1. A technical observation

Let us start by the simple observation that

−D ∂

∂v1

(
e−

1
D (φα(v)−uv1)

)
=
(
v1−u+α

(
|v|2−1

)
v1
)
e−

1
D (φα(v)−uv1)
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can be integrated on Rd to rewrite H as

H(u) =α

∫
Rd

(
1−|v|2

)
v1e
− 1
D (φα(v)−uv1)dv

and compute

H′(u) =
α

D

∫
Rd

(
1−|v|2

)
v21 e
− 1
D (φα(v)−uv1)dv .

We observe that H′(0) = α
D |S

d−1|hd(D) where

hd(D) :=

∫ ∞
0

(sd+1−sd+3)e−
ϕα(s)
D ds and φα(s) := α

4 s
4 + 1−α

2 s2 .

With these notations, we are now in a position to state a key ingredient of the proof.

Proposition 2.1. For any d≥1 and any α>0, hd(D) has a unique positive root D∗.
Moreover hd is positive on (0,D∗) and negative on (D∗,+∞).

Proof. Our goal is to prove that hd= jd+1−jd+3 is positive on (0,D∗) and negative on
(D∗,+∞) for some D∗>0, where

jd(D) :=

∫ ∞
0

sde−
1
D ϕα(s)ds. (2.1)

Let us start with two useful identities. A completion of the square shows that

jn+5−2jn+3 +jn+1 =

∫ ∞
0

sn+1
(
s2−1

)2
e−

φα
D ds>0 . (2.2)

With an integration by parts, we obtain that

αjn+5 +(1−α)jn+3 =

∫ ∞
0

sn+2ϕ′αe
− 1
D ϕα ds= (n+2)Djn+1 . (2.3)

Next, we split the proof in a series of claims.

• The function hd is positive on (0,1/(d+2)] and negative on [1/d,+∞). Let us prove
this claim. With n=d and n=d−2, we deduce from (2.2) and (2.3) that

hd>
1−(d+2)D

1+α
jd+1 and hd<

1−dD
1+α

jd−1 .

As a consequence, if hd(D) = 0, then D∈ (1/(d+2),1/d).

• If α≤1, then hd(D) = 0 has a unique solution. By a direct computation, we observe
that

4D2h′d=αhd+4 +2(1−α)hd+2

using (2.3) with n=d+2. If α∈ (0,1), it follows that h′d<0 on [1/(d+2),+∞), which
proves the claim.

• If α>1 and h′d(D◦) = 0 for some D◦∈ (1/(d+2),1/d), then hd(D◦)>0. Indeed, using

4D2h′d=−αjd+7 +(3α−2)jd+5 + 2(1−α)jd+3 = 0,

combined with (2.3) for n=d+2 and n=d, we find that, at D=D◦,

hd(D◦) =
(d+2)D−1+α(1−dD)

α−1+(d+4)Dα
jd+1 .

Collecting our observations concludes the proof. See Fig. A.1 for an illustration.
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2.2. The one-dimensional case

Lemma 2.1. Let us consider a continuous positive function ψ on R+ such that the
function s 7→ψ(s)es

2

is integrable and define

H(u) :=

∫ +∞

0

(
1−s2

)
ψ(s) sinh(su)ds ∀u≥0.

For any u>0, H ′′(u)<0 if H(u)≤0. As a consequence, H changes sign at most once
on (0,+∞).

Proof. We first observe that

H ′′(u)−H(u) =

∫ +∞

0

(
1−s2

)(
s2−1

)
ψ(s) sinh(su)ds<0 ∀u>0. (2.4)

Let u∗>0 be such that H(u∗) = 0. If H ′(u∗)<0, there is a neighborhood of (u∗)+ such
that bothH andH ′ are negative. As a consequence, by continuation, H ′(u)<H ′(u∗)<0
for any u>u∗. We also get that H ′(u)<0 for any u>u∗ if H ′(u∗) = 0 because we know
that H ′′(u∗)<0. We conclude by observing that H ′(u∗)>0 would imply H ′(u)>H ′(u∗)
for any u∈ (0,u∗), a contradiction with H(0) = 0.

Proposition 2.2. Assume that d= 1 and α>0. With the notations of Proposition 2.1,
Equation (1.2), i.e., H(u) = 0, has as a solution u=u(D)>0 if and only if D<D∗ and
limD→(D∗)− u(D) = 0.

In other words, there exists a solution to (1.2) if and only if H′(0)>0.

Proof. Since H(0) = 0, for any D 6=D∗, hd(D) and H(u) have the same sign in a neigh-
borhood of u= 0+. Next we notice that

− 1

α
H(u) =

∫ ∞
0

(
v2−1

)
ve−

φα(v)
D e

uv
D dv−

∫ ∞
0

(
v2−1

)
ve−

φα(v)
D e−

uv
D dv .

The second term of the right-hand side converges to 0 as u→∞ by the dominated
convergence theorem. Concerning the first term, let us notice that |(v2−1)v|e−φα(v)/D
is bounded on (0,3), so that∫ ∞

0

(
v2−1

)
ve−

φα(v)
D e

uv
D dv

≥
∫ 1

0

(
v2−1

)
ve−

φα(v)
D e

uv
D dv+

∫ 3

2

(
v2−1

)
ve−

φα(v)
D e

uv
D dv

≥−C1e
u/D+C2e

2u/D→+∞ as u→+∞

for some positive constants C1 and C2. This proves that limu→+∞H(u) =−∞ and
shows the existence of at least one positive solution of (1.2) if hd(D)>0.

The fact that (1.2) has at most one solution on (0,+∞) follows from Lemma 2.1 applied

with H(u) =H(Du) and ψ(v) = 2αve−
φα(v)
D . Finally, as consequence of the regularity

of H and of (2.4), the solution u=u(D) of (1.2) is such that limD→(D∗)− u(D) = 0.

2.3. The case of a dimension d≥2

We extend the result of Proposition 2.2 to higher dimensions.
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Proposition 2.3. Assume that d≥2 and α>0. With the notations of Proposition 2.1,
Equation (1.2), i.e., H(u) = 0, has as a solution u=u(D)>0 if and only if D<D∗ and
limD→(D∗)− u(D) = 0.

Qualitatively, the result is the same as in dimension d= 1: there exists a solution to (1.2)
if and only if H′(0)>0. See Fig. A.2.

In radial coordinates such that s= |v| and v1 =s cosθ, with θ∈ [0,π],

H(u) =α
∣∣Sd−2∣∣∫ π

0

∫ +∞

0

(
1−s2

)
sde−

ϕα(s)
D cosθ(sinθ)d−2e

us
D cosθdsdθ

written with the convention that |S0|= 2 can also be rewritten as

H(u) = 2α
∣∣Sd−2∣∣∫ π/2

0

∫ +∞

0

(
1−s2

)
sde−

ϕα(s)
D cosθ(sinθ)d−2 sinh

(
us
D cosθ

)
dsdθ.

Lemma 2.1 does not apply directly. Let us consider

h(s) :=

∫ π/2

0

cosθ(sinθ)d−2 sinh(s cosθ)dθ. (2.5)

Lemma 2.2. Assume that d≥2. The function h defined by (2.5) is such that s 7→
sh′(s)/h(s) is monotone increasing on (0,+∞).

Proof. Let s1 and s2 be such that 0<s1<s2 and consider a series expansion. With

Pn :=

∫ π

0

(cosθ)2n (sinθ)d−2dθ,

we know that

s2h
′(s2)h(s1) =

∞∑
m=0

s2m+1
2

(2m)!
Pm+1

∞∑
n=0

s2n+1
1

(2n+1)!
Pn+1 ,

s1h
′(s1)h(s2) =

∞∑
m=0

s2m+1
1

(2m)!
Pm+1

∞∑
n=0

s2n+1
2

(2n+1)!
Pn+1 .

These series are absolutely converging and we can reindex the difference of the two
terms using i= min{m,n} to get

s2h
′(s2)h(s1)−s1h′(s1)h(s2)

=

∞∑
i=0

∞∑
j=1

(s1s2)2i+1

(2i+2j+1)!(2i+1)!
Pi+1Pj+1

2i+2j+1

2(i+j+1)

(
sj2−s

j
1

)
>0 .

Proof of Proposition 2.3. We prove that limu→+∞H(u) =−∞ as in the case d= 1 by
considering the domains defined in the coordinates (s,θ) by 0≤s≤1 and θ∈ [0,π/2]
on the one hand, and 2≤s≤3 and 0≤θ≤θ∗ for some θ∗∈ (0,π/6) on the other hand.
The existence of at least one solution u>0 of H(u) = 0 follows from Proposition 2.2 if
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D<D∗, and if D>D∗, we also know that H(u) = 0 has either no positive solution, or
at least two.

If there exist u1 and u2 such that H(u1) =H(u2) = 0 and u1<u2, then∫ 1

0

(
1−s2

)
sde−

ϕα(s)
D h(ũ1s)ds=

∫ ∞
1

(
1−s2

)
sde−

ϕα(s)
D h(ũ1s)ds

where ũ1 :=u1/D<u2/D=: ũ2. We deduce from Lemma 2.2 that the function s 7→
k(s) :=h(ũ2s)/h(ũ1s) is a monotone increasing function on (0,+∞). Using H(u1) = 0,
we obtain∫ 1

0

(
1−s2

)
sde−

ϕα(s)
D h(ũ2s)ds=

∫ 1

0

(
1−s2

)
sde−

ϕα(s)
D h(ũ1s)k(s)ds

<

∫ 1

0

(
1−s2

)
sde−

ϕα(s)
D h(ũ1s)k(1)ds

=

∫ ∞
1

(
1−s2

)
sde−

ϕα(s)
D h(ũ1s)k(1)ds

<

∫ ∞
1

(
1−s2

)
sde−

ϕα(s)
D h(ũ1s)k(s)ds

=

∫ ∞
1

(
1−s2

)
sde−

ϕα(s)
D h(ũ2s)ds,

a contradiction with H(u2) = 0. �

2.4. Classification of the stationary solutions and phase transition

We learn form the expression of I in (1.5) that any stationary solution of (1.1) is
of the form fu with u=ue1 for some u which solves (1.2). Since H(0) = 0, u= 0 is
always a solution. According to Propositions 2.2 and 2.3, Equation (1.2) has a solution
u=u(D) if and only if D>D∗ where D∗ is obtained as the unique positive root of hd
by Proposition 2.1.

Corollary 2.1. Let d≥1 and α>0. With the above notations and D∗ defined as in
Proposition 2.1, we know that

(i) if D>D∗ there exists one and only one non-negative stationary distribution fu
given by u=0, which is isotropic,

(ii) if D<D∗ there exists one and only one non-negative isotropic stationary dis-
tribution with u=0, and a continuum of stable non-negative non-symmetric
stationary distributions fu with u=u(D)e for any e∈Sd−1, with the conven-
tion that S0 ={−1,1}.

There are no other stationary solutions. In other words, we have obtained the complete
classification of the stationary solutions of (1.1), which shows that there are two phases
of stationary solutions: the isotropic ones with u=0, and the non-isotropic ones with
u 6=0 which are unique up to a rotation and exist only if D<D∗. To complete the proof
of Theorem 1.1, we have to study the linear stability of these stationary solutions.

2.5. An important estimate

The next result is a technical estimate which is going to play a key role in our analysis.

Lemma 2.1. Assume that d≥1, α>0 and D>0.
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(i) In the case u=0, we have that
∫
Rd |v|

2f0dv>dD if and only if D<D∗.
(ii) In the case D∈ (0,D∗) and u 6=0, we have that∫

Rd

∣∣(v−u) ·u
∣∣2fudv<D |u|2 .

(iii) In the case d≥2 and D∈ (0,D∗) and u 6=0, we have that∫
Rd

∣∣(v−u) ·w
∣∣2fudv=D |w|2 ∀w∈Rd such that u ·w = 0.

Proof. Using Definition (2.1), we observe that
∫
Rd |v|

2f0dv−dD has the sign of

jd+1−dDjd−1 =α
(
jd+1−jd+3

)
=αhd(D)

by (2.3) with n=d−2. This proves (i) according to Proposition 2.1 and Corollary 2.1.

By integrating Du ·∇
(
(u ·v)fu

)
, we obtain that

0 =

∫
Rd

(
D |u|2−(u ·v)2

(
α |v|2 +1−α

)
+u(u ·v)

)
fudv

=D |u|2−
∫
Rd

∣∣(v−u) ·u
∣∣2fudv+D |u|2H′(|u|)

Then (ii) follows from Propositions 2.2 and 2.3 because H′(u)<0 if u=u(D) = |u|.

With no loss of generality, we can assume that u= (u,0,. ..0) 6=0. By integrating ∂
∂v1

fu
on Rd, we know that

∫
Rd
(
|v|2−1

)
v1fudv= 0. Let us consider radial coordinates such

that s= |v| and v1 =s cosθ, with θ∈ [0,π]. From the integration by parts

(d−1)D

∫ π

0

cosθ(sinθ)d−2e
us
D cosθdθ=us

∫ π

0

(sinθ)de
us
D cosθdθ,

we deduce that
∫
Rd
(
|v|2−1

)(
1−v21

)
fudv= 0 because s2 (sinθ)2 = 1−v21 and∫

Rd

(
|v|2−1

)
v2i fudv= 0 ∀i≥2

by symmetry among the variables v2, v3,. . . vd. We conclude by integrating ∂
∂vi

fu on Rd
that ∫

Rd
|vi|2fudv=D ∀i≥2 ,

which concludes the proof of (iii).

Corollary 2.2. Assume that d≥1, α>0 and e∈Sd−1. There exists a function D 7→
κ(D) on (0,D∗) which is continuous with values in (0,1) such that, with u=u(D)e,

1

D

∫
Rd

∣∣(v−u) ·w
∣∣2fudv=κ(D)(w ·e)2 + |w|2−(w ·e)2 ∀w∈Rd .

With κ(D) := 1
u(D)2

∫
Rd
∣∣(v−u) ·u

∣∣2fudv and u=u(D)e for an arbitrary e∈Sd−1, the

proof is a straightforward consequence of Lemma 2.1.
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3. The linearized problem: local properties of the stationary solutions

This section is devoted to the quadratic forms associated with the expansion of the free
energy F and the Fisher information I around the stationary solution fu studied in
Section 2. These quadratic forms are defined for a smooth perturbation g of fu such
that

∫
Rd gfudv= 0 by

Q1,u[g] := lim
ε→0

2

ε2
F
[
fu(1+εg)

]
=D

∫
Rd
g2fudv−D2 |vg|2 wherevg :=

1

D

∫
Rd
vgfudv ,

Q2,u[g] := lim
ε→0

1

ε2
I
[
fu (1+εg)

]
=D2

∫
Rd
|∇g−vg|2 fudv .

3.1. Stability of the isotropic stationary solution

The first result is concerned with the linear stability of F around f0.

Lemma 3.1. On the space of the functions g∈L2(f0dv) such that
∫
Rd gf0dv= 0, Q1,0

is a nonnegative (resp. positive) quadratic form if and only if D≥D∗ (resp. D>D∗).
Moreover, for any D>D∗, let η(D) :=αC |hd(D) for some explicit C=C(D)>0. Then

Q1,0[g]≥η(D)

∫
Rd
g2f0dv ∀g∈L2(f0dv) such that

∫
Rd
gf0dv= 0. (3.1)

Proof. Let e∈Sd−1. We consider g(v) =v ·e and, using (2.3) with n=d−2, compute

Q1,0[g] =D

∫
Rd
v21 f0dv−

(∫
Rd
v21 f0dv

)2

= C
∫ ∞
0

(
dDsd−1− sd+1

)
e−

ϕα(s)
D ds

where the last equality determines the value of C. If D<D∗, this proves that Q1,0[g] =
−αChd(D)<0 and, as a consequence, the linear instability of f0.

On the other hand, let g be a function in L2(Rd,f0dv) such that
∫
Rd g

2f0dv=
∫
Rd v

2
1 f0dv.

We can indeed normalize g with no loss of generality. With v1 =v ·e, e∈Sd−1 such that
ugf0 =ue for some u∈R, we know by the Cauchy-Schwarz inequality that(∫

Rd
v1gf0dv

)2

≤
∫
Rd
g2f0dv

∫
Rd
v21 f0dv=

(∫
Rd
v21 f0dv

)2

=

(
1

d

∫
Rd
|v|2f0dv

)2

,

hence

Q1,0[g]≥D
∫
Rd
v21 f0dv−

(∫
Rd
v21 f0dv

)2

=−αChd(D).

This proves the linear stability of f0 if D>D∗.

The classification result of Theorem 1.1 is a consequence of Corollary 2.1 and Lemma 3.1.

3.2. A coercivity result

Let us start by recalling the Poincaré inequality∫
Rd
|∇h|2fudv≥ΛD

∫
Rd
|h|2fudv ∀h∈H1

(
Rd,fudv

)
such that

∫
Rd
hfudv= 0.

(3.2)
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Here u is an admissible velocity such that u=0 if D≥D∗, or |u|=u(D) if D<D∗, and
ΛD denotes the corresponding optimal constant. Since ϕα can be seen as a uniformly
strictly convex potential perturbed by a bounded perturbation, it follows from the carré
du champ method and the Holley-Stroock lemma that ΛD is a positive constant. Let

u[f ] = 0 if D≥D∗ or uf =0 and D<D∗ ,

u[f ] =
u(D)

|uf |
uf if D<D∗ and uf 6=0 .

Based on (3.2), we have the following coercivity result.

Proposition 3.1. Let d≥1, α>0, D>0 and CD =DΛD with ΛD as in (3.2). Let us
consider a nonnegative distribution function f ∈L1(Rd) with

∫
Rd f dv= 1, let u∈Rd be

such that either u=0 or |u|=u(D) if D<D∗ and consider g= (f−fu)/fu. We assume
that g∈H1

(
Rd,fudv

)
. If u=0, then

Q2,u[g]≥CDQ1,u[g].

Otherwise, if u 6=0 for some D∈ (0,D∗) with D∗ as in Corollary 2.1, then we have

Q2,u[g]≥CD
(
1−κ(D)

) (vg ·u)2

|vg|2 |u|2
Q1,u[g]

with vg := 1
D

∫
Rd (v−u)gfudv and κ(D)<1 defined as in Corollary 2.2.

As a special case, if u=u[f ], then Q2,u[g]≥CD
(
1−κ(D)

)
Q1,u[g].

By construction, vg is such that Dvg =
∫
Rd (v−u)gfudv=

∫
Rd vgfudv=uf −u because∫

Rd gfudv= 0.

Proof. Let us apply (3.2) to h(v) =g(v)−(v−u) ·vg. Using vg = 1
D

∫
Rd (v−u)gfudv

and
∫
Rd gfudv= 0, we obtain

1

D2
Q2,u[g] =

∫
Rd
|∇g−vg|2fudv

≥ΛD

∫
Rd

(
g2 + |vg ·(v−u)|2−2vg ·(v−u)g

)
fudv

= ΛD

[∫
Rd
|g|2fudv+

∫
Rd
|vg ·(v−u)|2fudv−2D |vg|2

]
.

If u=0, either vg =0 and the result is proved, or we know that 1
d

∫
Rd |v|

2f0dv≥D by
Lemma 2.1 because D≥D∗ by assumption. In that case we can estimate the r.h.s. by∫

Rd
|g|2f0dv+ |vg|2

(
1

d

∫
Rd
|v|2f0dv−2D

)
≥
∫
Rd
|g|2f0dv−D |vg|2 =

1

D
Q1,0[g],

which again proves the result whenever u=0.

If u 6=0, let us apply Corollary 2.2 with w =vg and κ=κ(D):∫
Rd
|vg ·(v−u)|2fudv=KD |vg|2 with K= 1−(1−κ)

(vg ·u)2

|vg|2 |u|2
.
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We deduce from the Cauchy-Schwarz inequality

D2 |vg|4 =

(∫
Rd

vg ·(v−u)fudv

)2

≤
∫
Rd
|g|2f0dv

∫
Rd
|vg ·(v−u)|2fudv

that D |vg|2≤K
∫
Rd |g|

2f0dv. Hence, if β∈ (0,1), we obtain

1

D2
Q2,u[g]− β

D2
Q2,u[g]≥

(
1−β−(2−K−β)K

)∫
Rd
|g|2f0dv .

With β= 1−K, we obtain 1−β−(2−K−β)K= 0, which proves the result.

4. Properties of the free energy and consequences

We consider the free energy F and the Fisher information I defined respectively by (1.3)
and (1.5).

4.1. Basic properties of the free energy

Proposition 4.1. Assume that fin is a nonnegative function in L1(Rd) such that
F [fin]<∞. Then there exists a solution f ∈C0

(
R+,L1(Rd)

)
of (1.1) with initial datum

fin such that F [f(t,.)] is nonincreasing and a.e. differentiable on [0,∞). Furthermore

d

dt
F [f(t,.)]≤−I[f(t,.)], t>0 a.e.

This result is classical and we shall skip its proof: see for instance [6, Proposition 2.1]
for further details. One of the difficulties in the study of F is that in (1.3), the term |u|2
has a negative coefficient, so that the functional F is not convex. A smooth solution
realizes the equality, and by approximations, we obtain the result.

Proposition 4.2. F is bounded from below on the set{
f ∈L1

+(Rd) :

∫
Rd
f dv= 1 and

∫
Rd
|v|4f dv<∞

}
and ∫

Rd
|v|4f dv≤ 1

α2

(
D+α+

√
(D+α)2 +4α

(
F [f ]+ d

2 log(2π)D
) )2

.

Proof. Let g=f/µ where µ(v) := (2π)−d/2e−
1
2 |v|

2

and dµ=µdv. Since g logg≥g−1
and

∫
Rd(g−1)dµ= 0, we have the classical estimate∫

Rd
f logf dv+

1

2

∫
Rd
|v|2f dv=

∫
Rd
g

(
logg− d

2
log(2π)

)
dµ≥− d

2
log(2π) .

By the Cauchy-Schwarz inequality, |u|2≤
∫
Rd |v|

2f dv and
∫
Rd |v|

2f dv≤
√∫

Rd |v|4f dv,

and we deduce that

F [f ]≥− d
2

log(2π)D+
α

4
X2−D+α

2
X with X :=

√∫
Rd
|v|4f dv .

A minimization of the r.h.s. with respect to X>0 shows that F [f ]≥− (D+α)2

4α −
d
2 log(2π)D while the inequality provides the bound on X.
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4.2. The minimizers of the free energy

Corollary 4.1. Let d≥1 and α>0. The free energy F as defined by (1.3) has a
unique nonnegative minimizer with unit mass, f0, if D≥D∗. Otherwise, if D<D∗, we
have

minF [f ] =F [fu]<F [f0]

for any u∈Rd such that |u|=u(D). The above minimum is taken on all nonnegative
functions in L1

(
Rd,(1+ |v|4)dv

)
such that

∫
Rd f dv= 1.

Proof. Any minimizing sequence convergence is relatively compact in L1
(
Rd, dv

)
by the

Dunford-Pettis theorem, f 7→uf is relatively compact and the existence of a minimizer
follows by lower semi-continuity.

4.3. Proof of Theorem 1.1

By Corollary 4.1, f0 is the unique minimizer if and only if D≥D∗. It is moreover
linearly stable by Lemma 3.1. Otherwise fu with |u|=u(D) is a minimizer of F and it
is unique up to a rotation. Combined with the results of Corollary 2.1, this completes
the proof of Theorem 1.1. �

4.4. Stability of the polarized stationary solution

Another interesting consequence of Corollary 4.1 is the linear stability of F around fu
when D<D∗.

Lemma 4.1. Let D∈ (0,D∗) and u∈Rd such that |u|=u(D). On the space of the
functions g∈L2(fudv) such that

∫
Rd gfudv= 0, Q1,u is a nonnegative quadratic form.

The proof is straightforward as, in the range D<D∗, f0 is not a minimizer of F and
the minimum of F is achieved by any fu with |u|=u(D). Details are left to the reader.

4.5. An exponential rate of convergence for radially symmetric solutions

Proposition 4.3. Let α>0, D>0 and consider a solution f ∈C0
(
R+,L1(Rd)

)
of (1.1)

with radially symmetric initial datum fin∈L1
+(Rd) such that F [fin]<∞. Then (1.6)

holds for some λ>0.

Proof. According to Proposition 4.1, we know that

d

dt

(
F [f(t,·)]−F [f0]

)
≤−I[f(t,·)]

where I defined by (1.5) and uf =0 because the radial symmetry is preserved by the
evolution. We have a logarithmic Sobolev inequality∫

Rd

∣∣∣∣∇ log

(
f

f0

)∣∣∣∣2f dv≥K0

∫
Rd
f log

(
f

f0

)
dv=F [f ]−F [f0] (4.1)

for some constant K0>0. This inequality holds for the same reason as for the Poincaré
inequality (3.2): since ϕα can be seen as a uniformly strictly convex potential perturbed
by a bounded perturbation, it follows from the carré du champ method and the Holley-
Stroock lemma that K0 is a positive constant. Hence

d

dt

(
F [f(t,·)]−F [f0]

)
≤−K0

D

∫
Rd
f log

(
f

f0

)
dv=−K0

D

(
F [f(t, ·)]−F [f0]

)
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and we conclude that

F [f(t,·)]−F [f0]≤
(
F [fin]−F [f0]

)
e−λt

with λ=K0/D. The fact that F [f(t, ·)]−F [f0]≥0 is a consequence of Corollary 4.1.

4.6. Continuity and convergence of the velocity average

Proposition 4.4. Let α>0, D>0 and consider a solution f ∈C0
(
R+,L1(Rd)

)
of (1.1)

with initial datum fin∈L1
+(Rd) such that F [fin]<∞. Then t 7→uf (t) is a Lipschitz

continuous function on R+ such that limt→+∞uf (t) =0 if D≥D∗ and limt→+∞uf (t) =
u with either u=0 or |u|=u(D) if D∈ (0,D∗).

Proof. Using (1.1), a straightforward computation shows that

duf
dt

=−α
∫
Rd
v
(
|v|2−1

)
f dv

where the right hand side is bounded by Hölder interpolations using Propositions 4.1
and 4.2. By Proposition 4.2 and Hölder’s inequality, we also know that uf is bounded.

We have a logarithmic Sobolev inequality analogous to (4.1) if we consider the relative
entropy with respect to the non-equilibrium Gibbs state Gf defined by (1.4) instead of
the relative entropy with respect to f0: for some constant K>0,∫

Rd

∣∣∣∣∇ log

(
f

Gf

)∣∣∣∣2f dv≥K∫
Rd
f log

(
f

Gf

)
dv=F [f ]−F [Gf ] .

By the Csiszár-Kullback inequality∫
Rd
f log

(
f

Gf

)
dv≥ 1

4
‖f−Gf‖2L1(Rd) , (4.2)

we end up with the fact that limt→+∞
∫ +∞
t

(∫
Rd |f−Gf |dv

)2
ds= 0. Using Hölder’s

inequality ∣∣∣∣∫
Rd
v
(
f−Gf

)
dv

∣∣∣∣≤(∫
Rd
|f−Gf |dv

)3/4(∫
Rd
|v|4 (f+Gf )dv

)1/4

the decay of F [f(t,·)] and Proposition 4.2, we learn that limt→+∞
∫
Rd v

(
f−Gf

)
dv= 0.

Let C(u) :=
∫
Rd e
− 1
D (φα(v)−uv1)dv. By definition of H, we have that∫

Rd
v
(
f−Gf

)
dv=uf −

∫
Rd
vGf dv=

∫
Rd

(uf −v)Gf dv=−H(u)

C(u)

uf
|uf |

with u= |uf | .

Since uf is bounded, C(u) is uniformly bounded by some positive constant and we
deduce that

lim
t→+∞

H
(
|uf |

)
= 0.

5. Large time asymptotic behaviour in the isotropic case

In this section, our main goal is to prove Theorem 1.2. In this section, we shall assume
that D>D∗.



Xingyu Li 15

5.1. A non-local scalar product for the linearized evolution operator

We adapt the strategy of [5] to (1.1). With vg = 1
D

∫
Rd vgf0dv as in Section 3,

〈g1,g2〉 :=D

∫
Rd
g1g2f0dv−D2vg1 ·vg2 (5.1)

is a scalar product on the space X :=
{
g∈L2(f0dv) :

∫
Rd gf0dv= 0

}
by Lemma 3.1 be-

cause 〈g,g〉=Q1,0[g]. Let us recall that f0 depends on D and, as a consequence, also
Dvg. Equation (1.1) means

∂f

∂t
=∇·

(
D∇f+(v−uf +∇φα)f

)
and D∇f0 =−(v+∇φα)f0. Hence (1.1) is rewritten in terms of f =f0 (1+g) as

f0
∂g

∂t
=D∇·

(
(∇g−vg)f0−vg gf0

)
using uf =Dvg, that is,

∂g

∂t
=Lg−vg ·

(
D∇g−(v+∇φα)g

)
with Lg=D∆g−(v+∇φα) ·(∇g−vg) (5.2)

and collect some basic properties of X endowed with the scalar product 〈·, ·〉 and L
considered as an operator on X .

Lemma 5.1. Assume that D>D∗ and α>0. Let us consider the scalar product defined
by (5.1) on X . The norm g 7→

√
〈g,g〉 is equivalent to the standard norm on L2(f0dv)

according to

η(D)

∫
Rd
g2f0dv≤〈g,g〉≤D

∫
Rd
g2f0dv ∀g∈X . (5.3)

Here η is as in (3.1). The linearized operator L is self-adjoint on X with the scalar
product defined by (5.1) in the sense that 〈g1,Lg2〉= 〈Lg1,g2〉 for any g1, g2∈X , and
such that

−〈g,Lg〉=Q2,0[g] . (5.4)

Proof. Inequality (5.3) is a straightforward consequence of Definition (5.1) and (3.1).
The self-adjointness of L is a consequence of elementary computations. By starting with

Lg1 =
[
D∆g1−(v+∇φα) ·∇g1

]
+(v+∇φα) ·vg1 ,

we first observe that
∫
Rd [D∆g1−(v+∇φα) ·∇g1] g2f0dv=−D

∫
Rd∇g1 ·∇g2f0dv and,

as a consequence (take g2 =vi for some i= 1, 2. . . d), vLg1 =vg1−
∫
Rd∇g1f0dv. Hence

−〈Lg1,g2〉=D2

∫
Rd

(∇g1−vg1) ·(∇g2−vg2)dv ,

which proves the self-adjointness of L and Identity (5.4).
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The scalar product 〈·, ·〉 is well adapted to the linearized evolution operator in the sense
that a solution of the linearized equation

∂g

∂t
=Lg (5.5)

with initial datum g0∈X is such that

1

2

d

dt
Q1,0[g] =

1

2

d

dt
〈g,g〉= 〈g,Lg〉=−Q2,0[g]

and has exponential decay. According to Proposition 3.1, we know that

〈g(t,·),g(t,·)〉= 〈g0,g0〉e−2CD t ∀t≥0.

5.2. Proof of Theorem 1.2

Let us consider the nonlinear term and prove that a solution g of (5.2) has the same
asymptotic decay rate as a solution of the linearized equation (5.5). By rewriting (5.2) as

f0
∂g

∂t
=D∇·

(
(∇g−vg)f0

)
−Dvg ·∇(gf0)

with f =f0 (1+g) and using
∫
Rd gf0dv= 0, we find that

1

2

d

dt
Q1,0[g]+Q2,0[g] =D2vg ·

∫
Rd
g (∇g−vg)f0dv .

Using uf =Dvg, by the Cauchy-Schwarz inequality and (3.1), we obtain(∫
Rd
g (∇g−vg)f0dv

)2

≤
∫
Rd
g2f0dv

∫
Rd
|∇g−vg|2f0dv≤

Q1,0[g]

η(D)

Q2,0[g]

D2
.

After taking into account Proposition 3.1, we have

d

dt
Q1,0[g]≤−2

(
1−|uf (t)|

√
CD
η(D)

)
Q1,0[g] .

By Proposition 4.4, we know that limt→+∞ |uf (t)|= 0, which proves that

limsup
t→+∞

e2(CD−ε)tQ1,0[g(t,·)]<+∞ (5.6)

for any ε∈ (0,CD). After observing that f log(f/f0)−(f−f0)≤ 1
2 (f−f0)2/f0, this

completes the proof of Theorem 1.2 . �

5.3. A sharp rate of convergence

We know from Proposition 3.1 that Q2,0[g]≥CDQ1,0[g] for any g∈H1
(
Rd,f0dv

)
such

that
∫
Rd gf0dv= 0. At no cost, we can assume that CD is the optimal constant.

Theorem 5.1. For any d≥1 and any α>0, if D>D∗, then the result of Theorem 1.2
holds with optimal rate λ= 2CD.

Proof. We have to prove that 5.6 holds with ε= 0. By definition of uf , we have that

|uf |2 =

(∫
Rd
v (f−f0)dv

)2

≤
∫
Rd
g2f0dv

∫
Rd
|v|2f0dv
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where g := (f−f0)/f0. This guarantees that |uf (t)|≤ c
√
η(D)CD e−λt/2. Then the

function y(t) :=Q1,0[g(t, ·)] obeys to the differential inequality

y′≤−2CD
(

1−ce−λt/2
)
y

and we deduce as in Section 5.2 that limsupt→+∞e
2CD ty(t) is finite by a Grönwall

estimate. This rate is optimal as shown by using test functions based on perturbations
of f0.

6. Large time asymptotic behaviour in the polarized case

In this section, we shall assume that 0<D<D∗. The situation is more delicate than in
the isotropic case D>D∗, as several asymptotic behaviours can occur.

6.1. Symmetric and non-symmetric stationary states

By perturbation of f0, we know that the set of the functions f such that F [f ]<F [f0]
is non-empty. Notice that the minimum of F on radial functions is achieved by f0. It
follows that any function f such that F [f ]<F [f0] is non-radial.

Lemma 6.1. For any d≥1 and any α>0, if D<D∗, then for any solution f ∈
C0
(
R+,L1(Rd)

)
of (1.1) with initial datum fin≥0 of mass 1 such that F [fin]<F [f0].

Then limt→+∞ |uf (t)|=u(D) and limt→+∞F [f(t,·)] =F [fu] for some u∈Rd such that
|u|=u(D) and

f(t+n,·)−→fu in L1(R+×Rd) as n→+∞ .

Proof. We reconsider the proof of Proposition 4.4. Since u=0 is forbidden by Proposi-
tion 4.1 and t 7→uf (t) is a converging Lipschitz function, there exists a unique limit u
such that |u|=u(D). The convergence result follows from the logarithmic Sobolev in-
equality and the Csiszár-Kullback inequality (4.2).

6.2. An exponential rate of convergence for partially symmetric solutions

Let us start with a simple case, which is to some extent the analogous of the case of
Proposition 4.3 in the polarized case.

Proposition 6.1. Let α>0, D>0 and consider a solution f ∈C0
(
R+,L1(Rd)

)
of (1.1)

with initial datum fin∈L1
+(Rd) such that F [fin]<F [f0] and ufin = (u,0.. .0) for some

u 6= 0. We further assume that fin(v1,v2,. ..vi−1,vi,. ..) =fin(v1,v2,. ..vi−1,−vi,. ..) for
any i= 2, 3,. . .d. Then (1.6) holds with λ=CD

(
1−κ(D)

)
>0, with the notations of

Proposition 3.1.

Here we assume that fin(v1,v2,. ..vi−1,vi,. ..) is even with respect to all coordinate of
index i≥2, so that u[f ] =0 or u[f ] = (±u(D),0.. .0) at any time t≥0.

Proof. According to Proposition 4.4, we know that uf is continuous. On the other
hand, if uf =0, then

F [f ]−F [f0] =

∫
Rd
f log

(
f

f0

)
dv=

∫
Rd

f

f0
log

(
f

f0

)
f0dv≥X logX∣∣X=

∫
Rd f dv

= 0
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by Jensen’s inequality, a contradiction with the assumption that F [fin]<F [f0] and
Proposition 4.1. Hence u=u[f ] is constant and we can reproduce with Q1,u[n] the
proof done for Q1,0[n] in Section 5.

6.3. Convergence to a polarized stationary state

To study the rate of convergence towards the stationary solutions fu with u 6=0 in
the range D∈ (0,D∗), we face a severe difficulty if uf converges tangentially to the
set u(D)Sd−1 of admissible velocities for stationary solutions. Otherwise we obtain an
exponential rate of convergence as in Theorem 1.2.

Proposition 6.2. Assume that d≥2, α>0 and D∈ (0,D∗). Let us consider a solu-
tion f of (1.1) with nonnegative initial datum fin of mass 1 such that F [fin]<F [f0]
and define u= limt→+∞uf (t). If |(uf −u) ·u|≥εu(D) |uf −u| for some ε>0 and t>0
large enough, then there are two positive constants C, λ and some u∈Rd such that

0≤F [f(t,·)]−F [fu]≤Ce−λt ∀t≥0 .

Proof. Let us consider u= limt→+∞uf (t) as in Proposition 4.4. We adapt the setting
of Section 5.2 to g= (f−fu)/fu and get that

1

2

d

dt
Q1,u[g]+Q2,u[g] =D2vg ·

∫
Rd
g (∇g−vg)fudv .

With Z(t) :=CD
(
1−κ(D)

) (vg·u)2
|vg|2 |u|2 , we can rewrite Proposition 3.1 and the estimate of

the nonlinear term as

Q2,u[g]≥Z(t)Q1,u[g] and D2vg ·
∫
Rd
g (∇g−vg)fudv≤D |vg|

√
Q1,u[g]Q2,u[g]√

η(D)

By assumption, Z(t)≥CD
(
1−κ(D)

)
ε2. The conclusion follows as in Section 5.2.

Appendix A. Some additional properties of D∗.

In this appendix, we collect some plots which illustrate Section 2 and state related
qualitative properties of D∗.

Proposition A.1. For any α>0 and d≥1, the critical value D∗=D∗(α,d) is mono-
tone decreasing as a function of d, such that

1

d+2
<D∗(α,d)<

1

d

with lower and upper bounds achieved respectively as α→0+ and α→+∞.

Proof. The monotonicity with respect to d can be read from

hd(D)−hd+1(D) =

∫ ∞
0

sd+1
(
s2−1

)2
e−

φα
D ds>0 .

The lower bound is a consequence of∫ ∞
0

(
sd+1−sd+3

)
e−

1
2 (d+2)s2 ds= 0.
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As for the upper bound, for any D>0, by considering the derivatives with respect to α
of jd+1 and jd−1 as defined in (2.1), we notice that

jd+1

jd−1
∼ 2jd+3−jd+5

2jd+1−jd+3
∼

α+1
α jd+3− d+2

α Djd+1

2jd+1−jd+3

by L’Hôpital’s rule as α→+∞. We recall that jd+1(D) = jd+3(D) at D=D∗. By
letting α→+∞ with D=D∗, we conclude that jd+1/jd−1→1. On the other hand
(2.3) with n=d−2 means that jd+1(D∗) =dD∗ jd−1(D∗), from which we conclude that
limα→+∞D∗(α,d) = 1/d.

We conclude this appendix by computations of D∗ for specific values of the parameters.

• If d= 1, α= 2, D∗ solves (1−4D)I−1/4
(

1
16D

)
+(1+4D)I1/4

(
1

16D

)
+I3/4

(
1

16D

)
+

I5/4
(

1
16D

)
= 0 where Iγ denotes the modified Bessel function of the first kind. Nu-

merically, we find that D∗≈0.529 matches [1, Fig. 1, p. 4].

• If d= 2, α= 2, we remind that D∗≈0.354: see Fig. A.2.

• If d= 2, α= 4, D∗≈0.398 solves
(
16Γ

(
3
2 ,

9
16D

)
−16
√
π
)
D−8Γ

(
1, 9

16D

)√
D+6

√
π−

3Γ
(
1
2 ,

9
16D

)
= 0.

For further numerical examples, we refer the reader to [1, 12].
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Fig. A.1: Plot of hd(D) against D when d= 1 with α= 0.5, 1, . . . 3.0.
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Fig. A.2: Plot of u 7→H(u) when d= 2, α= 2, and D= 0.2, 0.25, . . . 0.45. In this
particular case, D∗≈0.354 solves

(
8 Γ
(
3
2 ,

1
8D

)
−8
√
π
)
D−Γ

(
1
2 ,

1
8D

)
+2
√
π= 0.


