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Software measurement processes require to consider more and more data, measures and metrics. Measurement plans become complex, time and resource consuming, considering diverse kinds of software project phases. Experts in charge of defining the measurement plans have to deal with management and performance constraints to select the relevant metrics. They need to take into account a huge number of data though distributed processes. Formal models and standards have been standardized to facilitate some of these aspects. However, the maintainability of the measurements activities is still constituted of complex activities. In this paper, we aim at improving our previous work, which aims at reducing the number of needed software metrics when executing measurement process and reducing the expertise charge. Based on unsupervised learning algorithm, our objective is to suggest software measurement plans at runtime and to apply them iteratively. For that purpose, we propose to generate automatically analysis models using unsupervised learning approach in order to efficiently manage the efforts, time and resources of the experts. An implementation has been done and integrated on an industrial platform. Experiments are processed to show the scalability and effectiveness of our approach. Discussions about the results have been provided. Furthermore, we demonstrate that the measurement process performance could be optimized while being effective, more accurate and faster with reduced expert intervention.

Introduction

Software measurement is currently gaining in popularity and effectiveness due to several breakthrough advancements in data collecting techniques, data analysis, artificial intelligence, human factors, etc. [START_REF] Oivo | Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2018[END_REF]. Measurements are used in many research and industrial areas to monitor the involved processes in order to improve the production(s), reduce the costs (time and resources), manage the human efforts, etc. [START_REF] Dumke | Software measurement: current trends in research and practice[END_REF]. To tackle these purposes, diverse techniques have been developed and integrated in most of the industrial processes. From measurement plans defined by experts (often the project, software or system managers advised by engineers), these approaches collect an important amount of data that are semi-automatically analyzed. This analysis allows to raise issues, alarms to fix or improve the measured elements.

In a previous work [START_REF] Dahab | A novel formal approach to automatically suggest metrics in software measurement plans[END_REF], we conducted an interesting and promising research work to fully automate the definition of software measurement plans at runtime. Indeed, in most real case studies, that process is fixed in a sense that the expert measures all what he can and not necessarily what he needs. Then a huge amount of data are unnecessarily collected and analyzed. Our previous work has shown that measurement plans can be suggested and adjusted at runtime through an automatic learningbased methodology in reducing the amount of collected data. In this current novel work, we increase our efforts in the analysis and efficiency of software measurement by introducing unsupervised learning algorithm, and we specifically demonstrate the effectiveness of considering the clustering approach X-MEANS [START_REF] Pelleg | X-means: Extending kmeans with efficient estimation of the number of clusters[END_REF] to reduce further the management cost and improve the performance of such a process. We herein use X-MEANS to automatically generate correlations of a sample of data through clustering by generating a training file as input to our previous suggestion approach.

Software measurement is an empirical science which depends on the experience [START_REF] Fenton | Software metrics: roadmap[END_REF]. It is impossible to define a generic measurement analysis model. It depends on the software project, the used language, the used computer. Thereby, to evaluate a software, it is needed to know the context of the measured object, as well as, to analyze a software evaluation is needed to know the context. That is what makes difficult to automate a software measurement analysis. And this is to handle this lack that we propose to use an unsupervised learning technique, which will learn from a measurement dataset of a software to generate the corresponding analysis model and reduce the expert load and the related time cost.

In our novel work, our objective is to use this learning technique not only to reduce the time cost and the expert load by automatically generating a training file, but also to facilitate analysis model validation specific to software quality analysis and perhaps enable a more efficient future measurement process than in other older engineering systems, i.e, electricity, biology, physics, etc. Indeed, those have welldefined measurement plans like their analysis models allowing standard measurement protocol, effective and available to everyone.

Regarding our main contributions, they are summarized in the following:

• We use unsupervised learning approach as generator of analysis models in order to reduce the time cost, expert cost while improving the performance.

• We formally define our software measurement analysis and suggestion tool.

• And we experiment and assess our approach to suggest software metrics.

Preliminaries

This section defines the application domain, that is the software measurement. First, we briefly formally define the concept of software measurement, then we introduce the ISO/IEC 25000 standard on which we base our domain knowledge, at last we define the analysis context, the data model.

Software Measurement Definitions

Software measurement concepts have been formally defined in many research papers and standards, implemented in tools and are now used for several in-dustrial works. We provide few basic definitions that we use in our work.

A Measure is the calculation evaluating a software property (e.g., LoC). Formally, this is a function f : A → B| A ∈ X, B ∈ B that, from a set of measurable properties A of an object X (also named measurand in software measurement), assigns a value B of a set B. A Measurement is then a quantification of a measured property [START_REF] Fenton | Software metrics: a rigorous and practical approach[END_REF]. Formally, it refers to the result y of the measure f such as

y = f (A)| A ∈ X.
In our work, these functions have been formally used, implemented and integrated within an industrial platform. For that, other concepts need to be defined. A Metric is the formal specification of a measurement. It specifies the measurand, the measure(s) and the software property to be measured. Finally, since one of the main contributions of our work is to improve the software measurement plans at runtime, we define a Measure Plan as an ordered set of metrics. It is expected to be executed at a specific time t or during a well-defined duration (depending on the measurand(s), the platform, the users, the probes, etc.) and according to an ordered metrics sequence. Besides, they can be run sequentially or in parallel.

ISO/IEC 25000 -A Standardization of Software Measurement Process

We try to improve the software measurement process by using learning algorithms to reduce the costs of management and analysis. For that, we try to reduce, on one hand, the expertise charge using unsupervised learning algorithm and on the other hand, to optimize the measurement process performance by reducing its processing load.

In order to reduce the processing load, we proposed [START_REF] Dahab | A novel formal approach to automatically suggest metrics in software measurement plans[END_REF] a suggestion algorithm. The aim of this latter is to analyze a set of measurements during a period of time and according to the analysis result a suggestion of a new measurement plan is generated. This allows to reduce the processing load by executing at each time the metrics of interest according to the software needed instead of executing all the metrics each time.

To do this, it is necessary to determine the software properties to be analyzed and the corresponding metrics. Therefore, we base our work on the standard ISO/IEC 25000 [START_REF] Iso | Iec 25000 software and system engineeringsoftware product quality requirements and evaluation (square)-guide to square[END_REF] which defines within 4 divisions the software quality and the measurement of the quality of a software. Especially, the ISO/IEC 25010 (ISO/IEC, 2010) division defines the software properties, 8 for quality product, which describe the software quality. And the ISO/IEC 25020 [START_REF] Iso | Iec 25020 software and system engineeringsoftware product quality requirements and evaluation (square)-measurement reference model and guide[END_REF] division defines the measures (or metrics), more than 200, which give information on these properties.

Our correlation model explained in the next section is based on this model.

Software Measurements Model

The analyzed data are software measurements, more precisely the measurements values. These values give information on a software at time t. Definition 1 Measurement Plan: A measurement plan mp is the ordered set of metrics considered for the global measurement process and the correlation between the metrics and the evaluated software properties y. This is defined by the expert at the beginning of the process and it never changes. This is the context of our measurement process and the basis for the suggestion (see 3.1.3).

We define the ordered set m and the set of software properties y as:

m = {m 1 , ...m n }
(1) where n is the number of considered metrics and m i a unique metric.

y = {y 1 , ...y l }
(2) where l is the number of considered properties and y k a unique property.

The correlation C is defined as below:

C = (m i , y k ) (3)
where m i is the metric i and y k the property k. Some metrics are common to several properties while some metrics are specific to a single one. These correlations are used by the suggestion step (cf. 3.1.3). Finally a mp is defined as a set of metrics m, properties y and their correlations C:

       m = {m 1 , ...m n } y = {y 1 , ...y l } c = (m i , y k ) m i ∈ m and y k ∈ y (4)
Definition 2 Vector ì v: A vector is the analyzed data model. This is a set of different metrics values. Each field of the vector is a value x i of a specific metric executed at time t. Thus, a vector contains a set of information on a software at time t and it is defined as:

ì v = {x 1 , ...x n }
(5) Where n is the number of metrics in the measurement plan. These metrics give information on one or several software properties. This correlation between software properties and metrics is herein used for the suggestion of measurement plans.

Definition 3 Feature: A feature is a field of a vector. It refers to the metric i associated to the field i of a vector ì v. A feature is unique. The place of metrics in the vector is fixed. So a feature is a value x i in a vector ì v Definition 4 Class: A class is a cluster of vectors. It refers to a group of vectors with close values. In a broader sense, it refers to a group of vectors providing the same information type on the software and is defined as below:

class = ì v 1 , ...ì v p ( 6 
)
Where p is the number of vectors classified in the class.

Our Unsupervised Learning approach

In this paper, we use our suggestion approach to improve the result of our previous works, well defined in the paper [START_REF] Dahab | A novel formal approach to automatically suggest metrics in software measurement plans[END_REF], where our purpose was to generate flexible measurement plans adapted to the software need, thus allowing to reduce the analysis cost and the one of the software measurement process.

However, this approach is still dependent to the expert for the initialization step, especially for the elaboration of the training file. As a reminder, this file is used to train the classifier and it defines the correlation between vectors and classes. So, the analysis model is manually done. Thus, the cost time of this step is high when the samples to classify are highly numerous.

In order to handle this lack, we propose to use an unsupervised learning algorithm to generate automatically an analysis model. From an unlabeled software measurements sample, a labeled one is generated. This output is then used as training file to train the classifier used for the analysis and suggestion steps.

The purpose is to use a clustering algorithm. It will group in clusters the similar vectors of measurements then according to the clustering result, the expert will associate to each cluster a set of metrics to suggest (see 2.2). Herein, the expert intervention only appears for determinating the correlation between classes corresponding to the clusters, and set of metrics.

Our improved suggestion approach is based on three procedures:

• The elaboration, through software measurements clustering based on unsupervised learning ap-proach X-MEANS, of an analysis model (or mapping system as called in our previous work), herein considered as the initial measurement plan mp.

• An analysis procedure, which aims to highlight a software property of interest through a software metrics classification, based on a learning technique, herein SVM.

• A suggestion of metrics based on the mp, the analysis result and the features selection procedure, which aim to determine the needed metrics (nm), for the conservation of information and based on the learning technique RFE.

In the next sections, we briefly describe our metrics suggestion approach that is improved and formalized. Then we introduce the X-MEANS technique.

Our Metrics Suggester Approach

This approach is based on three procedures :

• The initialization of the measurement plan,

• The analysis of measurements data through the supervised classification algorithm SVM,

• And the suggestion of novel measurement plans.

The initial Measurement Plan

The initial measurement plan is the basis of our suggestion algorithm. Indeed, the analysis and the suggestion are based on it.

The initial measurement plan is elaborated by the expert and it defines the observed set of metrics, the corresponding software properties and the mandatory metrics, the ones that must always be in the suggested measurement plans.

This MP is the definition of the measurement context : what is observed by the software properties, how it is observed by the set of metrics related to the properties and the mandatory ones.

The set of metrics groups all the metrics that could be computed during all the measurement process. Thus, the suggestion is a subset of this set of metrics.

The analysis

The analysis consists in classifying a set of measurement data, more precisely a set of vectors ì v. Each vector is classified in one class which refers to a software property defined in the initial measurement plan and related to ISO/IEC 25000. To classify the data we use a supervised learning algorithm SVM.

SVM is a linear classifier trained through a training file. This file is elaborated by the expert and it corresponds to a manual classification. Indeed, the expert classifies a set of vectors by labelling each vector by a class. Then, a classifier is trained according to this manual classification. Thereby a specific classifier is then used for a specific analysis. The training file corresponds to the initial measurement plan. The used labels should correspond to the defined class as the set of metrics classified. In fact, the suggestion is based on this specific classification.

It means that each time we want to change the context of the measurement process, a new training file should be done by an expert to generate the corresponding classifier. And this was the main limitation of our approach. Despite an automated and "smart" analysis, our approach is still highly dependent to the expert and quite costly in time.

Suggestion

The suggestion is based on the classification result and the initial measurement plan.

The result of the classification is a set of clusters. The number of clusters is the number of defined class and the data in the clusters is the set of vectors gathering during the measurement process. From this set of clusters, we choose the one with the largest number of vectors classified as the class of interest. Then, we add in the new measurement plan the set of metrics corresponding to the class of interest defined in the initial measurement plan. If all the vectors are classified in the same class, we thus suggest all the metrics.

Next, in the first case, we determine the metrics which were necessary for the classification by using the RFE algorithm [START_REF] Gao | Choosing software metrics for defect prediction: an investigation on feature selection techniques[END_REF]. The RFE algorithm used the classifier and the used data to select the features which allowed the classification result. Once the selection is done, we add the selected features in the new measurement plan.

Finally, we add the mandatory metrics defined in the initial measurement if these latter were not selected by the previous steps. Then according to these steps we generate the new measurement plan as a suggestion.

This procedure is formally described below, by the Algorithm 1. It takes as input the initial measurement plan, herein called mp, the trained classifier f and the set of vectors to be analyzed {ì v}.

Where mp is the suggested measurement plan, mm the defined mandatory metrics and f s the feature selection algorithm (RFE).

In order to reduce the load of the expert, we aim at improving this approach by using an unsupervised

Algorithm 1 Metrics Suggestion

Input mp, f , {ì v} 1: Output mp 2: y ← array() 3: n f ← array() 4: for each ì v in {ì v} do 5:

y ← f (ì v) 6: end for 7: if y == 0 or y without duplicate == 1 then 8:

return mp 9: else 10:

n f ← f s( f , {ì v}) 11: mp ← m f +mp[most common(y)]+mp[mm] 12:
return mp 13: end if learning technique to generate automatically the training file. The advantage of using this latter is to reduce the expert cost, but also the dependency of an expert. Indeed, as the software measurement is an empirical science, it depends on the experience, on the software or on the property evaluated. There is as much model as there is software project. Thereby, our purpose is to use learning clustering algorithm X-MEANS as expert to generate automatically the training file according to a measurement dataset of the evaluated project. The expert would only intervene to define the initial measurement plan according to the result of X-MEANS application.

Unsupervised-based analysis model elaboration

X-MEANS [START_REF] Pelleg | X-means: Extending kmeans with efficient estimation of the number of clusters[END_REF] is a clustering algorithm, more precisely it is an extension of the K-MEANS algorithm. X-MEANS splits into k clusters a sample of data without initialization of the number of cluster k. It determines the best k clusters by minimizing the intercluster similarity and satisfying the Bayesian Information Criterion BIC score.

For that, it dertermines 2 initial clusters by defining randomly 2 centrods, then assigns to each data the closest centrod. Then, it updates the centrods according to the sum of distances of each cluster. This distance D should be the smallest. Finally, it splits each cluster in two clusters and go to the previous step to have the lowest inter-cluster. A low inter-cluster similarity is ensured by assigning a data to the cluster whose distance to its center is the smallest. Thus, it tends to minimize this following function D.

D = k i=1 n j=1 |c i , x i j | (7)
Before each split the BIC score of each cluster model is computed. As example, the initial number of cluster is 2. So we have 2 clusters, c and i, with one centrod each, k = 1. For each cluster we compute its BIC score. Then we split each cluster in two sub clusters, that's mean k = 2 for each one. And then we compute the new BIC score of c and i with k = 2. If this score is lower than the previous one, we keep the cluster with k = 1. Else we split another time each sub cluster in two sub-sub clusters etc. So, if BIC(c, k = 1) > BIC(c, k = 2) we keep c with k = 1. And if BIC(i, k = 1) < BIC(i, k = 2) we keep i with k = 2 and we split each sub cluster of i in two sub sub clusters while c remains unchanged. After the splitting process this score is used to determine the best model : the one with the higher BIC score.

Once the clustering is done, we have a labeled dataset. From this labeled dataset the expert design the correlations between the clusters and set of metrics, then it is used as training dataset to train the classifier.

Experiment

Our analysis and suggestion tool is built as a web application as illustrated in the Figure 1. The architecture is organized around the machine learning unit (ML tool), which regroups the classification and feature selection algorithms. The first one is used to train the classifier, through the training file, and then to analyze the data by classifying it according to the trained classifier; the second one is used to determine the necessary features (herein metrics) to the classification. We use this latter to determine dynamically the mandatory metrics for the next analysis. The library used to develop the learning algorithms is scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF].

As our work is taking part of a European project MEASURE, its implementation has been integrated in the related industrial platform as an analysis tool.

Industrial MEASURE Platform Integration

The MEASURE Platform1 is the research result of the European project ITEA3 MEASURE2 . This project aims to improve the whole software measurement processes. For that, this platform proposes a database as storage of software metrics specified and developed according to the standard language SMM; a storage of measurement result; a coverage of all the software engineering processes; and analysis tools. As described in the Figure 2, there is the main measure platform which enables the communication between the different stores and the analysis tool, the measurement tools and the agent platform. The measurement tools allow to use other external measurement tools. And the agent platform allows a local execution of the metrics with a storage of results in the platform.

Our Metrics Suggester tool is integrated in the platform, as shown in the Figure 3, by using the REST API of the platform. This latter allows to connect our analysis tool to the platform, to gather stored measurements and to generate a dashboard from the platform.

In the next section, we will present the results of our improved approach for automatically generating a software measurement analysis model based on experience and measurements data history.

Automated analysis model generation

For evaluating our approach, we used a real industrial use case provided by one of the MEASURE partners. This one is based on a modelling tool suite. The analysis of this tool focuses on the developed Java code.

Experimental Setup

The considered set of metrics for the measurement process includes 13 metrics giving information on 3 software properties, as described in Table 4. This M P is defined by the measurement context : the observed metrics during all the processes and the mandatory ones. The properties or classes give information on what is evaluated, but the actual number of classes will be determined by the X-MEANS algorithm. In fact, the initial measurement plan will be defined according to the result of the X-MEANS execution, the expert will define the correlations between subsets of metrics and clusters.

The metrics related to the Maintainability property give information on the quality of the code. The ones related to Reliability give information on the reliability of the services and the Security ones are about the vulnerabilities in the code.

In order to execute X-MEANS, we generate a file with a fixed amount of data and a fixed number of group corresponding to a vector type : the data are vectors with values which correspond to a property. For example, the fields corresponding to the metrics related to the maintainability property are high and the others are low, herein called vector-type. The objectives are twofold, first to verify if the clustering result matches with the expectation and if the suggestion still provides correct results with the automated labeled data set as input training file.

Clustering Results

As depicted in the Figure 5, the data are homogeneously distributed in the files 1 and 2: there is the same amount of vector types in each group. A group is a vector-type set. Finally, the data in the files 3 and 4 are heterogeneously distributed. There is a different amount of vectors in each group.

The column Data gives the amount of vectors per file and the column Distribution gives the number of vector-type.

Regarding the clustering result, we can see that when the file is too small, the clustering accuracy is not high. Indeed, the file 1 with 50 vectors and 3 vector-type is grouped in two homogeneous clusters while we expected 3 groups. But with files containing more data, the clustering result is better and promising. The accuracy result is better and they correspond to the expectations: the number of clusters corresponds to those in the groups and the distribution of the vectors in the clusters complies with those in the groups.

To conclude, X-MEANS shows a good performance to learn as an expert from experiences and to provide a reliable analysis model with considerable time savings. But also, this can be used as models validator, in order to verify the validity of data model.

Suggestion results

Finally, the initial measurement plan is defined by the expert according the previous step result. In fact, the expert will add to the MP presented in the Figure 1 the correlation between clusters and a metrics subset.

Once the initial mp is defined, we train the classifier with the file 3. Then, as suggestion experiment, we use as input files to analyze, a dataset of 50000 unclassified vectors divided in 10 subsets of 5000 unclassified vectors. The objective is to see if the suggestion provides correct plans (of metrics).

The Figure 6 shows the results of suggestions based on the previous analysis model. The results show a dynamic suggestion of mp. Each mp is between 5 and 13 metrics. There is no convergence (e.g., deadlock or undesired fixity in the generated plans) and the suggested mp evolves continuously according to the dataset values.

Related Works

Standardization institutes put lots of efforts in defining. They focus on the definition and formalization of software quality models such as the ISO9126 that qualifies and quantifies functional and non-functional properties with software metrics (Car- vallo and Franch, 2006). Besides, two other standardization institutes worked in that way to propose two commonly used norms namely ISO/IEC25010 [START_REF] Kitchenham | What's up with software metrics? -A preliminary mapping study[END_REF] and OMG SMM [START_REF] Bouwers | Evaluating usefulness of software metrics: an industrial experience report[END_REF] in order to guide the measurement plan specification. These two last standards have been reviewed by the research and industrial community, and are adapted, integrated and applied in many domains. In the research literature, several works on software metrics selection for software quality have been provided [START_REF] Gao | Choosing software metrics for defect prediction: an investigation on feature selection techniques[END_REF]. Recent techniques based on learning approaches have been proposed. Most of them are dedicated to software defect prediction [START_REF] Shepperd | Researcher bias: The use of machine learning in software defect prediction[END_REF][START_REF] Macdonald | Software defect prediction from code quality measurements via machine learning[END_REF], [START_REF] Laradji | Software defect prediction using ensemble learning on selected features[END_REF], metrics selection [START_REF] Bardsiri | Machine learning methods with feature selection approach to estimate software services development effort[END_REF] or even Software testing [START_REF] Kim | Machine learning frameworks for automated software testing tools: A study[END_REF]. However, even if these techniques have introduced considerable progress to improve the software quality, they have still some limitations. The measurement plan is still manually fixed by the project manager or the experts in charge of its definition. Furthermore, the implementation of the measures is dependent on the developer and reduce the scalability, maintainability and the interoperability of the measurement process.

While a current study shows the lacks in the use of learning technique for software measurement analysis [START_REF] Hentschel | Big data benefits for the software measurement community[END_REF], there are in literature some works which use supervised learning algorithms, especially for software defect prediction [START_REF] Laradji | Software defect prediction using ensemble learning on selected features[END_REF][START_REF] Shepperd | Researcher bias: The use of machine learning in software defect prediction[END_REF] or for prioritize software metrics [START_REF] Shin | Evaluating complexity, code churn, and developer activity metrics as indicators of software vulnerabilities[END_REF]. Indeed, there are a lot of software metrics, and currently the measurement processes execute all the metrics continuously. This latter shows that we can prioritize the metrics and thus reduce the number of metrics to be executed.

There are also works which propose to use un-supervised learning technique to estimate the quality of software [START_REF] Zhong | Unsupervised learning for expert-based software quality estimation[END_REF] as "expert-based".

They also propose to base on clustering techniques to analyze software quality (Zhong et al., 2004a). Other works propose to combine supervised and unsupervised learning techniques to predict the maintainability of an Oriented Object software [START_REF] Liu | Applications of support vector mathine and unsupervised learning for predicting maintainability using object-oriented metrics[END_REF]. But all of these works focus on the analysis or prediction of one software property. The aim of our approach is to allow the less of expert dependency to evaluate all the software engineering process, and to suggest flexible mp continuously according to the software need.

Conclusion & Perspectives

In this paper, we proposed to improve our previous work by reducing the expert dependency to the management of the analysis process. For that, we propose to use an unsupervised learning algorithm X-MEANS to take the place of the expert and to generate automatically an analysis model by learning from an historical database. The objective is to reduce the management cost, and the time cost.

Well implemented and experimented, this approach shows the possibility to generate a reliable model with a low time cost, and also to verify the validity of manual models.

The promising results demonstrate us the beneficial contribution of using learning techniques in the software measurement area. Thereby, as perspective, it could be interesting to analyze the differences between automated models and manual models and also to increase the independence to the expert by generating automatically the correlations between clusters and metrics subsets. A statistic method on the weight of features could be envisaged in future works.
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