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Weaning practices differ among great apes and likely diverged
during the course of human evolution, but behavioral inference from
the fossil record is hampered by a lack of unambiguous biomarkers.
Here, we show that early-life dietary transitions are recorded in
human deciduous tooth enamel as marked variations in Ca isotope
ratios (δ44/42Ca). Using a sequential microsampling method along the
enamel growth axis, we collected more than 150 enamel microsam-
ples from 51 deciduous teeth of 12 different modern human individ-
uals of known dietary histories, as well as nine enamel samples from
permanent third molars. We measured and reconstructed the evolu-
tion of 44Ca/42Ca ratios in enamel from in utero development to first
months of postnatal development. We show that the observed var-
iations of δ44/42Ca record a transition from placental nutrition to an
adult-like diet and that Ca isotopes reflect the duration of the breast-
feeding period experienced by each infant. Typically, the δ44/42Ca
values of individuals briefly or not breastfed show a systematic in-
crease during the first 5–10 mo, whereas individuals with long
breastfeeding histories display no measurable variation in δ44/42Ca
of enamel formed during this time. The use of Ca isotope analysis in
tooth enamel allows microsampling and offers an independent ap-
proach to tackle challenging questions related to past population
dynamics and evolution of weaning practices in hominins.

calcium isotopes | tooth enamel | dietary transitions | weaning |
breast milk

The reconstruction of weaning practices, the dietary transition
from exclusive breastfeeding to exclusive nonmilk food (1), is

fundamental in the study of past populations and in human
evolution. Weaning constitutes a major determinant in health and
survival of mammals (2–7). On the one hand, breast milk provides
offspring with a safe and easily digested source of nutrients and
energy together with immunological protection (5, 7–9). On the
other hand, transition to nonmilk food, which supplements milk in
the course of weaning, possibly exposes infants to exogenous
pathogens and energy shortfalls, although its introduction is nec-
essary to meet the growing requirements of offspring (3, 8–11).
Hence, the timing of this transition constitutes the biological and
behavioral pivot of a trade-off between increased juvenile survival
and the recovery of maternal reproductive ability, which is delayed
by lactational amenorrhea (5, 8, 9, 12, 13). Study of weaning
practices can thus help characterize health, fertility, and de-
mography of present and past human populations (5, 7, 14).
Weaning behavior is also a determinant trait in developmental

biology and in evolution of life-history strategies of mammals, and
humans in particular (5, 9, 12, 15, 16). Nonindustrialized modern
humans are characterized by younger ages at cessation of suckling
(i.e., ages at weaning) than those of great apes, namely orangutan
(Pongo spp.), gorilla (Gorilla spp.), and their closest relatives,
chimpanzees and bonobos (Pan troglodytes and Pan paniscus) (5, 9,
15–20). Contrary to great apes, human infants are fully weaned
before independent feeding, which allows provisioning offspring
with solid and processed food (5, 16). This early weaning practice is
associated with other specific life-history traits, such as a later age

at first female reproduction, shorter intervals between births, ex-
tended postmenopausal longevity, and a longer lifespan (5, 16, 21).
Study of past human populations including health, demography,

and evolution is partly hampered by a lack of direct evidence of
weaning behavior in archaeological and fossil settings. Predictions
from life-history theory and indirect morphological or histological
markers bring little solid insight into past weaning practices (9).
Variations in chemical and isotopic composition of bone, tooth
enamel, or dentine can bring information on weaning practices.
Despite possible effects of dietary transition on carbon and oxygen
isotope ratios of skeletal remains (see review in ref. 14), the most
widely accepted biomarker for weaning practices is the nitrogen
isotope ratio measured in hair, fingernails, bone, or dentine col-
lagen (22–25). The Sr/Ca and Ba/Ca elemental ratios in tooth
enamel and dentine have also proved relevant for reconstructing
early-life dietary transitions (1, 26, 27). Nevertheless, these various
methods are possibly associated with one or several drawbacks.
The main concern is that the isotopic and elemental ratios are
possibly contaminated or modified during diagenesis, depending
on the burial context (28). Regarding nitrogen isotope ratios, the
problem lies in the fact that the collagen fraction is not preserved
beyond 100,000 y at best (29).
Ca stable isotope ratios from tooth enamel offer new per-

spectives on the reconstruction of weaning practices:

i) Mammal milk, especially breast milk, has extreme Ca isotope
compositions with ratios significantly lighter than dietary in-
take, ca. −0.60‰ as measured for cattle, ewes, and human
(30–32). The δ44/42Ca values in breast milk lie between
−1.50 and −2.00‰ in modern humans (30), whereas the
average Western diet is estimated to lie around −1.00‰ (31–33)
(see Table S1 for compilation). Thus, the transition from
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exclusive breast milk consumption to a child’s or an adult’s
diet should induce a positive shift in δ44/42Ca values in di-
etary Ca of the order of +0.60‰.

ii) Ca makes up 40% in weight of hydroxylapatite, the major
mineral phase of tooth dentine and enamel. This allows
faintly destructive microsampling (<100 μg of enamel) and
thus increases spatial resolution within incrementally struc-
tured dental tissues (34, 35).

iii) The enamel Ca isotope composition shows little sensitivity
to diagenesis, even after several million years (36, 37), given
that secondary Ca carbonates are leached accordingly.

The hypothesis that Ca isotopes allow tracking intake of human
or animal milk was formulated earlier (30). In former studies, the
focus was on the possible influence of dairy product consumption
on bone Ca isotope composition. Unfortunately, results did not
allow animal milk intake to be distinguished from intrinsic bi-
ological variability (38–40).
Here, we test this hypothesis by measuring δ44/42Ca along enamel

of human deciduous teeth of modern individuals that were weaned
at various known ages. Using a sequential microsampling method
along the enamel growth axis, we collected more than 150 enamel
microsamples from 51 deciduous teeth of 12 different modern
human individuals of known dietary histories, as well as nine
enamel samples from permanent third molars. The deciduous teeth
set of samples stemmed from healthy individuals with various diet
histories, covering three main scenarios: exclusive breastfeeding
from birth, exclusive formula feeding from birth, and a breast-
feeding period with subsequent formula feeding (Table 1).

Results
All 163 enamel δ44/42Ca values vary around a median value of
−1.75‰ and range from −2.28‰ to −1.30‰, representing the
very lower end of the natural accounted-for variability of Ca
isotope compositions (Figs. S1 and S2 and Dataset S1).
The lowest δ44/42Ca values were measured in the group of

prenatal enamel samples, with a median of −1.87‰ and values
ranging from −2.28‰ to −1.51‰ (n = 51). This is in significant

contrast with the higher values of the wisdom teeth group
(from −1.73 ‰ to −1.34‰, average value of −1.58‰, n = 9)
and the postnatal enamel group that covers a wider range of
values (from −2.15‰ to −1.30‰, median value of −1.70‰,
n = 84). The total range of values from enamel sampled on the
neonatal line is indistinguishable from prenatal enamel, with
values ranging from −2.11‰ to −1.61‰ (n = 16).
We observe significant differences among these groups (Fig. 1A;

Welch’s ANOVA, P < 0.001; Kruskal–Wallis, P < 0.001). More
precisely, we observe a transition of Ca isotopic compositions to-
ward 44Ca-enriched values, from prenatal to postnatal develop-
ment stages (Welch’s t test, P < 0.001; Wilcoxon–Mann–Whitney,
P < 0.001). For each measurement in a given individual, we can
define a Δ44/42Ca value, given by the difference between the δ44/42Ca
value of a considered spot and the average δ44/42Ca value of an
individual’s prenatal enamel. We observe for infants with no or
short breastfeeding histories (less than or equal to 4 mo) an in-
crease of the Δ44/42Ca value from pre- to postnatal development
stages (Fig. 1B; Welch’s ANOVA, P < 0.001; Kruskal–Wallis, P <
0.001). Conversely, we do not observe for infants with long
breastfeeding histories (more than 12 mo) any significant increase
of the Δ44/42Ca value from pre- to postnatal development stages
(Fig. 1C; Welch’s ANOVA, P = 0.76; Kruskal–Wallis, P = 0.66). At
the individual level (Fig. 2 and Fig. S3), a systematic and significant
increase of the δ44/42Ca value is observed for individuals with short
or no breastfeeding history except potentially for one individual
(C). No significant difference is observed for infants that were
breastfed longer than 12 mo. Parametric and nonparametric sta-
tistical analyses of differences between aforementioned categories
for both δ44/42Ca and Δ44/42Ca values were performed using R
software (41) and are summarized in Table S2 and Fig. S3.

Discussion
Ca Isotope Composition of Adult and Prenatal Diet. The estimated
average δ44/42Ca value of the Western diet lies around −1.00‰
(31–33), and the physiological processing of Ca results in a shift of
δ44/42Ca from diet to bone of −0.60‰ (Δbone-diet) on average (30).
The Δbone-diet value is well conserved among adult mammals,

Table 1. Description of individuals’ early life, dietary histories, and sampled teeth

ID Sex
Year of
birth

Gestation
length, mo

Breastfeeding Formula feeding

Age at nonmilk
food introduction, mo

Deciduous teeth

Permanent
teethYes or no

Age at
end, mo Yes or no

Age at
end, mo No. Types

A Male 1997 9 No — Yes 12 4 4 m2 - m1 - c’ - i1 —

G Female 1999 8.5 No — Yes 12 6 5 m2 - m1 - c’ - i2 - i1 —

L Male 1971 9 Yes 0.5 Yes 12 3 3 m2 - m1 - i1 —

C Female 1983 9.6 ± 0.4 Yes 1.7 Yes >4 3 5 m2 - m1 - m1 - c’ - i1 M3*
F Male 1991 9 Yes 2 Yes 12 4 5 m2 - m1 - c’ - i2 - i1 —

K Male 1993 9 Yes 2.5 Yes 12 4 5 m2 - m1 - c’ - i2 - i1 —

H Female 1997 9 Yes 3.75 Yes 12 4 5 m2 - m1 - c’ - i2 - i1 —

B Female 1992 8.75 Yes 4 No — 3.5 4 m2 - m1 - c’ - i1 —

I Female 1979 9 Yes 4 Yes 12 5 5 m1 - m1 - c’ - i2 - i1 M3*
D Female 2011 NA Yes 24 NA NA NA 3 m1(L) - m1(R) - m

1(L) —

E Male 2011 9 Yes 24 No — 6 4 m2 - m1 - m1 - i —

J Male 2009 9 Yes 36 No — 6 3 m1 - m1 - c, —

M Female 1948 — — — — — — — — M3*
N Female 1981 — — — — — — — — M3*
O Male 1985 — — — — — — — — M3*
P Female 1983 — — — — — — — — M3*
Q Female NA — — — — — — — — M3*
R Female 1947 — — — — — — — — M3†

S Female 1990 — — — — — — — — M3†

Individuals are sorted according to age at end of breastfeeding. NA, not available.
*Described in ref. 59.
†Described in ref. 34.
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including horses, seals, mice, deer, sheep, and Göttingen minipigs
(30, 42–45) and is assumed to be comparable in humans (46, 47).
The average δ44/42Ca value of wisdom tooth enamel that we
measured in nine adult individuals (−1.58 ± 0.26 ‰, 2 SD, n = 9)
is thus in good agreement with a hypothetical average Western
diet composition of −1.00‰. An individual 7–15 y of age has a
diet near or identical to that of an adult and this is thus compatible
with our observations in wisdom tooth enamel, known to grow
during this period.
Enamel that initiates formation early, that is, during the second

and third trimesters of in utero development (48), is characterized
by a 44Ca-depleted isotope composition compared with third molar
enamel (Welch t test, P < 0.001; Wilcoxon–Mann–Whitney, P <
0.001) and has a mean δ44/42Ca lower than that of third molars by
−0.31 ± 0.11 ‰ (Welch t test 95% confidence interval). Such a
44Ca-depleted isotope composition in fetus enamel has several
possible and likely combined causes. First, compared with the es-
timated −1.00‰ mean value of diet, the mother’s blood has lower
δ44/42Ca values: a compilation of available data in mammals yields a
Ca isotopic shift value from diet to blood, denoted Δblood-diet and
given by the difference between δ44/42Cablood and δ44/42Cadiet, of
−0.30 ± 0.13‰ (1 SD, Table S3). Second, increased bone turnover
and possible transient bone loss in pregnant women (49, 50) could
also involve a decrease in blood δ44/42Ca values (46, 47). Third, the
transfer of Ca from maternal to fetal blood involves an active
transport of Ca through the placenta (51), hypothetically re-
sponsible for preferential transport of light Ca isotopes (32, 33).
Fourth, metabolism of the fetus itself, notably involving minerali-
zation, could explain a further decrease in δ44/42Ca from source Ca
to mineralized tissues (42).
Despite these possible explanations for a 44Ca-depleted isotope

composition of fetus enamel, the calculated Δblood-diet value (ca.
−0.3‰) perfectly matches the observed difference between the
δ44/42Ca values of wisdom tooth enamel (−1.58‰), representative
of the adult diet, and the δ44/42Ca values of prenatal enamel
(−1.87‰), representative of the mother’s blood. This result sup-
ports the interpretation that the observed long-term δ44/42Ca shift
from in utero enamel to wisdom tooth enamel mainly reflects a
dietary transition in Ca uptake from mother’s blood to adult diet.

Ca Isotope Composition of Postnatal Diet and Influence of Breastfeeding.
The drift in Ca isotope compositions is related to the duration of

breast milk intake. Introduction of human milk at birth involves a
source of Ca with a highly 44Ca-depleted isotope composition
(∼−1.6‰; see Table S1). The explanations for such low δ44/42Ca
values in breast milk are multiple. First, as discussed above, moth-
er’s blood has a Ca isotope composition lower than that of the diet
by the order of −0.30‰. Second, the transfer of Ca to milk involves
active transportation through mammary epithelium (52), which is
thought to account for a preferential secretion of light Ca isotopes
(30, 32). Third, lactation is known to involve an increased mobili-
zation of light skeletal Ca in the mother (49) that could induce
a decrease in mother’s blood δ44/42Ca (46, 47). The transition
from prenatal diet (i.e., mother’s blood) to breastfeeding should
thus not be accompanied by a significant isotopic shift toward
44Ca-enriched compositions, the human δ44/42Cablood value being
quite 44Ca-depleted, somewhere around −1.3‰ (Table S1). This
assumption is matched in the three infants breastfed for a longer
period. Individuals that were breastfed more than 12 mo (24, 24,
and 36 mo for individuals D, E, and J, respectively; Figs. 1C and 2
and Fig. S3) do not display significant positive deviations in Ca
isotope compositions, either at birth or in postnatal enamel
(Welch’s ANOVA, P = 0.76; Kruskal–Wallis, P = 0.66). Postnatal
enamel in these individuals is indistinguishable from prenatal
enamel (Welch’s t test, P = 0.89, shift of + 0.00 ± 0.07‰, 95%
confidence interval; Wilcoxon–Mann–Whitney, P = 0.98), whereas
the long-term amplitude of isotopic deviation between postnatal
enamel of these individuals and third molar enamel yields a value
of + 0.33 ± 0.11‰ (Welch’s t test, P < 0.001, 95% confidence
interval). The postnatal duration that was sampled in tooth
enamel for each of these individuals is lower than 10 mo and thus
was markedly shorter than their ages at cessation of suckling,
known to be 24 and 36 mo. This confirms the hypothesis first
formulated 10 y ago (30) that breast milk consumption is recorded
within human deciduous tooth enamel.
With the exception of individual C, postnatal enamel of all

other briefly breastfed or not breastfed individuals displays sig-
nificantly higher δ44/42Ca values than enamel contemporary to
birth and prenatal enamel. For each of these individuals, the
sampled postnatal estimated time period equals or exceeds the
first 5 mo after birth. This is in agreement with a dietary change
of Ca intake from placental nutrition to an infant breast milk-
free diet within a timeframe of 0–4 mo (Table 1).
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opment period, birth, postnatal development period, and wisdom teeth enamel formation (i.e., 7–15 y of age). Error bar represents average 2 SD. (B and C) Box plots
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Residual Variability of Ca Isotope Compositions. In briefly breastfed
individuals (all except D, E, and J) no clear and precise re-
lationship appears between the duration of the breastfeeding
period (from 0 to 4 mo) and the value of Δ44/42Ca in postnatal
enamel. In other words, the value of the slope is not correlated
with the duration of the breastfeeding period. Several explana-
tions can be put forward.
First, all non-breastfed or briefly breastfed individuals were

subsequently fed with various infant formulas, except for indi-
vidual B. Substitute milk or infant formulas have high Ca levels
resulting from various mixtures of animal milk and whey, in-
organic Ca, and, possibly, vegetables. Their average isotope
compositions are variable (15 different infant formulas analyzed
for δ44/42Ca range between −0.82 and −0.01‰) and 44Ca-
enriched compared with breast milk considering the origin of
Ca in these ingredients (average δ44/42Ca of −0.49 ± 0.51‰,
2 SD, Table S1). The same holds true for transition alimentation
that is composed of various dairy and vegetable components with
average 44Ca-enriched compositions. The amplitude of the shift
between the prenatal period and the period of milk-free food
intake is thus likely variable depending on transition food types
and on formula compositions. The study of more simple dietary
histories, such as in captive macaques (1), would facilitate dis-
cerning patterns with finer time and amplitude resolutions.

Second, the spatial resolution that the sampling method allows
is about 400 μm, which corresponds to 2.4- to 4.4-mo time en-
velopes, depending on enamel secretion rates. This temporal
resolution likely induces a dampening of steep variations, such as
experienced by individual B.
Third, the maturation of newly formed enamel (53, 54) pos-

sibly generates elemental and isotopic mixing between initially
secreted enamel and secondary matured enamel, which could
participate in a dampening and a phase shifting of the recorded
signal (55). The improvement of the estimation of the timing of
dietary transition would thus benefit from a comprehensive in-
vestigation of the transduction of Ca isotope signal from dietary
intake to enamel such as in hypsodont herbivores.

Implications for Trophic-Level Reconstruction Using δ44/42Ca of
Mammalian Tooth Enamel. Trophic-level studies in modern and
past environments using Ca isotopes are promising but are
confronted with poorly understood residual variability both in
terrestrial and marine environments (37, 56). These studies are
based on observed isotopic offsets in δ44/42Ca varying between
−0.14‰ and −0.65‰ from one trophic level to another (37, 42,
57). This is of a magnitude comparable to the shift observed here
from prenatal or exclusive breast milk to a breast milk-free diet
(∼ +0.30‰). The consumption of breast milk is likely to induce
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a difference in the Ca isotope composition of enamel that could
be confused with a signature of a superior trophic level.

Perspectives. The present approach allows distinguishing weaning
practices in modern humans as recorded in deciduous tooth enamel.
In this case, it allows distinguishing a cessation of suckling occurring
within the first year, representative of weaning practices in Europe
(6), from a behavior resembling early-weaning of nonindustrialized
modern human, occurring between 2 and 3 y old (5, 9, 16).
We emphasize that potential applications to past human pop-

ulations and extinct hominins could help in studying their weaning
practices. Provided a good knowledge of enamel crown develop-
ment in studied individuals, Ca isotope compositions could help
determine age at significant reduction of suckling with a temporal
resolution of the order of 6–12 mo. Present-day humans wean
their infants earlier (2–3 y) than do great apes (3–7 y) (5, 9, 16).
Whether the common ancestor of hominins was characterized by
an older age at cessation of suckling than modern humans remains
a matter of debate (5, 16, 19, 20) based on rather indirect infer-
ences (9). Ca isotope studies offer an independent approach to
test such hypotheses.

Materials
A total of 51 deciduous teeth from 12 healthy European children born be-
tween 1971 and 2011 were used in this study (Table 1). For each individual,
three to five deciduous teeth were selected depending on available teeth, to
cover the widest time span of enamel crown formation. This period corre-
sponds to the timing of tooth crown formation in human deciduous teeth,
which initiates on average at about 5 mo before birth (48) and concludes at
around 1.5 y of postnatal age (58). All teeth were naturally shed or extracted
for surgical purposes in accordance with the World Medical Association’s
Declaration of Helsinki. In each case, the informed consent of the patients or
their parents was collected. Information concerning early diet was provided
retrospectively by the parents when possible. We also used nine permanent
third molars, initially described elsewhere (34, 59), for which crown enamel
forms between 7 and 15 y of age (58), to assess the long-term trend of Ca
isotope composition evolution of enamel. All teeth were collected without
identifying data. Details about all individuals’ early-life diet and sampled
teeth are given in Table 1.

Methods
Sampling. Each permanent and deciduous tooth was halved longitudinally
along the buccolingual plane using a low-speed rotating diamond saw. One
half of each tooth was then embedded in araldite resin and the cut surface
was polished using sandpaper with decreasing grain sizes. The sampling
was performed using a precise position drilling MicroMill device allowing
sampling of 60–80 μg hydroxylapatite and drilling holes of 350–400 μm in

diameter and 200–300 μm in depth, as described in Tacail et al. (34) and in
Supporting Information.

The sampling strategy consisted of drilling a series of spots with the widest
possible time span available on enamel surface of the buccal side in general.
Sampling was thus performed in deciduous teeth at regular intervals along
the crown height (i.e., from enamel cusp to cervix). Teeth displaying sub-
stantial enamel thickness such as deciduous first and secondmolars allowed in
some cases sampling of more than one sample from the enamel–dentine
junction to the outer surface. A single enamel sample per wisdom tooth was
obtained likewise (Supporting Information).

Location of Spots and Estimation of Mean Formation Ages of Sampled Enamel.
The neonatal line is used to distinguish between enamel formed prenatally
from enamel formed postnatally (60–63) (see drawings on pictures using
Adobe Photoshop software, Fig. S4 and Supporting Information). On this
basis, we split samples into three categories according to their position rel-
ative to the neonatal line: (i) more than 60% of the sampling spot surface
lies in prenatal enamel, (ii) more than 60% of the sampling spot surface lies
in postnatal enamel, and (iii) less than 60% of the sampling spot surface lies
in either of the pre- or postnatal enamel, referred to here as birth category.
We also measured the distance of each sampling spot to neonatal line along
the main prism orientation and thus propose a first-order age model for
sampled enamel assuming an average enamel secretion rate of 4 μm·d−1 for
all teeth together (48, 64, 65) (Supporting Information).

Sample Preparation and δ44/42Ca Measurement. After collection, each powder
sample was chemically purified following method described elsewhere (44)
and in Supporting Information. The measurement of Ca isotope composi-
tions was performed at the Laboratoire de Géologie de Lyon, France, on a
Neptune Plus multicollector induced coupled plasma mass spectrometer
(MC-ICP-MS) from Thermo Scientific using a previously described protocol
(34, 44) (Fig. S1, Table S4, and Supporting Information). All Ca isotope
compositions are expressed in per mil units, using the “delta” notation for
the 44Ca/42Ca isotope ratios defined as follows:

δ44=42Ca=

 �
44Ca

�
42Ca

�
sample

ð44Ca=42CaÞICP  Ca  Lyon
− 1

!
×1,000,

where (44Ca/42Ca)sample and (44Ca/42Ca)ICP Ca Lyon are Ca isotope abundance ratios
measured in sample and in ICP Ca Lyon bracketing standard, respectively.
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