
HAL Id: hal-02143782
https://hal.science/hal-02143782

Submitted on 29 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Verification of concurrent design patterns with data
Simon Bliudze, Ludovic Henrio, Eric Madelaine

To cite this version:
Simon Bliudze, Ludovic Henrio, Eric Madelaine. Verification of concurrent design patterns with data.
COORDINATION 2019 - 21st International Conference on Coordination Models and Languages, Jun
2019, Kongens Lyngby, Denmark. pp.161-181, �10.1007/978-3-030-22397-7_10�. �hal-02143782�

https://hal.science/hal-02143782
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Verification of concurrent design patterns with
data

Simon Bliudze1, Ludovic Henrio2, and Eric Madelaine3

1 Inria Lille – Nord Europe, Villeneuve d’Ascq, France
simon.bliudze@inria.fr

2 Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France
ludovic.henrio@ens-lyon.fr

3 Université Côte d’Azur, Inria, CNRS, I3S, 06902 Sophia-Antipolis, France
eric.madelaine@inria.fr

Abstract. We provide a solution for the design of safe concurrent sys-
tems by compositional application of verified design patterns—called ar-
chitectures—to a small set of functional components. To this end, we ex-
tend the theory of architectures developed previously for the BIP frame-
work with the elements necessary for handling data: definition and oper-
ations on data domains, syntax and semantics of composition operators
involving data transfer. We provide a set of conditions under which com-
position of architectures preserves their characteristic safety properties.
To verify that individual architectures do enforce their associated prop-
erties, we provide an encoding into open pNets, an intermediate model
that supports SMT-based verification. The approach is illustrated by a
case study based on a previously developed BIP model of a nanosatellite
on-board software.

Keywords: Symbolic verification, composition, safety, interaction mod-
els.

1 Introduction

BIP (Behaviour-Interaction-Priority) [7] is a framework for the component-based
design of concurrent software and systems. In particular, the BIP tool-set com-
prises compilers for generating C/C++ code, executable by linking with one of
the dedicated engines, which implement the BIP operational semantics [14]. BIP
ensures that any property that holds on a BIP model will also hold on the gen-
erated code. The notion of BIP architecture was proposed in [5] as a mechanism
for ensuring correctness by construction during the design of BIP models. Archi-
tectures can be viewed as operators transforming BIP models. They formalise
design patterns, which enforce global properties characterising the coordination
among the components of the system. The architecture-based design process in
BIP takes as input a set of components providing basic functionality of the sys-
tem and a set of temporal properties that must be enforced in the final system.
For each property, a corresponding architecture is identified and applied to the

2

model, adding coordinator components and modifying the synchronisation pat-
terns between components. In [5], it was shown that application of architectures
is compositional w.r.t. safety properties, i.e. if two architectures guarantee two
properties, their composition ensures the conjunction of the properties but [5]
did not consider properties depending on data.

This article goes one step further in the proof of properties and in the com-
positionality of architectures, but this step is a significant one: the compositional
verification. To prove properties of BIP architectures it is necessary to have a
representation of the BIP architecture in a verifiable format. The verification
problem has two unbounded parameters: 1) By nature, architectures have holes
and are meant to interact with the interfaces of the component that will fill the
hole; the properties must hold for all (well-typed) components that can be put
inside the hole; 2) BIP interactions can transmit data, and properties might be
dependent of the data, the domain of the data is generally huge or unbounded
and the values of transmitted data might have a significant impact on the prop-
erties. We propose to rely on a translation of BIP architectures into open pNets.

Parameterised Networks of synchronised automata (pNets) is a formalism
for defining behavioural specification of distributed systems based on a param-
eterised and hierarchical model. It inherited from the work of Arnold on syn-
chronisation vectors [3]. It has been shown in previous work [28] that pNets
can represent the behavioural semantics of a system including value-passing and
many kinds of synchronisation methods, including various constructs and lan-
guages for distributed objects. The VerCors platform uses pNets to design and
verify distributed software components [19,27]. There is no bound on the number
of elements inside a pNets or the valuation of parameters. When restricted to
finite instantiations, it becomes possible to us pNets for finite model-checking
approaches. Closed pNets were used to encode fully defined programs or systems,
while open pNets have “holes”, playing the role of process parameters. Such open
systems can represent composition operators or structuring architectures. It is
possible to reason, in an SMT engine, on the symbolic automaton that repre-
sents the behaviour of a pNets with holes and that communicates values [36].
The encoding of open pNets into Z3 that is under development is the starting
point of this article. We benefit from the possibility to reason on a pNet in an
SMT engine in order to prove properties on BIP architectures.

The main contributions of this paper are: 1) The addition of data to the
theory of BIP architectures, including a theorem about preservation of data
dependent properties by compositions. 2) An encoding of architectures with data
into open pNets, allowing for analysis of their temporal properties using pNet’s
software tools. The paper is illustrated by a running example based on the failure
monitor architecture from the CubETH nanosatellite on-board software [34].
This running example also relies on the maximal progress assumption, whereby
larger interactions are preferred to smaller ones. Due to space limitations, we only
discuss this informally. However, proofs of the results provided in the appendix
formally account for maximal progress.

3

The rest of the paper is structured as follows. In Sect. 2, we present notations
and background material on pNets. The theory of architectures with data is
presented in Sect. 3. In Sect. 4, we present the encoding into open pNets and
discuss verification of the running example. Section 5 discusses related work.
Section 6 concludes the paper.

2 General Notations and pNets Previous Results

Notations. We extensively use indexed structures over some countable indexed
sets, which are equivalent to mappings over the countable set. Thus, ai∈Ii denotes
a family of elements ai indexed over the set I. This notation defines both I the set
over which the family is indexed (called range), and ai the elements of the family.
E.g., ai∈{3} is the mapping with a single entry a at index 3 ; also abbreviated
(37→a). When this is not ambiguous, we shall use notations for sets, and typically
write “indexed set over I”, even though formally we should speak of maps; and
write x ∈ ai∈Ii to mean ∃i ∈ I. x = ai. An empty family is denoted ∅.

We assume the existence of a term algebra TΣ,V , where Σ is the signature
of the data and action constructors, and V a set of variables. Within TΣ,V , we
distinguish a set of data expressions EV , e ranges over expressions; and a set of
Boolean expressions BV ⊆ EV , g (guards) ranges over Boolean expressions. On
top of EV we build the action algebra ActV , with ActV ⊆ TΣ,V . We define AV
as the set of variable assignments of the form: (xi := ei)

i∈I and let u range over
sets of assignments. The function vars(t) identifies the set of variables in a term.

We assume the existence of a universal data domain given as a partially-
ordered set (D,6), potentially encompassing several copies of any given data
type with different orders. We assume that (D,6) comprises both the unordered
set of Booleans B = ({tt, ff}, ∅) and the naturally ordered one B6 = ({tt, ff},
{ff 6 tt}), and similarly for integer and real numbers; as well as the set of
intervals ordered by inclusion. When speaking of an ordered sort, e.g. B6, we
will assume that it forms a meet-semilattice and denote by ∧ the meet operator.

For a set of variables V ⊆ V, we denote DV def
= {σ : V → D} the set of

valuations of the variables in V and let σ range over valuations. Valuations
extend canonically to expressions, denoted σ(e). We define:

σ
[
(xi := ei)

i∈I](x) def
=

{
σ(x), if x 6∈ xi∈Ii ,

σ(ei), if x = xi, for some i ∈ I .

For two valuations σ1, σ2 : V → D, we denote σ14σ2 def
=
{
x ∈ V

∣∣σ1(x) 6= σ2(x)
}

the set of variables that are assigned different values by the two valuations. As
usual, we write σ1 6 σ2 iff σ1(x) 6 σ2(x), for all x ∈ V . An expression e is
monotonic if, for any two valuations σ1, σ2, σ1 6 σ2 implies σ1(e) 6 σ2(e).
Similarly, an assignment (xi := ei)

i∈I is monotonic if all expressions ei∈Ii are
monotonic. We denote B6

V ⊂ BV , E6
V ⊂ EV and A6

V ⊂ AV the sets of monotonic
Boolean and generic expressions and assignments, respectively.

4

Open pNets. This section briefly describes pNets, see [29] for more complete
description. pNets are tree-like structures, where the leaves are either param-
eterised labelled transition systems (pLTSs), expressing the behaviour of basic
processes, or holes, used as placeholders for unknown processes. Nodes of the tree
are synchronising artefacts using a set of synchronisation vectors that express
the possible synchronisation between parameterised actions of some components.

A pLTS is a labelled transition system with variables occurring inside states,
actions, guards, and assignments. Variables of each state are pairwise disjoint.
Each transition label of a pLTS consists of a parameterised action, a guard and
an update assignment. The parameters of actions are either input variables or
expressions. Input variables are bound when the action occurs; they accept any
value (of the correct type), thus providing a to input data from the environment.
Expressions are computed from the values of other variables. They allow provid-
ing aggregated values to the environment, without exposing all the underlying
variables. We define the set of parameterised actions a pLTS can use (a ranges
over action labels): α = a(?xi∈Ii , ej∈Jj), where ?xi∈Ii are input variables, ej∈Jj are
expressions.

Definition 1 (pLTS). A pLTS is a tuple pLTS , 〈〈S, s0,→〉〉 where: S is a set
of states; s0 ∈ S is the initial state; → ⊆ S×L×S is the transition relation and
L is the set of labels of the form 〈α, g, u〉, where α is a parameterised action,
α ∈ ActV ; g ∈ BV is a guard over variables of the source state and the action,
and u ∈ AV assigns updated value for variables in the destination state.

A pNet composes several pNets, pLTSs, and holes. A pNet exposes global
actions resulting from the synchronisation of internal actions in some sub-pNets,
and some actions of the holes. As holes are process parameters, synchronisation
with a hole has an obvious concrete meaning when a process is put inside the
hole and emits the action. We also define a semantics for open pNets with holes
where open transitions express the fact that a pNet can performs a transition
provided one or several holes emit some actions. This synchronisation is specified
by synchronisation vectors expressing the synchronous interaction between ac-
tions inside sub-pNets and holes, data transmission is expressed classically using
action parameters. Actions involved in the synchronisation vectors do not need
to distinguish input variables, i.e. they have the form a(Exprj∈Jj).

Definition 2 (pNets). A pNet is a hierarchical structure where leaves are
pLTSs and holes: Q , pLTS | 〈〈Qi∈Ii , J,SVk∈Kk 〉〉 where
– Qi∈Ii is the family of sub-pNets;
– J is a set of indexes, called holes. I and J are disjoint: I∩J = ∅, I∪J 6= ∅
– SVk∈Kk is a set of synchronisation vectors. ∀k∈K,SVk=αl∈Ik]Jkl → α′

k[gk],
where α′

k ∈ ActV , Ik ⊆ I, Jk ⊆ J , and vars(α′
k) ⊆

⋃
l∈Ik]Jk vars(αl). The

global action is α′
k, gk is a guard associated to the vector.

The set of holes Holes(Q) of a pNet is the indexes of the holes of the pNet
itself plus the indexes of all the holes of its subnets (we suppose those indexes
disjoints). A pNet Q is closed if it has no hole: Holes(Q) = ∅; else it is said

5

to be open. The set of leaves of a pNet is the set of all pLTSs occurring in the
structure, as an indexed family of the form Leaves(Q) = 〈〈pLTSi〉〉i∈L.

The semantics of an open pNet is expressed as an automaton where each
transition coordinates the actions of several holes, the transition occurs if some
predicates hold, and can involve state modifications.

Definition 3 (Open transition). An open transition over a set of holes J
and a set of states S is a structure of the form:

···················
βj∈Jj , g, u

s
α−→ s′

Where s, s′ ∈ S and βj ∈ ActV is an action of the hole j; α is the resulting global
action; g is a predicate over the different variables of the terms, labels, and states
βj, s, α. u ∈ AV is a set of assignments that are the effects of the transition.
Open transitions are identified modulo logical equivalence on their predicate.

The red dotted rule expresses the implication stating that if the holes per-
form the designated actions and the condition g is verified, then the variables
are modified and the state changes. This implication however uses a simple logic
with the expressive power given by the predicate algebra (it must include logical
propositions and equality). Proposition and inference rules of the paper use a
standard logic, while predicates inside the open transitions should use a more re-
stricted logic, typically a logic that could be handled mechanically and expressed
by terms that can be encoded in a simple syntax. Open transitions express in
a symbolic way, transitions that are not only parameterised with variables but
also actions of not yet known processes.

Definition 4 (Open automaton). An open automaton is a tuple (J,S, s0, T)
where: J is a set of indices, S is a set of states and s0 an initial state among
S, T is a set of open transitions and for each t ∈ T there exist J ′ with J ′ ⊆ J ,
such that t is an open transition over J ′, and S.

The semantics of an open pNet is an open automaton where the states are
tuples of states of the pLTSs at the leaves, denoted / Each open transition
between two states contains 1) the actions of the holes involved in the transition,
2) a guard built from the synchronisation vectors coordinating the holes and the
transitions involved; 3) assignments and global state change defined by the pLTSs
transitions involved; 4) a global action defined by the synchronisation vector.

Example 1 (An open transition). The open transition

··
{E 7→ask}, t ∈ z, {t := t+ 1}

/11 .
ask−−→ / 11.

emits a global action ask defined by the synchronisation vector 〈timeoutT ,
timeoutC ,−, ask〉 → ask . It requires the hole at label E to fire an ask action,
with the condition t ∈ z. In this case, the global pNet loops on the state /11. that

6

has internal variables t and z local to the pLTS T (hence not appearing in the
synchronisation vector). The variable t is updated to the new value t+1. Figure 2
shows the complete pNet, whereas Fig. 3 shows a complete open automaton.

We used pNets to define a behavioural semantics for distributed compo-
nents [2] that allows the verification of correctness properties by model-checking.
More recently, a bisimulation theory has been formalised for open pNets [29].

3 The theory of architectures with data

This section presents the extension of the theory of architectures [5] with data
and briefly discusses a special case of priority models, called maximal progress.
These extensions require us to define the framework in a manner that would
allow formulating and proving the property preservation result (Th. 1 below).
In [5], this result is obtained by requiring, in the definition of architecture com-
position, that an interaction among coordinated components be only possible if
both architectures “agree” that it should be enabled. With respect to data, the
main difficulty lies in ensuring that this “agreement” extends to the transferred
data values. A trivial extension would allow an interaction only if the data values
proposed by both architectures coincide. As this requirement is too restrictive,
we go beyond by assuming the data domains to be ordered and taking the meet
of the proposed values. The property preservation result then holds indepen-
dently of the proposed values, provided that guards and update assignments are
monotonic.

An important insight is that, although the requirement that guards and up-
date assignments be monotonic appears to be a limitation, it is, in fact, a gener-
alisation of the usual setting. Indeed, the usual settings, where data domains are
not ordered, can be recovered here by considering trivial partial orders with no
two distinct elements being comparable. In such case, all expressions are trivially
monotonic.

The intuition behind the proof of the preservation of safety properties in
[5] is simple. The composition of two architectures combines the “constraints”
that they impose on the possible executions of the system: as stated above, an
interaction is only enabled if both architectures “agree”. In [6], it is shown that
this intuition extends well to priorities in the offer semantics of BIP. However,
this is not the case in the classical semantics. In this section, we informally
discuss the special case of the maximal progress priority models, where property
preservation does hold in the classical semantics of BIP.

Components and composition

Definition 5 (Component). A component is a tuple (Q, q0, V, σ0, P, ε,−→),
where

– Q is a set of states, with q0 ∈ Q the initial state,
– V is a set of component variables,

7

z:=⊤
t:=0

tick

t:=t+1
[t<z.u]

cancel
t:=0
z:=⊤

z:=⊤
t:=0

timeoutT
[t ∈ z]

T
timeoutT C

timeoutC

s1 s2

resume

s3

ti
m
eo
ut
C

reset

zone :=[Min,Max]

fail

reset

ask

fail resume
timeoutC

tick

t, z

t1

cancel

reset

resume

fail

zone

T.z := T.z ∩((
C.fail ? C.zone : ⊤

)
+ T.t

)

Fig. 1: The BIP specification of the Failure Monitor architecture

– σ0 : V → D is an initial valuation of the component variables,
– P is a set of ports; ε : P → 2V is the set of variables exported by each port,
– −→⊆ Q× (2P \ {∅})×B6

V ×A6
V ×Q is a transition relation, with transitions

labelled by interactions, i.e. triples consisting of a non-empty set of ports, a
monotonic Boolean guard and a monotonic update assignment.

We call the triple (V, P, ε) the interface of the component. 4 Notations q a,g,u−−−→ q′

and q
a,g,u−−−→ are as usual; for a component B, we denote QB, q0B, VB, σ

0
B,

PB, and εB the corresponding constituents of B. We will skip the index on the
transition relations −→, since it is always clear from the context.

In this paper, we use a refined version of the Failure Monitor architecture
from [34] as a running example. Although Fig. 1 shows the full definition of this
architecture, we will explain its various elements progressively. Fig. 1 shows com-
ponents T (imer) and C(ontrol), with interfaces

(
{t, z}, {tick, cancel, timeoutT },{

tick 7→{t, z}
})

, and
(
{zone}, {reset, fail, resume, timeoutC},

{
fail7→{zone}

})
respec-

tively. Variable t is implicitly assumed to be of type Integer (with trivial order-
ing). Variables z def

= [z.l, z.u] and zone
def
= [zone.l, zone.u] are of type Integer

Interval ordered by interval inclusion.
Component behaviour is defined by states and transitions. The initial states

t1 and s1, and valuations σ0
T = {t7→0, z 7→>}, σ0

C = {zone 7→[Min,Max]} are

shown by the incoming arrows t:=0,z:=>−−−−−−→ t1 and
zone :=[Min,Max]−−−−−−−−−−−→ s1 where > =

(−∞,+∞). The constants Min and Max are the parameters of the architecture.
Transitions are labelled with ports of the corresponding components, Boolean

guards and update assignments on local variables. E.g., the loop transition
t1

tick,[t<z.u],t:=t+1−−−−−−−−−−−−→ t1. The guards and update assignments of the transitions
of C are omitted. By default, an omitted guard is tt and an omitted assignment
is empty ∅. Clearly, all guards and update assignments are monotonic.

4 Only exported variables, belonging to a ε(p), appear in the component interface (see
Def. 7). We omit here this separation between internal and exported variables.

8

Definition 6 (Component semantics). The open semantics of a component
B = (Q, q0, V, σ0, P, ε,−→) is the LTS denoted [B] = (S, s0,−→), where S = Q ×
DV , s0 = (q0, σ0) and −→ is the minimal transition relation satisfying the rule

q
a,g,u−−−→ q′ σ |= g σ′ = σ̃ [u] σ4σ̃ ⊆ ε(a)

(q, σ)
a,σ̃−−→ (q′, σ′)

. (1)

The closed semantics of B is given by the LTS denoted JBK, comprising only
those transitions of [B], where σ̃ = σ.

The use of the intermediate valuation σ̃ in the conclusion and the third
premise of (1) allows some variables to get new values before the transition is
fired. Thus the component is open to the exchange of data with its environment.
However, the fourth premise states that only the variables exported through the
ports participating in the interaction can be affected by the data transfer. The
closed semantics excludes this possibility of data exchange.

Definition 7 (Interaction model). For a finite set of component interfaces
(Vi, Pi, εi)

i∈I , such that all Pi and all Vi are pairwise disjoint, let P =
⋃
i∈I Pi,

V =
⋃
i∈I Vi and ε : P → 2V such that, for any p ∈ Pi, ε(p) = εi(p).

An interaction model over (V, P, ε) is a set Γ ⊆ 2P × B6
V × A6

V , such that,
for any interaction (a, g, u) ∈ Γ , we have g ∈ B6

ε(a) and u ∈ A6
ε(a).

5

We assume that all sets of components and interfaces satisfy the disjointness
assumption above. We call the support of a set of ports a ⊆ P , denoted supp(a),
the set of the participating components. It is either the set {i ∈ I | a ∩ Pi 6= ∅}
(for P =

⋃n
i=1 Pi) or the set {B ∈ B | a ∩ PB 6= ∅} (for P =

⋃
B∈B PB). The

precise meaning of this notation will always be clear from the context.

Definition 8 (Composition). The composition of a finite set of components
B = (Qi, q

0
i , Vi, σ

0
i , Pi, εi,−→)i∈I with the interaction model Γ over (V, P, ε) is

the component Γ (B) = (Q, q0, V, σ0, P, ε,−→), where Q =
∏
i∈I Qi; q

0 = (q0i)
i∈I ;

σ0 : V → D is such that, for any v ∈ Vi, σ0(v) = σ0
i (v); and −→ is the minimal

transition relation satisfying the rule

∀i ∈ supp(a), qi
a∩Pi,gi,ui−−−−−−−→ q′i ∀i 6∈ supp(a), qi = q′i

g′ = g ∧∧i∈supp(a) gi u′ = u;u
i∈supp(a)
i (a, g, u) ∈ Γ a 6= ∅

(qi)
i∈I a,g′,u′
−−−−→ (q′i)

i∈I
.

Intuitively, an interaction can be fired if all the involved components are ready
to fire their corresponding transitions. The other components do not change their
5 Notice that this definition allows (∅, tt, ∅) and (∅, ff, ∅) to be included in Γ .

9

states. Both the interaction guard and those of the participating transitions must
be satisfied. The update assignment of the interaction is executed first, followed
by those of the components.

Specifying interaction models as sets of sets of ports is not practical due to
their potentially exponential size. An algebra of connectors was introduced in
[14] in order to structure interactions in BIP models. Connectors are hierarchi-
cal, tree-like structures with component ports at the leaves. They define sets of
interactions, based on the attributes of the nodes, which may be either trigger
(triangles in Fig. 1) or synchron (bullets in Fig. 1). If all sub-connectors of a
connector are synchrons, then an interaction is allowed by the connector only if
each subconnector can contribute. If at least one of the sub-connectors is a trig-
ger, then any interaction consisting of contributions of any set of sub-connectors
involving at least one of the triggers is allowed. The interaction model is defined
as the set of all interactions allowed by at least one of the connectors.

For instance, the connector T .tickI−−•(failI−−•C.fail) of Fig. 1 is a two-level
hierarchical connector. In the subconnector failI−−•C.fail, the port fail is a trig-
ger, whereas C.fail is a synchron. This subconnector allows two interactions:
{fail} and {C.fail, fail}. Similarly, at the top level, T .tick is a trigger, and the
subconnector is a synchron. The entire connector defines the following three
interactions (observe that > + T.t = > and T.z ∩ > = T.z):

(
{T.tick}, tt, ∅

)
,(

{fail, T.tick}, tt, ∅
)
,
(
{C.fail, fail, T.tick}, tt, T.z := T.z ∩ (C.zone + T.t)

)
In addition to interaction models, BIP relies on priority models that impose a

strict partial order on interactions. Intuitively, an interaction can be fired only if
all the higher-priority interactions available in the current state are disabled by
their respective guards. In the next sections, we will implicitly assume application
of themaximal progress priority µ, where (a, g, u) ≺µ (b, h, w) iff a ⊂ b and a 6= b.
For instance, the port T.tick will never fire alone if the port fail is also enabled.

Architectures Architectures are partial BIP models, with dangling ports that
serve as placeholders for the eventual connection with operand components.

Definition 9 (Architecture). An architecture is a tuple A = (C, VA, PA, εA,
Γ), where

– PA and VA are sets of ports and variables, respectively;
– C is a finite set of components (called coordinators), such that

⋃
C∈C PC ⊆

PA and
⋃
C∈C VC ⊆ VA; ports in PA \

⋃
C∈C PC , which do not belong to any

of the coordinators are called dangling;
– εA : PA → 2VA is an export function, such that εA(p) = εC(p), for any C ∈ C
and p ∈ PC and εA(p) ⊆ VA \

⋃
C∈C VC for any dangling port p; and

– Γ ⊆ 2PA × B6
VA
× A6

VA
is an interaction model over (VA, PA, εA).

Definition 10 (Application of an architecture). Let A = (C, VA, PA, εA,
Γ) be an architecture and let B be a set of components, such that VA ⊆ V

def
=⋃

B∈B∪C VB, PA ⊆ P
def
=
⋃
B∈B∪C PB and εA(p) = VA ∩ εB(p), for any B ∈ B

10

and p ∈ PA ∩ PB. The application of the architecture A to the set of com-
ponents B is the component A(B) def

= µ
(
(Γ n P)(C ∪ B)

)
, where Γ n P

def
={

(a, g, u)
∣∣ a ⊆ P, (a ∩ PA, g, u) ∈ Γ} is the interaction model over (V, P, εA ∪⋃

B∈B εB) and µ(. . .) denotes the application of maximal progress.

An architecture A enforces coordination constraints on the components in B.
The interface (VA, PA, εA) of an architecture A contains all ports of the coor-
dinators C and the dangling ports, which must belong to the components in B.
In the application A(B), the ports belonging to PA can only participate in the
interactions defined by the interaction model Γ of A. Ports which do not belong
to PA are not restricted and can participate in any interaction. The definition
of Γ n P requires that an interaction from Γ be involved in every interaction
belonging to Γ n P . To allow the ports from P \ PA to be fired independently
in A(B), one must have (∅, tt, ∅) ∈ Γ .

In our running example, there are four dangling ports. Intuitively, the archi-
tecture monitors the activation of the dangling port fail, then waits for a period
comprised between Min and Max and, unless resume is activated, asks for a
system reset through an invocation of the dangling port ask.

Definition 11 (Composition of architectures). Let Ai = (Ci, VAi
, PAi

, εAi
,

Γi), for i = 1, 2, be two architectures. The composition of A1 and A2 is the
architecture A1 ⊕A2 = (C1 ∪ C2, VA1

∪ VA2
, PA1

∪ PA2
, εA1

∪ εA2
, Γ), where

Γ =
{
(a, g1 ∧ g2, u1 ∧ u2)

∣∣ (a ∩ PAi , g
i, ui) ∈ Γi, for i = 1, 2

}
. (2)

⊕ is associative and commutative.

It is well known that, since violations of safety properties are characterised
by finite executions, they can also be represented as state predicates: intuitively,
a safety property corresponds to the predicate characterising the set of states,
where this property is not violated.

For a component B, we denote SJBK and s0JBK the corresponding constituents
of JBK (see Definition 6).

Definition 12 (Properties). Let B be a component. A (safety) property of B
is a predicate Φ on SJBK, such that

(
(q, σ) |= Φ

)
∧ (σ′ 6 σ) implies (q, σ′) |= Φ.

A property Φ is initial if s0JBK |= Φ.

Although we define properties as state predicates, any appropriate logic can
be used to specify them. For instance, the property “There is always a pos-
sibility to reset the system after a single failure” (i.e. without additional fail-
ures having to occur in the meantime) enforced by the Failure Monitor archi-
tecture comprises the safety component that can be specified using CTL as
AG
(
fail → EX E [¬fail W reset]

)
. An architecture enforces its characteristic prop-

erty on its operand components. From this point of view, the set of coordinators
is not relevant, neither are their states. Thus, properties enforced by architec-
tures only involve the unrestricted composition of the operands:

11

Definition 13 (Enforcing properties). Let A = (C, PA, VA, εA, Γ) be an ar-
chitecture; let B be a set of components and Φ an initial property of their parallel
composition Γ‖(B), with Γ‖ = {(a, tt, ∅) | a ⊆ ⋃B∈B PB}. We say that A enforces
Φ on B iff, for every state s = (sc, sb) reachable in JA(B)K, with sc ∈

∏
C∈C SJCK

and sb ∈
∏
B∈B SJBK, we have sb |= Φ.

In the following, when we say that an architecture enforces some property Φ,
Φ is supposed to be initial for the coordinated components. In [12], we formally
define upwards compatibility that ensures property preservation when composing
architectures. Informally, two architectures A1 and A2 are upwards compatible
iff, whenever their composition involves the fusion of two interactions a1 = a ∩
PA1

and a2 = a∩PA2
(see (2)) and one, say a1, is inhibited in a given state by a

larger interaction b1 ⊃ a1, there exists an interaction b2 ⊇ a2 that can be fused
with b1 to form an interaction enabled in the same state.

Theorem 1 (Preserving enforced properties). Let B be a set of compo-
nents; let Ai = (Ci, VAi

, PAi
, εAi

, Γi), for i = 1, 2, be two upwards compatible
architectures enforcing on B the properties Φ1 and Φ2 respectively. The compo-
sition A1 ⊕A2 enforces on B the property Φ1 ∧ Φ2.

Theorem 1 implies that safe BIP systems can be designed compositionally : it
is sufficient to verify that 1) the applied architectures do enforce their character-
istic properties and 2) they are pairwise upwards compatible. To a large extent,
the latter can be carried out syntactically by analysing the structure of the con-
nectors that define the interaction models. The next section is devoted to the
encoding of architectures into pNets, addressing item 1 by symbolic verification.

4 Encoding of architectures into open pNets

We define the encoding of BIP architectures into pNets by associating to each
architecture A = (C, VA, PA, εA, Γ) with C = (QC , q

0
C , VC , σ

0
C , PC , εC ,−→), for

each C ∈ C, and a partition D ⊆ 2PA of its dangling ports (i.e.
⊎
D∈DD = PA \⋃

C∈C PC), the corresponding pNet enc(A,D). For the sake of clarity, we define
the encoding without any priority model. Then, we provide a brief sketch of the
modifications necessary to encode maximal progress (implicitly assumed). Recall
that Γ is an interaction model over the interface (VA, PA, εA), i.e. these interface
elements are implicitly involved in the definition of Γ . We define enc(A,D) def

=
〈〈(enc(C))C∈C ,D, enc(Γ)〉〉, where enc(C) and enc(Γ) are the encodings of a
coordinator C and the interaction model Γ respectively.

Below, we present both the encodings of coordinators and interaction models.
The key constraint is that we encode each connector by one synchronisation
vector. This is necessary to 1) preserve the structure of the system and 2) allow
the encoding of maximal progress.

Although somewhat technical, the encoding of coordinators is, in fact, pretty
straightforward, comprising three key ideas: 1) we introduce an additional tran-
sition (hence also an additional state) to explicitly initialise the variables; 2) we

12

introduce additional input variables to manipulate the values provided to the
coordinator by the rest of the system for all exported variables; and 3) following
the classical technique [35], we simulate the absence of action by an additional
loop transition.

The encoding of connectors (interaction models) is more involved. Since a
connector represents a set of potential interactions, some ports may not partic-
ipate in all of them. To encode this possibility, we introduce, for each port, an
additional Boolean variable denoting whether the port participates in the inter-
action or not and, for each connector, a predicate characterising the interaction
pattern. Intuitively, the semantics of flat BIP connectors [14] depends on the
synchron/trigger annotations of ports. If all ports in a connector are synchrons,
the only allowed interaction is that comprising all the ports, i.e. they all have
to “agree to interact”. This case corresponds precisely to the semantics of syn-
chronisation vectors in pNets. If a connector has at least one trigger, then the
allowed interactions are those that comprise at least one trigger, i.e. they must be
“initiated by a trigger”. In a hierarchical connector, these principles are applied
recursively. Thus, we observe a “causality” relation among ports of a connector:
participation of a synchron in an interaction implies that of a trigger. Causal
Interaction Trees and Systems of Causal Rules, proposed in [15], formalise this
causality relation and provide transformations from connectors to Boolean pred-
icates and back. Since we use SMT techniques for the analysis of the resulting
pNet, the encoding presented below is optimised to reduce the number of vari-
ables by treating separately the “top-level” triggers (e.g. T.tick in the connector
T .tickI−−•(failI−−•C.fail) in Fig. 1).

Encoding the coordinators. The encoding of a coordinator C is a pLTS with: 1) an
initial state and an init transition that initialises all the variables to those defined
by the initial valuation σ0

C of C, 2) an action algebra that matches the actions
of the coordinator ports but adds, an additional Boolean action parameter, and
also, for each exported variable x, a corresponding fresh input variable ?x′ to
allow updates during interactions, 3) pLTS transitions that reflect the original
transitions of C with tt as parameter and 4) additional loop transitions marked
by ff. Formally, enc(C) def

= 〈〈S, s0,−−−−→
enc(C)

〉〉, such that

– s0 6∈ QC is fresh and S = QC ∪ {s0},
– vars(s) = VC∪{?x′ |x ∈ εC(p), p ∈ a, s a−→}, for all s ∈ QC , and vars(s0) = ∅,
– let uinit

def
=
(
x := σ0

C(x)
)x∈VC and, for all s a,g,u−−−→ s′ with u = (x := ex)

x∈V

(with V ⊆VC), let u′ def
=
(
x := ex

)x∈V \εC(a) ∪
(
x := ex

[
?x′
/x
])x∈V ∩εC(a), and

ε′C(a)
def
= {?x′ |x ∈ εC(p), p ∈ a},

−−−−→
enc(C)

def
=
{(
s, a
(
ε′C(a), εC(a), tt

)
, g, u′, s′

) ∣∣∣ s a,g,u−−−→ s′
}

∪
{(
s, a
(
ε′C(a), εC(a), ff

)
, tt, ∅, s

) ∣∣∣ s ∈ QC ,∃s′ ∈ QC : s′
a−→
}

∪
{
(s0, init, tt, uinit , q

0
C)
}
.

13

t1t0
s0

s3

s1

s2

B E

Timer

init

{t := 0, z := ⊤}

timeoutT [t ∈ z]

SV0 <tick(z, t, ?z′), fail(zone, b1), fail(b0),−> → fail(b0)

SV4 <init, init, -, -> → init

[(b1 => b0) ∧ (?z′ = z ∩ ((b1?zone : ⊤) + t))]

SV1 <cancel(b1), resume(b2), resume, -> → resume [b1 = b2]

SV2 <timeoutT , timeoutC , -, ask> → ask

SV3 <-, reset, -, reset> → reset

{t := 0, z := ⊤}
cancel(true)

cancel(false)

tick(z, t, ?z′)
[t < z.u]
{z :=?z′, t := t+ 1}

t : Int; z : Interval

{t := 0, z := ⊤}

Control

Min,Max : Int
zone : Interval

resume(false)timeoutC

fail(zone, false)

fail(zone, false)

{zone := [Min,Max]}
init

fail(zone, true)

resume(true)

resume(false)
resume(false) fail(zone, false)

reset
timeoutC

Fig. 2: The open pNet encoding the Failure Monitor architecture (Fig. 1) without
the Max Progress priority model

The loop transitions marked by ff will be used in the encoding of connectors.
Each BIP connector can define several interactions, i.e. ports involved in a con-
nector need not necessarily always participate. On the contrary, each action in a
pNet synchronisation vector must participate in the synchronisation. To address
this difference, we use the classical approach where non-participation of a port
in an interaction is simulated by an additional loop transition [35].

Figure 2 shows the encoding of the Failure Monitor architecture, including
the encodings of the two coordinators, i.e. enc(T) and enc(C). Notice that the
encoding in the figure is slightly optimised: some of the ports do not have an
associated Boolean value, nor the additional loop transitions. We will explain
this optimisation after we define the encoding of the interaction model.

Encoding the interaction model The holes in enc(A,D) are indexed by the el-
ements of the partition D. For the encoding of our running example, we take
D =

{
{fail, resume}, {ask, reset}

}
. This corresponds to the intuition that the dan-

gling ports fail and resume will be provided by a monitored component, whereas
ask and reset correspond to the actions provided by the “environment” (other
components of the system) that are invoked in case of a persistent failure. As
for the encoding of the coordinators, in the synchronisation vectors of enc(Γ),
we will associate Boolean values to the actions corresponding to these ports.

The encoding of the interaction model is based on its representation as a
set of connectors. Indeed, as illustrated by the Failure Monitor architecture in
Fig. 1, each connector can define several allowed interactions, depending on its
hierarchical structure and the use of synchrons and triggers.

We encode all interactions of a connector in one synchronisation vector. This
will allow us to also encode the maximal progress priority model. We use the

14

additional Boolean values associated to each port by the encoding of coordi-
nator components. For example, observe that the three ports in the connector
T .tickI−−•(failI−−•C.fail) form a “causality chain”: C.fail can only participate
in an interaction if the dangling port fail participates, which in turn can only
happen if T .tick does so. These dependencies can be rewritten as Boolean impli-
cations C.fail⇒ fail and fail⇒ T.tick. The conjunction of these two implications
can be used as a guard for the synchronisation vector encoding this connector.

Within the scope of this connector, the port T .tick participates in all inter-
actions. Furthermore, it is not involved in any other connector. Hence, the loop
transition in enc(T) labelled by tick(ff) can never be taken and, therefore, can
be removed from the encoding. Since only the transition labelled by tick(tt) is
ever taken, the implication fail⇒ T.tick is a tautology and can also be discarded.

We obtain the synchronisation vector SV0 shown in Fig. 2, where b0 and b1
are the Boolean values associated to the actions encoding the ports fail and C.fail.
The guard b1⇒ b0 encodes the causal relation between these ports. Notice that
all three ports are present in the synchronisation vector. Figure 2 shows the four
synchronisation vectors SV0–SV3 corresponding to the connectors in Fig. 1 and
an additional vector SV4, synchronising the init transitions of the two pLTSs.

In the general case, the encoding relies on the causal semantics of the algebra
of BIP connectors [15]. Disregarding the variables and data transfer, the Algebra
of Connectors AC(P) [13] provides a syntactic notation for the BIP connectors.
The causal semantics of the connectors, given in terms of the Algebra of Causal
Interaction Trees T (P), elicits the causal dependencies through an encoding
mapping τ : AC(P) → T (P). Another mapping R : T (P) → CR(P) encodes
causal interaction trees into systems of causal rules, which are Boolean implica-
tions similar to the ones in the example above. The AC(P), T (P) and CR(P)
representations of the connectors in Fig. 1 are shown in Tab. 1 (elements shown
in red can be removed for simplification as described in the example above).

Now we lift this encoding to the data-sensitive case. Below, we assume that,
as in Fig. 1, the interaction model is defined by a set of connectors, annotated
with Boolean guards and with update assignments. In particular, we assume
that the guards and update assignments are well-defined for any interaction
allowed by the connector. For example, the choice C.fail ? C.zone : > in the
update assignment T.z := T.z ∩

(
(C.fail ? C.zone : >) + T.t

)
associated to the

connector T .tickI−−•(failI−−•C.fail) in Fig. 1 ensures that the assignment is well-
defined independently of whether C.fail participates or not. Let us denote by γ ⊂
AC(PA)×B6

VA
×AVA

the set of connectors in the architecture A and by Px the set
of ports involved in the connector x ∈ γ. Then, the interaction model defined by
γ is Γ = {(a, g, u) | (x, g, u) ∈ γ, a ∈ ‖x‖} and the set of synchronisation vectors

15

Table 1: Algebraic representations of the connectors in Fig. 1
Connector Causal Interaction Tree System of Causal Rules

fail C.failT .tick

T .tick

fail

C.fail

C.fail⇒ fail ∧ T.tick
fail⇒ T.tick

T.tick⇒ tt

tt⇒ T.tick

T .cancel C.resumeresume

resume

T .cancel C.resume

C.resume⇒ resume ∧ T.cancel
T.cancel⇒ resume ∧ C.resume

resume⇒ tt

tt⇒ resume

T .timeoutT C.timeoutCask

ask T .timeoutT C.timeoutC

C.timeoutC ⇒ ask ∧ T.timeoutT

T.timeoutT ⇒ ask ∧ C.timeoutC

ask⇒ T.timeoutT ∧ C.timeoutC

tt⇒ ask ∧ T.timeoutT ∧ C.timeoutC

C.resetreset

reset C.reset
C.reset⇒ reset

reset⇒ C.reset

tt⇒ reset ∧ C.reset

encoding Γ is enc(Γ) def
= {enc(x, g, u) | (x, g, u) ∈ γ}, with

enc(x, g, u)
def
=
({
p
(
εA(p), ε

′
A(p), bp

) ∣∣∣ p ∈ Px ∩ P})P∈PC∈C
C ∪D

→ α
(
bp∈Px
p

)
∧R(τ(x))

[
bp/p
]
∧

∧
(x:=ex)∈u

(?x′ = ex) ∧
∧

x∈εA(x),x 6∈u

(?x′ = x)

 , (3)

with bp∈Px
p fresh Boolean variables, α a fresh name, τ : AC(PA) → T (PA) and

R : T (PA)→ CR(PA) the two mappings [15] discussed above and illustrated in
Tab. 1,

[
bp/p
]
is the substitution that replaces in the expression that precedes it

all occurrences of all p by corresponding variables bp.
For the sake of clarity, we simplify the case study encoding in Fig. 2 by

reusing the port names of the original architecture instead of fresh names α.
This is made possible by the fact that each synchronisation vector involves at
most one action of interest (see the properties in [12]).

In the following theorem, we claim an isomorphism between the open au-
tomaton semantics of a pNet encoding a BIP architecture and the LTS semantics
of this architecture applied to a set of simple components. We omit the formal
definition of this isomorphism relation. However, noting that open automata are,
essentially, symbolic representations of automata with data, we can summarise
it as follows: a transition belongs to the LTS iff a corresponding open transition
belongs to the open automaton and the source and target data values of the
LTS transition satisfy the predicate and implement the assignments of the open
transition.

Theorem 2. The open automaton [enc(A,D)] corresponding to enc(A,D) is
isomorphic to the LTS JΓ

(
CA, (BD)D∈D)K (see Def. 6), with, for each D ∈ D,

16

12

OT9, {t := t+ 1}

13

00

11
OT8, {t := 0, z := TopInt}

fail(true)

OT4, {}
resume

OT6, {t := t+ 1, z := z1}

ask

OT10, {t := t+ 1, z := z1}
fail(b0)

OT12, {}
reset

OT1, {...}
init

ask

OT5, {t := t+ 1}

resume
OT11, {}

[b1 = b2 = false]
resume

fail(b0)

OT3, {z := z1}

OT7, {}

resume
[b1 = b2 = true]

[t ≤ GetMax(z) ∧ b1 = b0 = true ∧ ...]

OT2, {z := z1}
[... ∧ b1 = false ∧ ...]
fail(b0)

Fig. 3: The open Automaton of the Failure Monitor Architecture

the component BD
def
= ({q}, q, VD, σ0

D, D, εD,−→), with a fresh state q and

VD =
⋃
p∈D

εA(p) , σ0
D(v) = ⊥, for all v ∈ VD ,

−→ =
{
(q, p, tt, ∅, q)

∣∣ p ∈ D} , εD(p) = εA(p), for all p ∈ D .

Encoding of the maximal progress We only present the key idea, which consists
in introducing an additional Boolean variable, for each port, for which we have
introduced one in enc(A,D). Intuitively, the Boolean variables introduced for
the encoding of interaction models determine whether it is the original transition
labeled by the port that is executed (tt), or rather the corresponding self-loop,
introduced by the encoding (ff). The new variables determine whether there is
an original transition labelled by p that could be executed from the same state,
i.e., with bp the variable introduced above for the encoding without maximal

progress, q
p(tt,bp)−−−−−→ q′ iff ∃q′′ : q p(bp)−−−→ q′′ with bp = tt in enc(A,D). In the SV

guard, we have to check whether all ports leading to p in the causal interaction
tree τ(x) can be fired (see the second column of Tab. 1 for examples). If so, then
p must be fired, i.e. p(ff) must be blocked.

Practical experiments. The above encoding provides a mechanism for the sym-
bolic verification of architectures using our existing tool [36] to compute the
open automaton semantics of an open pNet. This tool computes open transi-
tions from pLTS behaviours and synchronisation vectors of the pNet, then uses
an SMT engine to check satisfiability of their predicates, minimising the size of
the resulting automaton.

In Fig. 3 we show the full open automaton obtained from the pNet in Fig. 2.
Due to space limitations, we do not show the details of the open transitions, but
only the assignments of state variables, some useful parts of the predicates, and
the resulting action; full details can be found in [12]. This automaton has 12
transitions, including those encoding various possible firing of some interactions,
e.g. OT2 and OT3 for fail. Notice, however, that the global actions of these

17

open transitions have an additional Boolean parameter. In this context, model
checking should be understood after application of the encoding, namely here the
original fail event must be an effective “fail” of the hole “B”, that is a fail(true)
action in the open automaton.

Model-checking of open-automaton is out of the scope of this paper, though
the resulting automaton here is small enough to observe the kind of properties
we can prove. It is clear that our encoding allows to test specific values of state-
variables in formulas, like e.g.:

A [(z = >) W fail] ∧ AG
(
reset→ A [(z = >) W fail]

)
. (4)

that says that as long as no failure has occured, the z variable of the T component
has the value >.

But we can also (as long as we get a proper axiomatisation of our data
operators in the SMT engine) handle more involved data properties, like here
the fact that a reset can only be requested within the specified delay after a failure:

∀T0, T1 ∈ Z, AG
(
(fail ∧ T.t = T0)→

A
[(
(ask ∧ T.t = T1)→ (T1 − T0 ∈ C.zone)

)
W (reset ∨ resume)

])
, (5)

Last, a detailed study shows that the safety property stated on page 10 does
not hold, because of the fail loop on state 11. This is because we did not use
the maximal progress assumption here. If we do, we get the corrected behaviour
where OT7 disappears, and OT2 and OT10 are restricted to b0 = ff. This one
verifies all the properties listed above.

5 Related work

The design methodology based on BIP architectures is inspired by the notion
of design patterns introduced in [24]. It is radically different insofar as BIP
architectures posses formal semantics; their composition is well defined and pre-
serves their characteristic properties. This is a relatively novel trend with few
comparable works, whereof the most relevant is a theory formalising common ar-
chitectural styles, such as publisher-subscriber or blackboard, proposed in [32,33].

Although direct verification of BIP models is possible [4,9,10,11,37], none
of these previous works address compositional verification of parameterised BIP
systems with data and maximal progress priorities achieved in the present paper.

From a broader perspective, basic research on behaviour models and verifica-
tion algorithms for data-sensitive systems started in the nineties, with the sem-
inal work of Hennessy, Lin, and their colleagues on value-passing systems with
assignments [26,30,31]. Later, many different works addressing various classes of
infinite-state systems and/or parameterised topologies have been published, us-
ing combinations of approaches, often including predicate abstraction and SMT

18

satisfiability (e.g. [1,16,20,21,25]). With respect to these, we use symbolic repre-
sentations not only to get a finite representation of infinite spaces, but also to
express the (data-sensitive) synchronisations with the environment, making our
models suitable for compositional verification. Among these works, several have
shown the capacity of the SMT engines (either Z3 or Yikes) as servers for solving
verification conditions of the algorithms, for large case-studies (e.g. [18,22]).

As compositional proof of safety is difficult, some approaches rely on theorem
proving to ensure the safety of component operations. Coqots and Pycots [17]
even manage to prove the safety of reconfiguration procedures which are known
to be highly difficult to verify, and massively parameterised. The approach relies
on a high expertise and significant efforts from the user. Here, we rely on auto-
matic verification thanks to the SMT solver but we cannot prove the safety of
the reconfiguration procedure.

In [23], the authors propose a compositional proof system for distributed
objects that is suitable for implementation within the KeY framework [8] and
uses a Hoare logic approach. Compared to this approach, we do not deal with
complex history-based specifications and use interaction specification and SMT-
reasoning instead of Hoare logic.

6 Conclusion

BIP architectures are composition tools that enforce safety properties; the com-
position of architectures entails the composition of the associated properties. We
have extended architectures with data-sensitive interactions, and proved that
this extension still guarantees the preservation of safety properties by archi-
tecture composition, under reasonable assumptions. This extends the original
compositional methodology offered by BIP architectures. Then we use pNets as
a semantic formalism to encode architectures with data. pNet is a low level co-
ordination model for open systems, in which composition preserves bisimulation
equivalences. pNet is equipped with tools computing its behavioural semantics in
terms of symbolic automata, allowing model-checking and equivalence checking
with algorithms relying on SMT engines. As a result, we obtain automatic and
compositional guarantees of safety properties with data where compositionality
is given by the BIP architectures, and pNet tools provide automatic verification
of the properties of each architecture.

The translational approach allows us to benefit from the methods and tools
developed separately in BIP and pNets communities, avoiding the additional
effort of designing the corresponding tools in both contexts from scratch.

The presented work opens a number of avenues for future work, among which
the most immediate ones consist in 1) developing tools that would implement
the discussed encoding and verification techniques; 2) studying the preservation
of liveness properties by architecture composition under assumptions similar to
those discussed in [5] and 3) generalisation to priority models other than maximal
progress.

19

References

1. F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Universal guards,
relativization of quantifiers, and failure models in model checking modulo theories.
JSAT, 8(1/2):29–61, 2012.

2. R. Ameur-Boulifa, L. Henrio, O. Kulankhina, E. Madelaine, and A. Savu. Be-
havioural semantics for asynchronous components. Journal of Logical and Algebraic
Methods in Programming, 89:1 – 40, 2017.

3. A. Arnold. Synchronised behaviours of processes and rational relations. Acta
Informatica, 17:21–29, 1982.

4. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Com-
positional verification of parameterised timed systems. In K. Havelund, G. J.
Holzmann, and R. Joshi, editors, NASA Formal Methods - 7th International Sym-
posium, NFM 2015, volume 9058 of LNCS, pages 66–81. Springer, 2015.

5. P. Attie, E. Baranov, S. Bliudze, M. Jaber, and J. Sifakis. A general framework for
architecture composability. Formal Aspects of Computing, 18(2):207–231, 2016.

6. E. Baranov. A Semantic Framework for Architecture Modelling. PhD thesis, EPFL,
2017.

7. A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and
J. Sifakis. Rigorous component-based system design using the BIP framework.
IEEE Software, 28(3):41–48, 2011.

8. B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-oriented Software:
The KeY Approach. Springer-Verlag, Berlin, Heidelberg, 2007.

9. S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. D-Finder: A tool for com-
positional deadlock detection and verification. In CAV, pages 614–619, 2009.

10. S. Bensalem, A. Griesmayer, A. Legay, T.-H. Nguyen, J. Sifakis, and R. Yan. D-
Finder 2: towards efficient correctness of incremental design. In 3rd int. conf. on
NASA Formal methods, NFM’11, pages 453–458, Berlin, 2011. Springer.

11. S. Bliudze, A. Cimatti, M. Jaber, S. Mover, M. Roveri, W. Saab, and Q. Wang.
Formal verification of infinite-state BIP models. In B. Finkbeiner, G. Pu, and
L. Zhang, editors, 13th Int. Symposium on Automated Technology for Verification
and Analysis (ATVA 2015), volume 9364 of LNCS, pages 326–343. Springer, 2015.

12. S. Bliudze, L. Henrio, and E. Madelaine. Verification of concurrent design patterns
with data. Technical report, Inria, 2019. To appear.

13. S. Bliudze and J. Sifakis. The Algebra of Connectors—Structuring interaction in
BIP. In Proceedings of the 7th ACM & IEEE Int. Conf. on Embedded Software,
EMSOFT 2007, pages 11–20, Salzburg, Austria, Oct. 2007. ACM SigBED.

14. S. Bliudze and J. Sifakis. The algebra of connectors—Structuring interaction in
BIP. IEEE Transactions on Computers, 57(10):1315–1330, 2008.

15. S. Bliudze and J. Sifakis. Causal semantics for the algebra of connectors. Formal
Methods in System Design, 36(2):167–194, 2010.

16. R. Bruni, D. de Frutos-Escrig, N. Martí-Oliet, and U. Montanari. Bisimilarity
congruences for open terms and term graphs via tile logic. In C. Palamidessi,
editor, CONCUR 2000, pages 259–274, Berlin, 2000. Springer.

17. J. Buisson, E. Calvacante, F. Dagnat, E. Leroux, and S. Martinez. Coqcots &
Pycots: non-stopping components for safe dynamic reconfiguration. In CBSE 2014:
proceedings of the 17th international ACM Sigsoft symposium on Component-based
software engineering, page 1, Lille, France, June 2014.

18. D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Verifica-
tion of data-aware processes via array-based systems (extended version). CoRR,
abs/1806.11459, 2018.

20

19. A. Cansado and E. Madelaine. Specification and verification for grid component-
based applications: from models to tools. In F. S. de Boer, M. M. Bonsangue, and
E. Madelaine, editors, FMCO 2008, number 5751 in LNCS. Springer-Verlag, 2009.

20. R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuXmv symbolic model checker. In A. Biere and
R. Bloem, editors, CAV, pages 334–342, Cham, 2014. Springer.

21. A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. The kind 2 model checker. In
S. Chaudhuri and A. Farzan, editors, Computer Aided Verification, pages 510–517,
Cham, 2016. Springer International Publishing.

22. A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. IC3 modulo theories via implicit
predicate abstraction. CoRR, abs/1310.6847, 2013.

23. C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. The Journal of
Logic and Algebraic Programming, 81(3):227 – 256, 2012. The 22nd Nordic Work-
shop on Programming Theory (NWPT 2010).

24. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

25. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT model checking
of array-based systems. In Automated Reasoning, 4th International Joint Confer-
ence, IJCAR 2008, Sydney, Australia, 2008, pages 67–82, 2008.

26. M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Comput. Sci.,
138(2):353–389, 20 Feb. 1995.

27. L. Henrio, O. Kulankhina, S. Li, and E. Madelaine. Integrated environment for
verifying and running distributed components. In P. Stevens and A. Wąsowski,
editors, Fundamental Approaches to Software Engineering: 19th International Con-
ference, FASE 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–8,
2016, Proceedings, pages 66–83, Berlin, Heidelberg, 2016. Springer Berlin Heidel-
berg.

28. L. Henrio, E. Madelaine, and M. Zhang. pNets: an Expressive Model for Param-
eterised Networks of Processes. In 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP’15). IEEE, 2015.

29. L. Henrio, E. Madelaine, and M. Zhang. A theory for the composition of concurrent
processes. In E. Albert and I. Lanese, editors, 11th Int. Fed. Conf. on Distributed
Computing Techniques (FORTE), LNCS. IFIP, Springer, 2016. Heraklion, Greece.

30. H. Lin. Symbolic transition graph with assignment. In U. Montanari and V. Sas-
sone, editors, CONCUR ’96, Pisa, Italy, 26–29 Aug. 1996. LNCS 1119.

31. H. Lin. Model checking value-passing processes. In 8th Asia-Pacific Software
Engineering Conference (APSEC’2001), Macau, december 2001.

32. D. Marmsoler. Towards a theory of architectural styles. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, pages 823–825, New York, NY, USA, 2014. ACM.

33. D. Marmsoler. Hierarchical specification and verification of architectural design
patterns. In A. Russo and A. Schürr, editors, Fundamental Approaches to Software
Engineering, FASE 2018, volume 10802 of LNCS, pages 149–168. Springer, 2018.

34. A. Mavridou, E. Stachtiari, S. Bliudze, A. Ivanov, P. Katsaros, and J. Sifakis.
Architecture-based design: A satellite on-board software case study. In 13th Int.
Conf. on Formal Aspects of Component Software (FACS 2016), 2016.

35. R. Milner. Calculi for synchrony and asynchrony. TCS, 25(3):267–310, 1983.

21

36. X. Qin, S. Bliudze, E. Madelaine, and M. Zhang. Using SMT engine to generate
symbolic automata. In 18th International Workshop on Automated Verification of
Critical Systems (AVOCS 2018). Electronic Communications of the EASST, 2018.

37. Q. Wang and S. Bliudze. Verification of component-based systems via predicate
abstraction and simultaneous set reduction. In P. Ganty and M. Loreti, editors,
Trustworthy Global Computing, volume 9533 of LNCS, pp 147–162. Springer, 2015.

	Verification of concurrent design patterns with data
	Introduction
	General Notations and pNets Previous Results
	The theory of architectures with data
	Encoding of architectures into open pNets
	Related work
	Conclusion

