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Abstract

We study coactions of finite quantum groupoids on unital C˚-
algebras and obtain the Tannaka-Krein reconstruction theorem for
them.
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1 Introduction

As shown in [20], [21], weak Hopf C˚-algebra in the sense of [3] and their
coideal C˚-subalgebras play important role in the description of Jones’s tower
of II1-subfactors with finite index and finite depth. It is also known that
any fusion category can be realized as a representation category of a weak
Hopf algebra [9]. This explains the interest in the construction of concrete
examples of these objects and in the classification of their coideal subalgebras.

In this paper we use the term ”a finite quantum groupoid” instead of
”a weak Hopf C˚-algebra” because a groupoid C˚-algebra and an algebra
of functions on a usual finite groupoid carry this type of a structure. Some
particular constructions of finite quantum groupoids were proposed in [31]
and [19] (see also the survey [22] and references therein), but the general way
to construct them is the application of the Hayashi’s reconstruction theorem
of Tannaka-Krein type [10] to concrete tensor categories.

The above approach was used in [13], where a series of concrete finite
quantum groupoids was constructed using Tambara-Yamagami categories
[27]. These categories belong to the much wider family of Z{2Z-extensions
of pointed fusion categories classified in [28]. The problem of the description
of coideal C˚-subalgebras of a given finite quantum groupoid is even harder,
and until now only two concrete families of such subalgebras constructed in
[13] ”by hand” are known.

On the other hand, a similar problem exists in the theory of compact
quantum groups (CQG), where a lot of concrete examples were constructed
using well-known Woronowicz’s reconstruction theorem of Tannaka-Krein
type [32]. As for the description of coideal C˚-subalgebras of a given CQG,
the recent papers on categorical duality for (co)actions of CQG on C˚-
algebras proved to be very useful - see [6], [7], [14], [17].

Our aim, here and in a subsequent work, is to develop a similar approach
for the study of finite quantum groupoid coactions on C˚-algebras and to
apply it to the description of coideal C˚-subalgebras of concrete finite quan-
tum groupoids. The first step in this project is to formulate and to prove the
general duality statement - Theorem 1.1 below.

Let us describe the structure of the paper. In Section 2 we recall basic
definitions and results on finite quantum groupoids following [3] and [22]. We
also translate the representation theory of these objects treated in [4] and
[18] into the language of unitary corepresentations and C˚-tensor categories
suitable for the construction of the categorical duality. Finally, we translate
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into this language the reconstruction theorem proved in [10] and [26].
In Section 3 we develop the theory parallel to the one of CQG coactions

[2]. Doing this, we simplify significantly, in our particular case, some con-
structions related to coactions of general measured quantum groupoids - see
[8], [31]. Let a be a coaction of a finite quantum groupoid G on a unital
C˚-algebra A (called a G-C˚-algebra) we get the canonical implementation
of a and study the properties of the spectral subspaces (isotypical compo-
nents) of A. Note that the subalgebra of fixed points of A with respect to
a can be strictly smaller than the spectral subspace corresponding to the
trivial corepresentation of G (in the CQG case they are equal). This creates
specific problems that we solve in Sections 4,5 and 6 devoted to the proof of
our main result which is parallel to [6], Theorem 6.4 and [14], Theorem 3.3:

Theorem 1.1 Let G be a regular coconnected finite quantum groupoid. Then
the following two categories are equivalent:

(i) The category of unital G-C˚-algebras with unital G-equivariant ˚-
homomorphisms as morphisms.

(ii) The category of pairs pM,Mq, where M is a left module C˚-category
over C˚-tensor category UCoreppGq of unitary corepresentations of G and
M is a generator in M, with equivalence classes of unitary module functors
respecting the prescribed generators as morphisms.

This proof divides into three parts. First, given a unital G-C˚-algebra A,
we show in Section 4 that the category DA of finitely generated equivariant
C˚-correspondences whose morphisms are equivariant maps, is a strict left
module category over UCoreppGq. The algebra A itself is a generator in
DA. The idea of such a construction in the CQG case was proposed in [6].

Vice versa, it is shown in [14] that any pair pM,Mq as above generates
so-called weak tensor functor. Using this functor, we construct in Section 5
an algebra whose C˚-completion is a unital G-C˚-algebra. Finally, we show
in Section 6 that the two above mentioned constructions are mutually inverse
which gives the equivalence of the categories in question.

It was shown in [17] in the CQG case that UCoreppGq-module categories
parameterized by unitary tensor (not weak tensor !) functors correspond to
Yetter-Drinfeld G-C˚-algebras. In a subsequent work we expect to get a
similar result for finite quantum groupoids and to apply it to the description
of coideal C˚-subalgebras of quotient type.
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Our standard references are: [12] for general categories, [9] for tensor
categories, [16] for C˚- and C˚-tensor categories, [11] for Hilbert C˚-modules,
and [22] for finite quantum groupoids.

2 Finite quantum groupoids, their represen-

tations, comodules and corepresentations

1. Finite quantum groupoids A weak Hopf C˚-algebra G “ pB,∆, S, εq is
a finite dimensional C˚-algebra B with the comultiplication ∆ : B Ñ BbB,
counit ε : B Ñ C, and antipode S : B Ñ B such that pB,∆, εq is a coalgebra
and the following axioms hold for all b, c, d P B :

(1) ∆ is a (not necessarily unital) ˚-homomorphism :

∆pbcq “ ∆pbq∆pcq, ∆pb˚q “ ∆pbq˚,

(2) The unit and counit satisfy the identities (we use the Sweedler leg
notation ∆pcq “ c1 b c2, p∆b idBq∆pcq “ c1 b c2 b c3 etc.):

εpbc1qεpc2dq “ εpbcdq,

p∆p1q b 1qp1b∆p1qq “ p∆b idBq∆p1q,

(3) S is an anti-algebra and anti-coalgebra map such that

mpidB b Sq∆pbq “ pεb idBqp∆p1qpbb 1qq,

mpS b idBq∆pbq “ pidB b εqpp1b bq∆p1qq,

where m denotes the multiplication.

The right hand sides of two last formulas are called target and source
counital maps εt and εs, respectively. Their images are unital C˚-subalgebras
of B called target and source counital subalgebras Bt and Bs, respectively.

The dual vector space B̂ has a natural structure of a weak Hopf C˚-
algebra Ĝ “ pB̂, ∆̂, Ŝ, ε̂q given by dualizing the structure operations of B:

ă ϕψ, b ą “ ă ϕb ψ, ∆pbq ą,

ă ∆̂pϕq, bb c ą “ ă ϕ, bc ą,

ă Ŝpϕq, b ą “ ă ϕ, Spbq ą,

ă φ˚, b ą “ ă ϕ, Spbq˚ ą,
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for all b, c P B and ϕ, ψ P B̂. The unit of B̂ is ε and the counit is 1.
The counital subalgebras commute elementwise, we have S ˝ εs “ εt ˝ S

and SpBtq “ Bs. We say that B is connected if BtXZpBq “ C (where ZpBq
is the center of B), coconnected if Bt X Bs “ C, and biconnected if both
conditions are satisfied.

The antipode S is unique, invertible, and satisfies pS ˝ ˚q2 “ idB. We
will only consider regular quantum groupoids, i.e., such that S2|Bt “ id. In
this case, there exists a canonical positive element H in the center of Bt

such that S2 is an inner automorphism implemented by G “ HSpHq´1, i.e.,
S2pbq “ GbG´1 for all b P B. The element G is called the canonical group-like
element of B, it satisfies the relation ∆pGq “ pGbGq∆p1q “ ∆p1qpGbGq.

There exists a unique positive functional h on B, called a normalized
Haar measure such that

pidB b hq∆ “ pεt b hq∆, h ˝ S “ h, h ˝ εt “ ε, pidB b hq∆p1Bq “ 1B.

We will dehote by Hh the GNS Hilbert space generated by B and h and by
Λh : B Ñ Hh the corresponding GNS map.

2. Unitary representations
By definition, the objects of the category UReppGq of unitary represen-

tations of G are left B-modules of finite rank such that the underlying vector
space is a Hilbert space H with a scalar product ă ¨, ¨ ą such that

ă b ¨ v, w ą“ă v, b˚ ¨ w ą, for all v, w P H, b P B,

and morphisms are B-linear maps. It is a semisimple linear category whose
simple objects are irreducible B-modules. It is also a tensor category: for ob-
jects H1, H2 P UReppGq, define their tensor product as the Hilbert subspace
∆p1Bq ¨ pH1 bH2q of the usual tensor product together with the action of B
given by ∆. Here we use the fact that ∆p1Bq is an orthogonal projection.

The tensor product of morphisms is the restriction of the usual tensor
product of B-module morphisms. Let us note that any H P UReppGq is
automatically a Bt-bimodule via z ¨v ¨t :“ zSptq¨v, @z, t P Bt, v P E, and that
the above tensor product is in fact bBt , moreover the Bt-bimodule structure
for H1 bBt H2 is given by z ¨ ξ ¨ t “ pz b Sptqq ¨ ξ, @z, t P Bt, ξ P H1 bBt H2.

One deduces that the above tensor product is associative :

pH1 bBt H2q bBt H3 “ H1 bBt pH2 bBt H3q,
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so the associativity isomorphisms are trivial. The unit object of UReppGq is
Bt with the action of B given by b ¨ z :“ εtpbzq, @b P B, z P Bt and the scalar
product ă z, t ą“ hpt˚zq. The left and right unit morphisms are:

lEpz bBt vq “ z ¨ v and rEpv bBt zq “ Spzq ¨ v, @z P Bt, v P E. (1)

For any morphism f : H1 Ñ H2, define f˚ : H2 Ñ H1 as the adjoint
linear map: ă fpvq, w ą“ă v, f˚pwq ą, @v P H1, w P H2, it is easy to check
that f˚ is B-linear. It is clear that f˚˚ “ f , that pf bBt gq

˚ “ f˚bBt g
˚, and

that EndpHq is a C˚-algebra, for any object H. So UReppGq is a strict finite
C˚-multitensor category (i.e., has all the properties of a C˚-tensor category
except for one: 1 is not necessarily simple).

In order to make UReppGq a rigid C˚-tensor category in the sense of
[16], Definition 2.1.1, we have to define the conjugate for any H P UReppGq.
Take the dual vector space Ĥ which is naturally identified (v ÞÑ v) with the
conjugate Hilbert space H :ă v, w ą“ă w, v ą, @v, w P H. The action of
B on H is defined by b ¨ v “ G1{2Spbq˚G´1{2 ¨ v, where G is the canonical
group-like element of G. Then the rigidity morphisms defined by

RHp1Bq “ ΣipG
1{2
¨ ei bBt ¨eiq, RHp1Bq “ Σipei bBt G

´1{2
¨ eiq, (2)

where teiui is any orthogonal basis in H, satisfy all the needed properties -
see [5], 3.6. Also, it is known that the B-module Bt is irreducible if and only
if Bs X ZpBq “ C1B, i.e., if G is connected. So that, we have

Proposition 2.1 UReppGq is a strict rigid finite C˚-multitensor category.
It is C˚-tensor if and only if G is connected.

3. Unitary comodules

Definition 2.2 A right unitary G-comodule is a pair pH, aq, where H is a
Hilbert space with scalar product ă ¨, ¨ ą, a : H Ñ H bB is a bounded linear
map between Hilbert spaces H and H bHh “ H b ΛhpBq, and such that:

(i) pab idBqa “ pidH b∆qa;
(ii) pidH b εqa “ idH ;
(iii) ă v1, w ą v2 “ă v, w1 ą Spw2q˚, @v, w P H.
A morphism of unitary G-comodules H1 and H2 is a linear map T : H1 Ñ

H2 such that aH2 ˝ T “ pT b idBqaH1 (i.e., a B-colinear map).
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Right unitary G-comodules with finite dimensional underlying Hilbert
spaces and their morphisms form a category which we denote by UComodpGq.

We say that two unitary G-comodules are equivalent (resp., unitarily
equivalent) if the space of morphisms between them contains an invertible
(resp., unitary) operator.

In what follows, we will use the leg notation apvq “ v1 b v2, for all v P H.

Example 2.3 Let us equip a right coideal I Ă B with the scalar product
ă v, w ą:“ hpw˚vq. Then the strong invariance of h gives:

ă v1, w ą v2
“ phb idBqppw

˚
b 1Bq∆pvqq “

“ phb S´1
qp∆pw˚qpv b 1Bqq “ă v, w1

ą Spw2
q
˚.

Remark 2.4 By (ii) any coaction a is injective

If pH, aq is a right unitary G-comodule, then H is naturally a unitary left
Ĝ-module via

b̂ ¨ v :“ v1
ă b̂, v2

ą, @b̂ P B̂, v P H. (3)

The unitarity follows from the calculation

ă b̂ ¨ v, w ą“ă v1
ă b̂, v2

ą, w ą“ă b̂,ă v1, w ą v2
ą“

“ă b̂,ă v, w1
ą Spw2

q
˚
ą“ă v, w1

ă b̂, Spw2q˚ ą ą“ă v, pb̂q˚ ¨ w ą,

for all v, w P H and b̂ P B̂. In particular H is a B̂t-bimodule.
Due to the canonical identifications Bt – B̂s and Bs – B̂t given by

the maps z ÞÑ ẑ “ εp¨zq and t ÞÑ t̂ “ εpt¨q, H is also a Bs-bimodule via
z ¨ v ¨ t “ v1εpzv2tq, for all z, t P Bs, v P V . The maps α, β : Bs Ñ

BpHq defined by αpzqv :“ z ¨ v and βpzqv :“ v ¨ z, for all z P Bs, v P H
are a ˚-algebra homomorphism and antihomomorphism, respectively, with
commuting images. Indeed, for instance, for all v, w P H, z P Bs, one has:

ă αpzqv, w ą:“ă v1εpzv2
q, w ą“ εpă v1, w ą zv2

q “

“ εpă v, w1
ą zSpw2

q
˚
q “ă v, w1

ą εpSpw2qz˚q “

“ă v, w1εpSpz˚qw2
q ą“ă v, αpz˚qw1εpw2

q ą“ă v, αpz˚qw ą .
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So that, αpzq˚ “ αpz˚q, and similarly for the map β. We have the following
useful relations:

apαpxqβpyqvq “ v1
b xv2y @v P H, x, y P Bs. (4)

and
αpxqβpyqv1

b v2
“ v1

b Spxqv2Spyq @v P H, x, y P Bs. (5)

The correspondence (3) is bijective as one has the inverse formula: if pbiqi
is a basis for B and pb̂iq is its dual basis in B̂, then set:

apvq “
ÿ

i

pb̂i ¨ vq b bi @v P H. (6)

Moreover, formulas (3) and (6) imply also a bijection of morphisms. Thus,
we have two functors, F1 : UComodpGq Ñ UReppĜq and G1 : UReppĜq Ñ
UComodpGq, which are mutually inverse. So, these categories are isomorphic
as linear categories, and we can transport various additional structures from
UReppĜq to UComodpGq.

For instance, let us define tensor product of two unitary G-comodules,
pH1, aH1q and pH2, aH2q. As a vector space, it is

H1 bB̂t
H2 :“ ∆̂p1̂qpH1 bH2q “ 1̂1 ¨H1 b 1̂2 ¨H2,

and is generated by the elements xbB̂t
y :“ ∆̂p1̂q ¨ pxb yq, where x P H1, y P

H2, so it can be identified with H1bBs H2 (see [25], 2.2 or [23], Chapter 4).

Lemma 2.5 If pH1, aq, pH2, bq P UComodpGq, then the projection P : H1b

H2 Ñ H1 bB̂t
H2 defined by P pvq “ ∆̂p1̂q ¨ v, for all v P H1 bH2, satisfies

P pxb yq “ x1
b y1εpx2y2

q, for all x P H1, y P H2.

The proof is the direct calculation using the axiom (2) of a weak Hopf algebra:

1̂1 ¨ xb 1̂2 ¨ y “ px
1
b y1

qεpx211qεp12y
2
q “

“ px1
b y1

qεpx2y2
q.

Corollary 2.6 The linear map abBs b given by:

v bBs w ÞÑ v1
bBs w

1
b v2w2, @v P H1, w P H2,

is a coaction of G on H1 bBs H2 (i.e., satisfies Definition 2.2, (i), (ii)).
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Proof. @v P H1, w P H2, one has:

ppabBsbq b iBqpabBs bqpv bBs wq “

“ ppabBs bq b iBqpv
1
bBs w

1
b v2w2

q

“ p∆̂p1̂q b 1BbBq ¨ p∆̂p1̂q.papv
1
q
1
b bpw1

q
1
q b apv1

q
2bpw2

q
2
b v2w2

q

“ p∆̂p1̂q b 1BbBq ¨ papv
1
q
1
b bpw1

q
1
b apv1

q
2bpw2

q
2
b v2w2

q

“ p∆̂p1̂q b 1BbBq ¨ ppab iBqapvqq134pbb iBqbpwqq234q

“ p∆̂p1̂q b 1BbBq ¨ ppiE b∆qapvqq13piF b∆qbpvqq23q

“ p∆̂p1̂q b 1BbBqpiEbF b∆qpp∆̂p1̂q b 1Bq.papvqq13bpvqq23q

“ pidH1bBsH2 b∆qpabBs bqpv bBs wq

Moreover, using Lemma 2.5, we have :

pidH1bBsH2 b εqpabBs bqpv bBs wq “ v1
b w1εpv2w2

q “ P pv b wq “ v bBs w

˝

The direct calculation shows that the tensor product coaction is unitary.
Thus, UComodpGq is a multitensor category whose associativity morphisms
are trivial, the unit object is pBs,∆|Bsq. It is simple if and only if G is
coconnected. The left and right unit isomorphisms are:

lH : BsbBsH Ñ H, zbBsv ÞÑ z ¨v, rH : HbBsBs Ñ H, vbBsz ÞÑ v ¨z. (7)

One can check that these isomorphisms are unitary and their inverses are:

l´1
H pvq “ 11 bBs v

1εp12v
2
q and r´1

H pvq “ v1
bBs εspv

2
q. (8)

Let us define the conjugate object for pH, aq P UComodpGq. The corre-
sponding Hilbert space is H. In what follows, we use the Sweedler arrows
b̂á b :“ b1 ă b̂, b2 ą, bà b̂ :“ b2 ă b̂, b1 ą, @b P B, b̂ P B̂.

Lemma 2.7 The conjugate object for pH, aq in UComodpGq is pH, ãq, where

ãpvq “ v1 b rĜ´1{2
á pv2

q
˚
à Ĝ1{2

s,

and Ĝ is the canonical group-like element of the dual quantum groupoid Ĝ.
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Proof. The unitarity of G1pH, ãq means that ă b̂ ¨v, w ąH“ă v, b̂˚ ¨w ąH ,

for all v, w P H. The left hand side equals to ă v1, w ąHă b̂, v2 ą. And the
right hand side equals to

ă v, Ĝ1{2Ŝpb̂˚q˚Ĝ´1{2 ¨ w ąH“ă Ĝ1{2Ŝpb̂˚q˚Ĝ´1{2
¨ w, v ąH“

“ă w, Ĝ´1{2Ŝpb̂˚qĜ1{2
¨ v ąH“ă w, v1

ąH ă Ĝ´1{2Ŝpb̂˚qĜ1{2, v2 ą “

“ă v1, w ąH ă Ĝ´1{2b̂Ĝ1{2, pv2
q
˚
ą “

“ă v1, w ąHă b̂, rĜ´1{2
á pv2

q
˚
à Ĝ1{2

s ą .

Comparing the above expressions, we have the result. ˝

The rigidity morphisms are given by (2) with Bt replaced by Bs. For any
morphism f , f˚ is the conjugate linear map on the corresponding Hilbert
spaces, the colinearity of f implies that f˚ is colinear. So that, we have

Proposition 2.8 UComodpGq is a strict rigid finite C˚-multitensor cate-
gory. It is C˚-tensor if and only if G is coconnected.

4. Unitary corepresentations

Definition 2.9 A right unitary corepresentation of G on a Hilbert space
H is a partial isometry V P BpHq bB such that:

(i) V12V13 “ pidBpHq b∆qpV q.
(ii) pidBpHq b εqpV q “ idBpHq.
If U and V are two right corepresentations on Hilbert spaces HU and

HV , respectively, a morphism between them is a bounded linear map T P

BpHU , HV q such that pT b 1BqU “ V pT b 1Bq. The vector space of such
morphisms is denoted by MorpU, V q. We will denote by UCoreppGq the
category whose objects are right unitary corepresentations pH,V q on finite
dimensional vector spaces with morphisms as above.

One says that U and V are equivalent (resp., unitarily equivalent) if
MorpU, V q contains an invertible (resp., unitary) operator.

Proposition 2.10 If pH, aq is a unitary G-comodule, let us define an oper-
ator V on H bHh as follows:

V pxb Λhyq :“ x1
b Λhpx

2yqq, for all x P H, y P B.
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Then V is a unitary corepresentation of G on H, and one has:

V ˚pxb Λhyq :“ x1
b ΛhpSpx

2
qyqq, for all x P H, y P B.

Proof. Let Ih be an implementation of ∆ (for example, Ih P BpHhbHhq :
Λhbhpy

1 b yq ÞÑ Λhbhp∆pyqpy
1 b 1Bqq, see [29], 3.2) for details), then one has

for all x P H, y, c P B:

V12V13pxb ΛhybΛhcq “ pV b 1Bqpx
1
b Λhy b Λhpx

2cqq

“ x1
b Λhpx

2yq b Λhpx
3cq

“ x1
b Λhbhp∆px

2
qpy b cqq

“ x1
b Ihpx

2
b 1BqI

˚
h pΛhbhpy b cqq

“ p1BpHq b Ihqpx
1
b tpx2

b 1BqI
˚
hΛhbhpy b cquq

“ p1BpHq b IhqpV b 1Bqpxb I
˚
h pΛhbhy b cqq

“ p1BpHq b IhqpV b 1Bqp1BpHq b Ihq
˚
pxb Λhbhpy b cqq

“ p1BpHq b∆qpV qpxb Λhy b Λhcq.

Next, we have, for any decomposition V “
ř

iPI

vi b bi (vi P BpHq, bi P Bq:

pidBpHq b εqpV qpξq “ pidBpHq b εqp
ÿ

iPI

vipξq b biq “

“
ÿ

iPI

εpbiqvipξq “ pidBpHq b εqapξq “ ξ, @ξ P H.

In order to show that V is a partial isometry, consider the separability element
es “ pidB b Sq∆p1Bq of the algebra Bs and the idempotents eβ,id “ pβ b
idBqpesq P βpBsq b Bs and eα,S “ pα b Sqpesq P αpBsq b Bs. As α and β
are ˚-maps, these idempotents are orthogonal projections on H b Hh. It is
straightforward to check, using (4) and (5), that:

• for all x, y P Bs, one has:

V pαpxqβpyq b 1Bq “ p1BpHq b xqV p1BpHq b yq, (9)

pαpxqβpyq b 1BqV “ p1BpHq b SpxqqqV p1BpHq b Spyqq. (10)

• V eβ,id “ V , eα,SV “ V .
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Moreover, V is invertible in Bpeβ,idpHbHhq, eα,SpHbHhqq. Indeed, consider
an operator W acting on H bHh defined by

W pv b Λhpbq :“ v1
b ΛhpSpv

2
qbq, @v P H, b P B.

Then we have:
WV pv b Λhpbq :“ W pv1

b Λhpv
2bqq “

“ v1
b ΛhpSpv

2
qv3bq “ v1

b Λhpεspv
2
qbq.

On the other hand,

eβ,idpv b Λhpbqq “ pv ¨ 11q b ΛhpSp12qbq “ v1
b ΛhpSp12qˆ

ˆεpv211qbq “ v1
b Λhp11qεpv

2Sp12qqbq “ v1
b Λhpεspv

2
qbq.

And similarly VW “ eα,S, so that W is the inverse of V . Finally, we compute,
for all v, w P H, b, c P B:

ă V pv b Λhpbqq, V pw b Λhpcqq ą “ă v1
b Λhpv

2bq, w1
b Λhpw

2cq ą

“ă v1, w1
ą hpc˚pw2

q
˚v2bq

“ă v, w1
ą hpc˚pw3

q
˚
rSpw2

qs
˚bq

“ă v, w1
ą hpc˚rεspw

2
qs
˚bq.

On the other hand,

ă v b Λhpbq, eβ,idpw b Λhpcq ą“ă v b Λhpbq, pw ¨ 11q b ΛhpSp12qcq ą“

“ă v, w ¨ 11 ą hpc˚rSp12qs
˚bq “ă v, w1

ą εpw211qhpc
2
rSp12qs

˚bq.

These expressions are equal because εspxq :“ 11εpx12q “ Sp12qεpxSp11qq “

Sp12qεpx11qq, for all x P B. We used above the equality εpxSpzqq “ εpxzq,
for all z P Bt which can be obtained by applying ε b ε to both sides of
the equality ∆p1BqpSpzq b 1Bq “ ∆p1Bqp1B b zq. As eβ,id is an orthogonal
projection, this means that V is bounded and V ˚V “ eβ,id.

Similar reasoning shows that V ˚ equals to the above mentioned W . ˝

We also have a converse statement.

Proposition 2.11 Any unitary corepresentation V of G on a Hilbert space
H generates a unitary comodule pH, aq, where apvq “ V pvbΛhp1Bqq @v P H.

12



Proof. The first two conditions of Definition 2.2 follow from the first
two conditions of Definition 2.9. The relation between V and the coaction
a : v ÞÑ v1bv2 is given by V pvbΛhpbqq “ v1bΛhpv

2bq. We have seen already
that the operator W acting on H bHh and defined by

W pv b Λhpbqq “ v1
b ΛhpSpv

2
qbq, @v P H, b P B,

satisfies the relations VW “ ea,S and WV “ eb,id. As V is a partial isometry
with initial and final Hilbert subspaces ea,SpH b Hhq and eb,idpH b Hhq,
respectively, we have W “ V ˚. Then for all v, w P H and c P B, the equality

ă V pv b Λhp1Bqq, w b Λhpcq ą“ă v b Λhp1Bq, V
˚
pw b Λhpcqq ą,

can be rewritten as

ă v1, w ą hpc˚v2
q “ă v, w1

ą hpc˚rSpw2
qs
˚
q,

which implies the unitarity of the G-comodule in question. ˝

Let pH1, aq and pH2, bq be two unitary G-comodules, and let T be in
BpH1, H2q intertwining a and b, then one has, for all x P H1, b P B:

VH2pT b 1qpxb Λhpbqq “ pTxq
1
b ΛhppTxq

2bq

“ p1H2 b π
1
pbqqppTxq1 b ΛhppTxq

2
q

“ p1H2 b π
1
pbqqpidF b ΛhqpbpTxqq

“ p1H2 b π
1
pbqqpidF b ΛhqppT b 1qapxqq

“ p1H2 b π
1
pbqqpT b 1qpidH1 b Λhqpapxqq

“ pT b 1qp1H1 b π
1
pbqqpidH1 b Λhqpapxqq

“ pT b 1qVH1pxb Λhpbqq.

Hence, T PMorpVH1 , VH2q.

Corollary 2.12 The correspondence F2 defined by F2pH, aq “ pV,Hq and
F2pT q “ T for all objects pH, aq and morphisms T of UComodpGq, is a
functor from UComodpGq to UCoreppGq viewed as semisimple linear cate-
gories. The correspondence G2 between unitary corepresentations of G and
G-comodules given by Proposition 2.11 clearly extends to morphisms and de-
fines a functor inverse to F2, so UComodpGq and UCoreppGq are isomorphic
as linear categories. Then we can equip UCoreppGq with tensor product and
duality by transporting these structures from ComodpGq.

13



If pU,HUq, pV,HV q P UCoreppGq, let us define their tensor product.

Lemma 2.13 One has pP b idBqU13V23 “ U13V23pP b idBq “ U13V23, where
U13V23 P BpHU bHV q bB and P was defined in Lemma 2.5.

Proof. There exist finite families tbku and tb1ku in Bs such that Σkb
1
kbk “

Σkbkb
1
k “ 1B, and for all x P HU and all y P HV one has:

P pxb yq “ ∆̂p1̂q ¨ pxb yq “ Σkβpbkqxb α
1
pb1kqy,

where α1 is the ˚-representation of Bs corresponding to pV,H2q. Using four
times (10), one has:

pP b idBqU13V23 “ Σkpβpbkq b α
1
pb1kq b idBqU13V23 “

“ Σkpβpbkq b idHV
b idBqU13pidHU

b α1pb1kq b idBqV23

“ Σkpβpbkq b idHV
b idBqU13pidHU

b idHV
b Spb1kqV23

“ Σkpβpbkqβpb
1
kq b idHV

b idBqU13V23

“ Σkpβpb
1
kbkq b idHV

b idBqU13V23 “ U13V23

“ ΣkU13pidHU
b idHV

b bkb
1
kqV23

“ ΣkU13pβpbkq b idHV
b 1BqV23pidHU

b α1pb1kq b idBq

“ ΣkU13V23pβpbkq b α
1
pb1kq b idBq “ U13V23pP b idBq.

˝

Lemma 2.13 justifies the following:

Definition 2.14 If pU,HUq, pV,HV q P UCoreppGq, their tensor product is
the bounded linear map:

U j V “ U13V23 “ pP b idBqU13V23pP b idBq

viewed as an element of BpHU bBs HV q bB.

Proposition 2.15 U j V P UCoreppGq, it acts on HU bBs HV and:

G2pU,H1q bBs G2pV,H2q “ G2pU j V,H1 bBs H2q.

14



Proof. If pU,HUq, pV,HV q P UCoreppGq, let U “
ř

i

uibbi, V “
ř

j

ujbbj

be decompositions of U and V . Then U j V “
ř

i,j

ui b vj b bibj, and let us

define θUjV P BpHU bBs HV , HU bBs HV bBq by:

θUjV pxbBs yq “
ÿ

i,j

ui b vjpP pxb yqq b bibj.

Then, using Lemma 2.13, one has:

θUjV pxbBs yq “
ÿ

i,j

ui b vjpxb yqq b bibj “
ÿ

i,j

P puipxq b vjpyqq b bibj

“ paU b aV qpxbBs yq,

and the result follows. ˝

The unit object 1 of UCoreppGq with respect to j acts on Bs and is
defined by z b b ÞÑ 11 b 12zb, for all z P Bs, b P B. It is simple if and only
if G is coconnected. The conjugate object for pV,Hq P UCoreppGq is the
unitary corepresentation acting on H via V px b Λhpyqq “ x1 b Λhppx

2q˚yq,
where ãpxq is described in Lemma 2.7, and the rigidity morphisms are the
same as in UCoreppGq. For any morphism f , again f˚ is the conjugate
bounded linear map on the corresponding Hilbert spaces. So that, we have

Proposition 2.16 UCoreppGq is a strict rigid finite C˚-multitensor cate-
gory. It is C˚-tensor if and only if G is coconnected.

The simple objects of this category are exactly irreducible corepresenta-
tions of G. Let us denote by Ω the set of equivalence classes of irreducibles
and choose a representative Ux in any class x P Ω. The regular corepresen-
tation of G is decomposed as follows:

W “ ‘xPΩdimpxqU
x, (11)

where dimpxq is the dimension of the Hilbert space on which Ux acts.

Definition 2.17 Let pU,HUq P UCoreppGq and tmi,ju
n
i,j“1 be the matrix

units of BpHUq with respect to some orthonormal basis teiu
n
i“1 in HU . Then

U “ Σn
i,j“1mi,j b Ui,j,

where Ui,j pi, j “ 1, ..., nq are called the matrix coefficients of U with respect
to teiu. Put BU :“ SpanpUi,jq

n
i,j“1; in particular, we denote BUx by Bx.

15



Remark 2.18 Let us summarize some properties of matrix coefficients of
Ux px P Ωq which can be proved in a standard way.

(i) B‘p
k“1Uk

“ spantBU1 , ..., BUpu for any finite direct sum of unitary
corepresentations. In particular, (11) implies that B “ ‘xPΩBx.

(ii) Decomposition U j V “ ‘zdzU
z with multiplicities dz implies that

BUBV Ă ‘zBz, where z parameterizes the irreducibles of the above decom-
position.

(iii) The definition of a unitary corepresentation written in terms of Ux
i,j:

∆pUx
i,jq “ Σ

dimpxq
k“1 Ux

i,k b U
x
k,j, εpUx

i,jq “ δi,j, Ux
i,j “ SpUx

j,iq
˚,

for all i, j “ 1, ..., dimpxq, gives: Bx b Bx “ ∆p1BqpBx b Bxq, ∆pBxq Ă

∆p1BqpBx bBxq and BU “ SpBUq
˚. We also have BU “ pBUq

˚.

Example 2.19 In the case of the trivial corepresentation of G associated
with p∆|Bs , Bsq, we will use the notation Bε instead of BU . Let tbiu

dimBs
i“1

be an orthonormal basis in Bs with respect to the scalar product ă z, t ą“
εpt˚zq @z, t P Bs. Then one can write ∆p1Bq “ ΣdimBs

i“1 b˚i b Spbiq (see [22],
2.3.3), which implies: ∆pb˚j q “ ΣdimBs

i“1 pb˚i b Spbiqb
˚
j q, so U ε

i,j “ Spbiqb
˚
j , for

all i, j “ 1, ..., dimBs. This means that Bε is the unital C˚-algebra BtBs.

5. Fiber functor and reconstruction theorem

LetQ and R be two unital C˚-algebras. By definition, a pQ,Rq-correspon-
dence is a right Hilbert R-module E (see [11]) with a unital ˚-homomorphism
ϕ : Q Ñ LpEq, where LpEq is the C˚-algebra of all bounded R-linear ad-
jointable operators on E . If Q “ R, we call it an R-correspondence. R-
correspondences form a C˚-multitensor category CorrpRq with interior ten-
sor product bR and adjointable R-bilinear maps as morphisms.

There exists another definition of a pQ,Rq-correspondence, due to Alain
Connes, this is a triple pH,α, βq where H is a Hilbert space equipped with
unital ˚-homomorphism α : Q Ñ BpHq and ˚-anti-homomorphism β : R Ñ
BpHq whose images commute in BpHq. Then H is a pQ,Rq-bimodule via
q ¨ v ¨ r :“ αpqqβprqv, for all q P Q, r P R, v P H.

In this paper, we are especially interested in the particular case, when
Q “ R is a finite dimensional C˚-algebra equipped with a faithful tracial
state φ. Below we treat this particular case in detail.

Lemma 2.20 Both definitions of an R-correspondence are equivalent.
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Proof. (i) If pH,α, βq P CorrpRq, define, for any η P H, an operator
Πpηq : Hφ Ñ H by ΠpηqΛφprq :“ βprqη, for all r P R, where Hφ is the GNS
Hilbert space generated by pR, φq. Then define an R-valued scalar product:

ă ξ, η ąR:“ Πpξq˚Πpηq, for all ξ, η P H.

It is clear that ă ξ, η ąR is in fact in πφpRq. Finally, Πpβpbqηq “ Πpηqπεpbq,
so ă ξ, βpbqη ąR“ă ξ, η ąR πφpbq, for all ξ, η P H, b P R. Moreover,
together with the unital ˚-representation α we have on H the structure of an
R-correspondence in the sense of the first definition.

(ii) Vice versa, if H is an R-correspondence in this last sense, then one
can define a usual scalar product ă ξ, η ą“ φpă η, ξ ąRq, for all η, ξ P H,
and there are clearly a unital ˚-homomorphism α : RÑ BpHq and a unital ˚-
anti-homomorphism β : RÑ BpHq whose images commute in BpHq. Thus,
pH,α, βq is an R-correspondence in the sense of A. Connes. ˝

A morphism between pH,α, βq and pK,α1, β1q is a map T P BpH,Kq
intertwining α and α1 and also β and β1, then CorrpRq is a semisimple linear
category. If pH,α, βq, pK,α1, β1q P CorrpRq, we define their tensor product:

pH,α, βq bR pK,α
1, β1q “ ppβ b α1qpeqpH bKq, αb 1K , 1H b β

1
q,

where e is the symmetric separability idempotent for R, so eβ,α1 “ pβ b
α1qpeq is an orthogonal projection. For the sake of simplicity we shall denote
H1 bR H2 :“ eβ,α1pH bKq, and v bR w “ eβ,α1pv b wq, for all v P H,w P K.
The unit object is R with the GNS scalar product defined by φ. The unit
isomorphisms are as follows:

lHpz bR vq :“ z ¨ v and rHpv bR zq :“ v ¨ z, @z P R, v P H.

They are isometric, for example:

||lHpz bR vq||
2 :“ ||z ¨ v||2H “ φp1Rq||z ¨ vq||

2
“ ||1R b pz ¨ vq||

2
“ ||z bR v||

2.

The conjugate of a morphism T : H1 Ñ H2 is just the adjoint operator T ˚ :
H2 Ñ H1, so CorrpRq is a C˚-multitensor category. We denote by Corrf pRq
its full subcategory with finite dimensional underlying Hilbert spaces. The
unit object is simple if and only if R is a full matrix algebra.

For all objects of the three above categories: UReppGq, UComodpGq, and
UCoreppGq, the underlying Hilbert spaces are Bs-correspondences, so each of
these categories has a forgetful C˚-tensor functor with values in Corrf pBsq.
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In order to reformulate in suitable terms the reconstruction theorem of
Tannaka-Krein type for finite quantum groupoids proved initially in [10], [26],
recall the construction of the canonical Hayashi functor H.

Let C be a rigid finite C˚-tensor category and Ω “ IrrpCq be an exhaustive
set of representatives of equivalence classes of its simple objects. Let R be
the C˚-algebra R “ CΩ “

À

xPΩ

Cpx, where px “ p˚x are mutually orthogonal

idempotents: pxpy “ δx,ypx, for all x, y P Ω. Then H is a functor from C to
Corrf pRq defined by:

Hpxq “ Hx “
à

y,zPΩ

Cpz, y b xq, for every x P Ω,

where Cpx, yq is the vector space of morphisms x Ñ y. The R-bimodule
structure on Hx is given by:

py ¨Hx ¨ pz “ Cpz, y b xq, for all x, y, z P Ω.

If y P Ω and f P Cpx, yq, then Hpfq : Hx Ñ Hy is defined by:

Hpfqpgq “ pidz b fq ˝ g, for any z, t P Ω and g P pz ¨Hx ¨ pt.

The inverse natural isomorphisms J´1
x,y : Hx bHy Ñ Hx b

R
Hy are:

J´1
x,ypv b wq “ az,x,y ˝ pv b idyq ˝ w P pz ¨Hpxb yq ¨ pt,

for all v P pz ¨Hx ¨pt, w P pt ¨Hy ¨ps, z, s, t P Ω. Here az,x,y are the associativity
isomorphisms of C.

We define the scalar product on Hx as follows. If x, y, z P Ω and f, g P
Cpz, y b xq, then g˚ P Cpy b x, zq and g˚ ˝ f P Endpzq “ C, so one can put
ă f, g ąx“ g˚ ˝ f . The subspaces Cpz, y b xq are declared to be orthogonal,
so Hx P Corrf pRq. Dually, Hx P Corrf pRq via z1 ¨ v ¨ z2 “ z˚2 ¨ v ¨ z

˚
1 , for all

z1, z2 P R, v P Hx. Now one can check that H : C Ñ Corrf pRq is a unitary
tensor functor in the sense of [16] 2.1.3.

Theorem 2.21 Let C be a rigid finite C˚-tensor category and Ω “ IrrpCq.
Let R be the C˚-algebra CΩ and H : C Ñ Corrf pRq be the Hayashi functor.
Then the vector space

B “
à

xPΩ

Hx bHx, (12)

has a regular biconnected finite quantum groupoid structure G such that C –
UCoreppGq as C˚-tensor categories.
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Proof. A rigid finite C˚-tensor category C is semisimple and spherical,
so [25], Theorems 1.1 and 1.2 claims that B has a structure of a selfdual
regular biconnected semisimple weak Hopf algebra. The algebra of the dual
quantum groupoid Ĝ is (see [26], [13]):

B̂ “
à

xPΩ

BpHxq, (13)

the duality is given, for all x, y P Ω, A P BpHyq, v, w P Hx by:

ă A,w b v ą“ δx,y ă Av,w ąx .

B̂ is clearly a C˚-algebra with the obvious matrix product and involution,
its coproduct is given (see [13] Theorem 1.3.4) by:

∆̂pb̂q “
ÿ

iPI

pspriq b tppiqqJb̂J
´1, for any b̂ P B̂,

where
ř

iPI

pribpiq is the symmetric separability element of R hence
ř

iPI

pspriqb

tppiqq “ ∆̂p1̂q is an orthogonal projection in B̂ b B̂; moreover J “
À

x,yPΩ

Hx,y

is a unitary as a direct sum of unitaries. Then one can easily deduce that
∆̂pb̂˚q “ ∆̂pb̂q˚, so both Ĝ and G are finite quantum groupoids.

The explicit structure of G is given in [25], Theorems 1.1 and 1.2. If
v, w P Hx, g, h P Hy and texj u is an orthogonal basis in Hx p@x, y P Ω), then:

∆pw b vq “
à

j

pw b exj qx b pe
x
j b vqx, (14)

εpw b vq “ă v, w ąx, (15)

pw b vqx ¨ pg b hqy “ pJ´1
x,ypw b gq b J

´1
x,ypv b hqqxby P Hxby bHxby, (16)

1B “
à

xPΩ

pρx b ρ
´1
x q1, (17)

where ρx is the unit constraint attached to x, so ρ´1
x P px ¨ H1 ¨ px and

ρx “ ρ´1
x . In order to define the antipode, consider the natural isomorphisms

Φx : Hx Ñ Hx˚ and Ψx : Hx Ñ Hx˚ given by:

Φx “ ρypidybevxq˝ay,x,x˚˝pvbidx˚q,Ψx “ pvbidx˚q˝a
´1
y,x,x˚˝pidybcoevxq˝ρ

´1
y .
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Here evx and coevx px P Ωq are the rigidity morphisms. Then we define:

Spw b vq “ rΦxpvq bΨxpwqsx˚ . (18)

Any Hx is a right B-comodule via

axpvq “ Σ
j
exj b e

x
j b v, where v P Hx,

one checks that it is unitary which gives the equivalence C – UCoreppGq. ˝

3 Coactions of finite quantum groupoids on

unital C*-algebras

1. Canonical implementation of a coaction

Definition 3.1 A right coaction of a finite quantum groupoid G on a unital
˚-algebra A, is a ˚-homomorphism a : AÑ AbB such that:

1) pab iqa “ pidA b∆qa.
2) pidA b εqa “ idA.
3) ap1Aq P AbBt.
One also says that pA, aq is a G-˚-algebra.

Remark 3.2 If A is a C˚-algebra, then a is automatically continuous, even
an isometry by 2.4 and [24] 1.5.7.

Proposition 3.3 Any right coaction of G on a unital ˚-algebra A is sim-
plifiable: the set apAqp1A b Bq “ tapaqp1A b bq | a P A, b P Bu generates
ap1AqpAbBq as a vector space.

Proof. Using Sweedler notations (which makes sense here as B is finite
dimensional), one has:

ap1Aqpab 1Bq “ pidA b εb idBqpab idBqrap1Aqpab 1Bqs

“ pidA b εb idBqrpidA b∆qap1Aqqapaq b 1dBqs

“ pidA b εb idBqrp1A
1
b∆p1A

2
qpa1

b a2
b 1Bqs

“ pidA b εb idBqrp1A
1
b∆p1Bqp1A

2
b 1Bqpa

1
b a2

b 1Bqs

“ pidA b εb idBqrp1A b∆p1Bqqp1A
1a1

b 1A
2a2

b 1Bqs

“ pidA b εb idBqrp1A b∆p1Bqqpa
1
b a2

b 1Bqs

“ pidA b εtqapaq.
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Definition 2.1.1 (3) of [22] gives that:

ap1Aqpab 1Bq “ pidA bmqpidA b idB b SqpidA b∆qapaq

“ pidA bmqpidA b idB b Sqpab idBqapaq

“ pidA bmqpapa
1
q b Spa2

qq.

Finally, the trivial equality: pidA bmqpxb y b zq “ pxb yqp1A b zq implies:

ap1Aqpab 1Bq “ apa1
qp1b Spa2

qq.

So ap1Aqpab 1Bq belongs to the vector space generated by apAqp1A bBq. ˝

Let us introduce the unital ˚-homomorphism α : Bs Ñ A : αpxq :“ x ¨ 1A.
Equalities (4) and (5) show that, for all x P Bs and a P A :

apαpxqaq “ p1A b xqapaq, (19)

pαpxq b 1Bqapaq “ p1A b Spxqqapaq. (20)

It is helpful to note that

ap1Aq “ pα b idBq∆p1Bq. (21)

Indeed :

αp11q b 12 :“ 11 ¨ 1A b 12 “ pidA b εqrp1A b 11qap1Aqs b 12 “

“ 11
A b pεb idBq∆p1

2
Aq “ ap1Aq.

Lemma 3.4 (cf. [31] 3.1.5, 3.1.6). If pA, aq is a G-˚-algebra A, then:
(i) The set Aa “ ta P A|apaq “ ap1Aqpa b 1Bqu is a unital ˚-subalgebra

of A (it is a unital C˚-subalgebra of A when A is a C˚-algebra) commuting
pointwise with αpBsq.

(ii) The map T a :“ pidA b hqa (where h is the normalized Haar measure
of G) is a conditional expectation from A to Aa; it is faithful when A is a
C˚-algebra.

Proof. (i) For all a P Aa and x P Bs, one has:

apaαpxqq “ ap1Aqpab 1Bqp1A b xqap1Aq “ apαpxqaq,
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so Aa commutes pointwise with αpBsq, then it is stable with respect to the
multiplication and the ˚-operation in A; moreover if A is a C˚-algebra, it is
clearly norm closed in A, so this is a unital C˚-subalgebra of A.

(ii) Since h|Bt “ ε|Bt (see [22], 7.3.2), one has T ap1Aq :“ pidAbhqap1Aq “
1A, from where, for all a P Aa:

T a
paq “ pidA b hqpap1Aqpab 1Bqq “ pidA b hqpap1Aqqa “ a.

Now, if Et “ pidBbhq∆ is the target Haar conditional expectation of G, one
has, for all a P A:

apT a
paqq “ appidA b hqapaqq “ pidA b idB b hqppab idBqapaqq

“ pidA b idB b hqpidA b∆qapaq “ pidA b Etqapaq

“ pidA b Etqpap1Aqapaqq

“ pidA b Etqpap1Aqpa
1
b a2

qq “ ap1Aqpa
1
b Etpa

2
qq

“ ap1Aqp1A b Etpa
2
qqpa1

b 1Bq “ ap1AqpβpSpEtpa
2
qqq b 1Bqpa

1
b 1Bq

“ ap1AqpβpSpEtpa
2
qqqa1

b 1Bq.

Using the fact proved above that pidA b hqpap1Aqq “ 1A, this implies that:

pidA b hqapT
a
paqq “ pidA b hqap1AqpβpSpEtpa

2
qqqa1

b 1Bq

“ βpSpEtpa2qqqa
1.

But since h ˝ Et “ h, one has also:

pidA b hqapT
a
paqq “ pidA b hqap1Aqpa1 b Etpa2qq

“ pidA b hqpap1Aqpa1 b a2qq

“ pidA b hqpap1Aqapaqq “ T a
paq.

One deduces that T apaq “ βpSpEtpa2qqqa
1 and

apT a
paqq “ ap1AqpβpSpEtpa2qqqa1 b 1Bq “ ap1AqpT

a
paq b 1Bq.

This implies that T apAq “ Aa, moreover, T a ˝ T a “ T a. Finally, for all
c, d P Aa and a P A, one has:

T a
pcadq “ pidA b hqapcadq “ pidA b hqpapcqapaqapdqq

“ pidA b hqpp1B b cqapaqp1B b dqq “ cT a
paqd.

When A is a C˚-algebra, T a is faithful because a and h are faithful. ˝
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Definition 3.5 Let pA, aq be a unital G-˚-algebra, then unital ˚-subalgebra

Aa
“ ta P A{apaq “ ap1Aqpab 1Bqu

is called the subalgebra of invariants (or fixed points) of pA, aq.

Proposition 3.6 Let pA, aq be a unital G-C˚-algebra and φ be an element
in A˚, then the following assertions are equivalent:

i) for any a P A one has: pφb iBqapaq P Bs;
ii) φ ˝ T a “ φ;
iii) there exists a linear form ω on Aa such that φ “ ω ˝ T a;
iv) for any x, y P A, one has:

pφb idBqpapxqpy b 1Bqq “ pφb Sqppxb 1Bqapyqq.

Proof. Clearly, ii) and iii) are equivalent. If ii) is true and if Es “
ph b iBq∆ is the source Haar conditional expectation of G, then i) is true
because, for all ω1 P B˚ and a P A, one has:

ω1ppφ ˝ iBqapaqq “ pφ ˝ ω
1
qapaq “ pφ ˝ ω1qpT a

b iBqapaq

“ pφ ˝ ω1qppidA b hqab idBqapaq

“ pφ ˝ ω1qpidA b hb idBqpab idBqapaq

“ pφ ˝ ω1qpidA b hb idBqpidA b∆qapaq

“ pφ ˝ ω1qpidA b phb idBq∆qapaq

“ pφ ˝ ω1qpidA b Esqapaq

“ ω1pEsppφ ˝ idBqapaqqq.

If i) is true, one has:

φpaq “ φppidA b εqapaqq “ εppφb idBqapaqq “ εpEspφb idBqapaqqq

“ pφb εqpidA b Esqapaq “ pφb εqpidA b phb idBq∆qapaq

“ pφb εqpidA b hb idBqpidA b∆qapaq

“ pφb εqpidA b hb idBqpab idBqapaq

“ pφb εqpT a
b idBqapaq “ pφ ˝ T

a
qpidA b εqapaq “ pφ ˝ T

a
qpaq,

which is ii), so the three first assertions are equivalent.
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Further, if iv) is true, then we have, applying it to x P A and y “ 1B:

pφb idBqapxq “ pφb Sqppxb 1Bqap1Aqq,

which implies i). Suppose now that i) is true (and so ii) and iii) as well).
First, for all a P A, z P Bt, the equality (20) gives:

a1Spzq b a2
“ a1

b a2z.

Next, the equality y1 b εtpy
2q “ p11

Ayq b 12
A (which can be proven directly),

the equality εtpbq “ b1Spb2q, @b P B and assertion i) give:

pφb idBqpapxqpy b 1Bqq “ φpx1yqx2
“ φpx111

Ayqx
212
A “ φpx1y1

qx2εtpy
2
q

“ φpx1y1
qx2y2Spy3

q “ φppxy1
q
1
qpxy1

q
2Spy3

q

“ φppxy1
q
1
qεsppxy

1
q
2
qSpy3

q.

Now, using the definition of εs and the equality εtpbzq “ εtpbSpzqq which
is true for all b P B, z P Bt, we have:

pφb idBqpapxqpy b 1Bqq “ φppxy1
q
1
qεppxy1

q
2
p1Bq2qp1Bq1Spy

3
q

“ φppxy1
q
1
qεppxy1

q
2Spp1Bq2qqp1Bq1Spy

3
q

“ pφb εqpapxy1
qp1A b Spp1Bq2qqqp1Bq1Spy

3
q

“ φppib εqpapxy1
qp1A b Spp1Bq2qqqqp1Bq1Spy

3
q

“ φppxy1
q ¨ Spp1Bq2qqp1Bq1Spy

3
q,

which equals, due to the relation pacq ¨ t “ apc ¨ tq, @a, c P A, to:

φpxpy1
¨ Spp1Bq2qqqp1Bq1Spy

3
q “ φpxpib εqpαpy1

qp1b Spp1Bq2qqqqp1Bq1Spy
3
q

“ φpxy1εpy2Spp1Bq2qqqp1Bq1Spy
3
q

“ pφb εb Sqpxy1
b y2Spp1Bq2 b y

3Spp1Bq1q

“ pφb εb Sqppxb 1b 1qpα b iqαpyqp1b ςpS b Sqp∆p1Bqqqq

“ pφb εb Sqppxb 1b 1qpib∆qαpyqpib∆qp1b 1Bqq

“ pφb Sqppxb 1qpib pib εq∆qαpyqq

“ pφb Sqppxb 1qαpyqq.

˝

Corollary 3.7 Let ap1Aq “ 11
Ab12

A be a decomposition of ap1Aq in Sweedler
leg notations, and let φ be a positive faithful form on A satisfying the condi-
tions of Proposition 3.6, then 11

A is in the centralizer of φ.
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Proof. Due to i), one has for all x P A: pφb iqapxq P Bt, so pφbSqapxq “
pφb S´1qapxq, hence by iv) applied twice:

pφb iqpap1Aqpxb 1Bqq “ pφb Sqapxq “ pφb S
´1
qapxq

“ pφb iqppxb 1Bqap1Aqq,

which gives the result. ˝

Definition 3.8 A linear form on A satisfying the conditions of Proposition
3.6 is called an invariant form with respect to a.

Example 3.9 The Haar measure h is an invariant faithful form on B with
respect to the coaction ∆ of G on B.

Definition 3.10 If Aa “ C1A, we say that the coaction a is ergodic.

Example 3.11 Let I Ă B be a unital right coideal C˚-subalgebra with the
coaction a “ ∆|I . Then Ia “ I X Bt, so this coaction is ergodic if and only
if I XBt “ C1B.

Remark 3.12 Lemma 3.6 iii) shows that the set of a-invariant faithful states
on A is not empty. Moreover, if a is ergodic, then the linear form hA on A
defined by T apxq “ hApxq1Ap@x P Aq is the unique a-invariant faithful state.

Definition 3.13 Let H be a Hilbert space and a be a coaction of G on a
unital C˚-subalgebra A of BpHq, then an implementation of a is a unitary
corepresentation V of G on H such that, for all a P A, one has:

apaq “ V pab 1BqV
˚.

Let us construct a canonical implementation for any coaction.

Proposition 3.14 Let a be a coaction of G on A and φ a faithful a-invariant
state on A, then the operator V defined on Hφ bHh by

V pab bq :“ apaqp1A b bq, for all a P A, b P B,

is a unitary corepresentation of G implementing a.
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Proof. For the proof that V is a corepresentation of G, see the prof of
Proposition 2.10. Then Proposition 3.6 and Corollary 3.7 imply:

ă V pab bq, V pab bq ą “ pφb hqpp1A b b
˚
qapa˚aqp1A b bqq

“ hrb˚pφb idbqpapa
˚aqp1A b 1Bqqbqs

“ hrb˚pφb Sqrpa˚ab 1Bqap1Aqsbq

“ pφb hqrpa˚a11
A b b

˚Sp12
Aqbq

“ă Jφσ
φ
i{2p1

1
Aq
˚Jφab Sp1

2
Aqb, ab b ą

“ă pJφp1
1
Aq
˚Jφ b Sp1

2
Aqqpab bq, ab b ą,

for all a P A, b P B, from where

V ˚V “ pjφ b Sqap1Aq.

Here jφpxq :“ Jφx
˚Jφ is the Tomita involution associated with φ. Then V

is a partial isometry, by Proposition 3.3 its image is ap1AqpHφ b Hhq, so
V V ˚ “ ap1Aq. Put β :“ jφ ˝ α, then by Tomita’s theory β is a faithful
anti-representation of Bs whose image commutes in BpHφq with Im α.

Now, for any x, a P A and b P B, one has: apxqV pab bq “ apxqapaqp1A b
bq “ apxaqp1Ab bq “ V paxb bq “ V pxb1qpab bq. Hence, apxqV “ V pxb1q,
and one deduces that:

apxq “ apxqap1q “ apxqV V ˚ “ V pxb 1qV ˚.

˝

Example 3.15 If I is a right coideal *-subalgebra of B and ∆|I is a coaction
of G on it, the above formula gives the unitary corepresentation of G which
is a canonical implementation of ∆. In particular, if I “ B (resp., I “ Bs),
we have the regular (resp., the trivial) unitary corepresentation of G.

2. Spectral subspaces of A
For any pU,HUq P UCoreppGq, HU is a G-comodule via δU : v ÞÑ Upv b

1Bq. In terms of the matrix coefficients Ui,j pi, j “ 1, ..., nq with respect to
some orthonormal basis teiu

n
i“1 in HU , this means that δUpejq “ Σn

i“1eibUi,j.

Definition 3.16 Let A be a unital G-C˚-algebra A. We call the spectral
subspace of A corresponding to pU,HUq the linear span AU of the images of
all G-comodule maps HU Ñ A.
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For instance, if U is the trivial corepresentation which is associated with
p∆|Bs , Bsq, so HU “ Bs, we will use the notation Aε instead of AU , and we
have αpBsq Ă Aε. Indeed, α : Bs Ñ A is a G-comodule map: apαpxqq “
p1A b xqap1Aq “ p1A b xqpα b idBq∆p1Bq -see (21).

Proposition 3.17 (cf. [2], Proposition 13).
One can characterize the spectral subspaces as follows:

AU :“ ta P A|apaq P ap1AqpAbBUqu.

Proof. (i) Let R : HU Ñ A is a G-comodule map. Then

apaq “ apRpvqq “ ap1AqpR b idqδUpvq P ap1AqpR b idqpHU bBUq,

where a “ Rpvq, v P HU , and

ap1AqpR b idqpHU bBUq Ă ap1AqpAbBUq.

(ii) Vice versa, let a P A be such that apaq P ap1AqpA b BUq Ă A b BU , so
apaq “ Σi,jpai,j b Ui,jq. Then, on the one hand,

pab idBqapaq “ Σi,jpapai,jq b Ui,jq,

and, on the other hand, using Remark 2.18 (iii),

pab idBqapaq “ Σi,jpai,j b∆pUi,jqq “ Σi,j,kpai,j b Ui,k b Uk,jq,

from where apak,jq “ Σipai,j b Ui,kq, for all k, j “ 1, ..., dimpHUq. But
ap1Aq

2 “ ap1Aq, so in fact apak,jq “ ap1AqpΣiai,j b Ui,kq. We have a “ Σjaj,j
because the images of both sides of this equality under a coincide and a is
injective. So it suffices to show that any aj,j is the image of some vector from
HU under some G-comodule map to A. But the map defined by ek ÞÑ ak,j, for

all j, k “ 1, ..., dimpHUq (where teku
dimpHU q

k“1 is the above orthonormal basis
in HU), is clearly a G-comodule map and aj,j is the image of the vector ej. ˝

Corollary 3.18 (i) All AU are closed.
(ii) A “ ‘xPΩAUx.
(iii) AUxAUy Ă ‘zAUz , where z runs over the set of all irreducible direct

summands of Ux j Uy.
(iv) apAUq Ă ap1AqpAU bBUq and AU “ pAUq

˚.
(v) Aε is a unital C˚-algebra.

27



Proof. (i) a is continuous and dimpBUq ă 8, so all AU are closed.
(ii) Follows from Remark 2.18 (i).
(iii) Follows from Remark 2.18 (ii).
(iv) Remark 2.18 (iii) implies:

apa1
q b a2

“ a1
b∆pa2

q P AbBU bBU ,

so apa1q P AbBU . As ap1Aq is an idempotent, we have apa1q P ap1AqpAbBUq

which means that a1 P AU . Then the second statement follows.
(v) Follows from Example 2.19 ˝

Example 3.19 Let pε, Bsq be the trivial corepresentation of G, so Bε “ BsBt

is a unital C˚-algebra (see Example 2.19). The definition of Aε shows that it
is a unital C˚-subalgebra of A. It contains a unital C˚-subalgebra αpBsqA

a

invariant with respect to a. Indeed, if z P Bs, a P A
a, we have, using (21):

apαpzqaq “ p1A b zqαp1Aqpab 1Bq P αp1AqpαpBsqA
a
bBsBtq.

We will show that for coconnected finite quantum groupoids Aε “ αpBsqA
a.

4 From coactions to module categories over

UCoreppGq

1. Equivariant C˚-correspondences
The next definition is parallel to the definitions given in [1] and [6].

Definition 4.1 . Given a G ´ C˚-algebra pA, aq, we call a right Hilbert A-
module E A-equivariant if it is equipped with a map aE : E ÞÑ E b B such
that:

1) paE b idBqaE “ pidE b∆qaE ; pidE b εqaE “ idH ;.
2) aEpξ ¨ aq “ aEpξq ¨ apaq, for all a P A, ξ P E.
3) ă aEpξq, aEpηq ąAbB“ apă ξ, η ąAq, for all ξ, η P E, where the exterior

product EbB [11], Chapter 4, is considered as a right Hilbert AbB-module.
Let DA be the category of finitely generated A-equivariant Hilbert A-

modules and morphisms: equivariant A-linear maps. These maps are auto-
matically adjointable - see [11], Chapter 1, so DA is a C˚-category.
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Remark 4.2 Condition 1) implies that E is canonically a Bs-bimodule, given
by: x.ξ.y “ ξ1εpxξ2yq @x, y P Bs, @ξ P E. So E b B is a Bs b B-bimodule,
where B is a B-bimodule via right and left multiplication. Then one proves
using (21) and (5) that aEpξq ¨ ap1Aq “ aEpξq, for all ξ P E, and that the
vector space pE bBq ¨ ap1Aq is generated by aEpEqp1A bBq - see the proof of
Proposition 3.3.

Lemma 4.3 Any E P DA satisfies the following conditions:
(i) pz ¨ ζq ¨ a “ z ¨ pζ ¨ aq, for all z P Bs, a P A.
(ii) ă z ¨ ζ, η ąA“ă ζ, z˚ ¨ η ąA, for all z P Bs, ζ, η P E.

Proof. (i) We have:

z ¨ pζ ¨ aq “ pζ ¨ aq1εpzpζ ¨ aq2q “ pidE b εqrppz ¨ ζq
1
bpz ¨ ζq2q ¨ apaqs “ pz ¨ ζq ¨ a.

(ii) The needed equality is equivalent to

aEpz ¨ ζ, η ąAq “ aEpă ζ, z˚ ¨ η ąAq,

which is the same as

ă aEpz ¨ ζq, aEpηq ąAbB“ă aEpζq, aEpz
˚
¨ ηq ąAbB

or
ă ζ1, η1

ąAă zζ2, η2
ąB“ă ζ1, η1

ąAă ζ2, z˚η2
ąB .

As we see, the A-valued scalar products coincide and both B-valued scalar
products are equal to pζ2q˚z˚η2 which finishes the proof. ˝

This lemma shows that any E P DA is automatically a pBs, Aq-correspon-
dence (see the definition in Section 2); we call such an object an equivariant
pBs, Aq-correspondence and denote it by BsEA.

Example 4.4 A G´C˚-algebra pA, aq itself with the A-valued scalar product
ă a, b ąA“ a˚b p@a, b P Aq, is an equivariant pBs, Aq-correspondence.

Theorem 4.5 If pV,HV q is a unitary corepresentation of G, then HV is an
equivariant Bs-correspondence (Bs is equipped with the coaction ∆|Bs of G).
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Proof. Proposition 2.11 shows that pHV , aV q is a unitary G-comodule
(where aV pηq “ V pη b Λhp1Bqq, @η P HV ) so HV is a Bs-correspondence
in the sense of A. Connes. Then the Hilbert Bs-module structure on HV is
described in the proof of Lemma 2.20.

Applying the relations (4) and (5), one has:

aV pηq ¨∆p1Bq “ aV pηq ¨ p11 b 12q “ aV pηq ¨ p1B b Sp11q12q “ aV pηq,

which implies, for all η P HV , t P Bs:

aV pη ¨ tq “ aV pηq ¨ p∆p1Bqp1b tqq “ aV pηq ¨∆ptq.

Now, consider V as an element of BpHV bHhq, where Hh is the GNS Hilbert
space constructed by pB, hq, the canonical multiplicative isometry Ih of G
(see [31], Proposition 2.2.4) and its normalized fixed vector e (see [29], [30]
2.3 and 2.4)). Applying [30], Lemma 2.1.1, one has, for all b1 P B1 (the
commutant of B in BpHhq), ξ, η P H, and x, x1 P Bs:

ă ∆pă ξ, η ąαqpΛεxb eq,Λεx
1
b b1e ą

“ă ∆p1Bqp1Bb ă ξ, η ąBsqpΛεxb eq,Λεx
1
b b1e ą

“ phb ωeqppx
1˚
b b1˚q∆p1Bqp1Bb ă ξ, η ąBsqpxb 1Bqq

“ phb ωeqp∆p1Bqp1Bb ă ξ, η ąαqpxx
1˚
b b1˚qq

“ ωepphb idBqp∆p1Bqpxx
1˚
b 1Bq ă ξ, η ąBs b

1˚
qq

“ ωepSpxx
1˚
q ă ξ, η ąBs b

1˚
q.

On the other hand, taking two decompositions: V pξ b eq “
ř

jPJ

pξj b bjeq and
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V pη b eq “
ř

iPI

pηi b bieq, one computes:

ăă aV pξq, aV pηq ąBsbB pΛεxb eq,Λεx
1
b b1e ą“

“
ÿ

iPI,jPJ

ăă ξj b bj, ηi b bi ą pΛεxb eq,Λεx
1
b b1e ą

“
ÿ

iPI,jPJ

ă pRpξjq
˚Rpηiq b b

˚
j biqpΛεxb eq,Λεx

1
b b1e ą

“
ÿ

iPI,jPJ

ă pRpξjq
˚RpηiqΛεx,Λεx

1
ąă b˚j bie, b

1e ą

“
ÿ

iPI,jPJ

ă RpηiqΛεx,RpξjqΛεx
1
ąă bie, bjb

1e ą

“
ÿ

iPI,jPJ

ă βpxqηiq, βpx
1
qξj ąă bie, b

1bje ą

“ă
ÿ

iPI

pβpxq b 1Bqpηi b bieq,
ÿ

jPJ

pβpx1q b b1qpξj b bjeq ą

“ă pβpxq b 1BqpV pη b eq, pβpx
1
q b b1qV pξ b eq ą

“ă V pη b Spxqeq, V pξ b Spx1qb1eq ą

“ă eβ,ipη b Spxqeq, eβ,ipξ b Spx
1
qb1eq ą

“ăă ξ, η ąBs Spxqe, Spx
1
qb1e ą“ăă ξ, η ąBs Spxx

1˚
qe, b1e ą

“ ωepSpxx
1˚
q ă ξ, η ąBs b

1˚
q “ ωepSpxx

1˚
q ă ξ, η ąBs b

1˚
q.

Thus, ă aV pξq, aV pηq ąBsbB“ ∆pă ξ, η ąBsq. ˝

Proposition 4.6 Given an equivariant Bs-correspondence BsEBs, define on
E the scalar product inherited from its Bs-scalar product: ă ξ, η ą“ εpă
η, ξ ąBsq, for all ξ, η P E. Then V P BpE bHhq defined by

V pη b Λhpbqq “ pidE b ΛhqpaEpηq ¨ p1b bqq, for all η P E , b P B,

is a unitary corepresentation of G.

Proof. As E satisfies the condition 1) of Definition 4.1, it has a Bs-
bimodule structure defined by the maps α, β : Bs Ñ LpEq. In particular,
βpnqξ “ ξ ¨ n, for all n P Bs and ξ P E . Definition 4.1 2) shows that the
right Bs-module structure given by β is the same as the initial Bs-bimodule
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structure on E . With the new scalar product on E , one has:

ă βpnqξ, ξ ą “ εpă ξ, βpnqξ ąBsq “ εpă ξ, ξ ¨ n ąBsq

“ εpă ξ, ξ ąBs nq “ εpn ă ξ, ξ ąBsqq

“ εpă ξ ¨ n˚, ξ ąBsqq

“ εpă βpn˚qξ, ξ ąBsqq “ă ξ, βpn˚qξ ą .

Hence, β is a unital ˚-anti-representation of Bs on E , and eβ,i is an orthogonal
projection. Moreover, as E satisfies the condition 1) of Definition 4.1, then
V defined above satisfies the conditions (i) and (ii) of Definition 2.9 - see the
proof of Proposition 2.10. On the other hand:

ă V ˚V pη b eq,pη b eq ą“ă V pη b eq, V pη b eq ą

“ă
ÿ

iPI

ηi b bie,
ÿ

iPI

ηi b bie ą

“ pεb hqpă aEpηq, aEpηq ąBsbBq

“ pεb hqpatrivpă η, η ąBsqq “ hpă η, η ąBsq

“ăă η, η ąBs e, e ą“ă eβ,ipη b eq, η b e ą .

As e is separating for B, this implies that V is a partial isometry whose
initial support is eβ,i. ˝

Theorem 4.5 and Proposition 4.6 allow to define two functors : F3 :
UCoreppGq Ñ DBs and G3 : DBs Ñ UCoreppGq on the level of objects, and
the morphisms in both cases are just B-comodule maps. These functors are
inverse to one another. Indeed, since the B-comodule structure is the same
in both cases, the only thing to explain is the relation between the usual
scalar product in HV and the corresponding Bs-valued scalar product, but
this explanation was done in the proof of Lemma 2.20. Thus, we have :

Theorem 4.7 The categories UCoreppGq and DBs are isomorphic.

In particular, the unit object 1 P DBs is pBs,∆|Bsq with the Bs-valued
scalar product ă b, c ą“ b˚c, for all b, c P Bs, and the tensor product is the
interior tensor product of Bs-correspondences.

2. Module categories over UCoreppGq associated with equivari-
ant C˚-correspondences.
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Definition 4.8 [6] Let C be a C˚-multitensor category with unit object 1. A
C˚-category M is called a left C-module C˚-category if there is a bilinear ˚-
functor b : CˆMÑM with natural unitary transformations pXbY qbM Ñ

X b pY bMq and 1bM ÑM pX, Y P C,M PMq making M a left module
category over C - see [9], Chapter 7. If C is strict, we say that M is strict
(resp., indecomposable) if these natural transformations are identities (resp.,
if, for all non-zero M,N PM, there is X P C such that MpXbM,Nq ‰ 0).

We say that an object M PM generatesM if any object ofM is isomor-
phic to a subobject of X bM for some X P C. M is said to be semisimple if
the underlying C˚-category is semisimple.

We will always consider C˚-categories closed with respect to subobjects, i.e.,
such that for any object M and any projection p P EndpMq, there are an
object N and isometry v P MpN,Mq satisfying p “ vv˚ (if necessary, one
can complete given C˚-category with respect to subobjects).

One naturally defines a morphism F :M1 ÑM2 between two C-module
C˚-categories as a morphism of the underlying C˚-categories equipped with
a unitary natural equivalence F pX bMq Ñ X b F pMq, @ X P C, M PM
satisfying some coherence conditions (see [6], 2.17).

Lemma 4.9 DA is a strict left module category over UCoreppGq defined by
interior tensor product of C˚correspondences over Bs.

Proof. Given HV P DBs and BsEA P DA, equip the vector space HV bBs E
with A-valued scalar product - see [11], Proposition 4.5:

ă v bBs ζ, w bBs η ąA“ă ζ,ă v, w ąBs ¨η ąA, @v, w P HV , ζ, η P E , (22)

which gives it the Bs ´ A-correspondence structure, and also with the al-
gebraic structure of tensor product of the corresponding B-comodules. One
can check that we obtain a new object HV bBs E P DA, and that this con-
struction is natural both in V and E . Thus, we have defined a functor
b : UCoreppGq ˆ DA Ñ DA having the needed properties. Indeed, the first
of them is true because HUjV “ HU bBs HV and because of the associativity
of bBs , and the second one can be proved by direct computation.

Finally, b sends adjoint morphisms to adjoint, so it is a ˚-functor. ˝

Let us show that A viewed as an object of DA (see Example 4.4) is a
generator forDA. More precisely, if V P UCoreppGq, thenHVbBsA P DA and
the corresponding right coaction of B onHVbBsA defines a left action of B̂ on
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it: b̂ ¨v :“ v1 ă b̂, v2 ą, for all v P HV bBsA, b̂ P B̂. If p P LpHV bBsAq is a B̂-
invariant orthogonal projection, then one can check that HV,p “ ppHV bBsAq
is a subobject of HV bBs A in DA.

Lemma 4.10 (cf. [15], Lemma 3.2). For any E P DA, there is V P

UCoreppGq and a B̂-invariant projection p P LpHV bBs Aq such that E is
isomorphic to HV,p.

Proof. For any fixed ζ P B̂ ¨ E “ E , the finite dimensional vector space
B̂ ¨ζ is a B̂-module, so there is a finite dimensional B̂-submodule E0 of E such
that E0 ¨ A “ E . In particular, there are unital ˚-representations of Bs – B̂t

and Bt – B̂s on E0, so it is a Bs-bimodule. Constructing on this space a
Bs-valued scalar product like in the proof of Lemma 2.20, we turn E0 into
an equivariant Bs correspondence, and Proposition 4.6 allows to construct
V P UCoreppGq such that the left B̂-modules HV and E0 are isomorphic. Fix
an isomorphism T0 : HV Ñ E0 and define T : HV bBs AÑ E by T pvbBs aq “
pT0vq ¨ a. This is a surjective morphism of A-modules. Since HV bBs A is
a finitely generated Hilbert A-module, it makes sense to consider the polar
decomposition T ˚ “ u|T ˚|. Then |T ˚| is an invertible endomorphism of the
A-module E , and u : E Ñ HV bBs A is an A-module mapping such that
u˚u “ ι. Property (iii) in Definition 4.1 and non-degeneracy ensure that T ˚,
|T ˚|, u “ T ˚|T ˚|´1, and u˚ are morphisms of A-equivariant Hilbert modules.
In particular, u : E Ñ HV,p is an isomorphism such that p “ uu˚. ˝

Remark 4.11 EndDA
pAq “ Aa. In particular, a coaction a is ergodic if and

only if the generator A of the module category DA is simple.
Indeed, if T P EndDA

pAq, then apT p1Aqq “ pT b idBqap1Aq P A b Bt. So
T p1Aq P A

a because pidA b hqapT p1Aqq “ pidA b εqapT p1Aqq “ T p1Aq.
Vice versa, arbitrary a P Aa generates an equivariant endomorphism of

A via T : 1A ÞÑ a.

We can summarize the above considerations as follows:

Theorem 4.12 Given a regular coconnected finite quantum groupoid G, con-
sider two categories:

(i) The category G ´ Alg of unital G ´ C˚-algebras together with unital
G-equivariant ˚-homomorphisms as morphisms.

(ii) The category UCoreppGq ´ Mod of pairs pM,Mq, where M is a
left UCoreppGq-module C˚-category and M is its generator, with equivalence
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classes of unitary ReppGq-module functors respecting the generators as mor-
phisms.

Let us associate with any G ´ C˚-algebra pA, aq the C˚-category DA of
finitely generated A-equivariant pBs, Aq-correspondences with its generator A,
and with any morphism f : A0 Ñ A1 in G´Alg the morphism E ÞÑ EbA0A1

from DA0 to DA1. This defines a functor T : G´Alg Ñ UCoreppGq´Mod.

The only thing to check is that T is well defined on the level of morphisms.
This is straightforward because A1 is a left A0-module via morphism f . This
construction was discussed in [6], Chapter 7 as ”extension of scalars”.

5 From module categories over UCoreppGq to

coactions

In Sections 5 and 6 we use the approach proposed in [14] with certain modifi-
cations reflecting the difference between CQG and finite quantum groupoids
and the fact that we are considering left module categories and right coac-
tions instead of right module categories and left coactions as in [14].

Definition 5.1 Let R be a C˚-algebra and let pC,b,1q be a strict C˚-tensor
category, a weak tensor functor from C to CorrpRq is a linear functor F :
C Ñ CorrpRq together with natural R-bilinear isometries J “ JU,V : F pUqbR
F pV q Ñ F pU b V q satisfying the following conditions:

(i) F p1q “ R;
(ii) F pT q˚ “ F pT ˚q for any morphism T in C;
(iii) J : R bR F pUq Ñ F p1 b Uq “ F pUq maps r b X into Xr, and

J : F pUq bR RÑ F pU b 1q “ F pUq maps X b r into rX, for all X P F pUq;
(iv) Jpidb Jq “ JpJ b idq;
(v) for all U, V P C and every vector Y P F pUq, the right R-linear map

SY “ SY,U : F pUq Ñ F pU b V q mapping X P F pUq into JpX b Y q is
adjointable, and Jpidb S˚Y q “ S˚Y ˝ J .

Remark 5.2 (i) Any unitary tensor functor F : C Ñ CorrpRq is a weak
tensor functor - if the conditions (i) - (iv) are satisfied and the maps J are
surjective, then the condition (v) is also satisfied.

(ii) If we consider F as a functor into the category of vector spaces, then
SY is a natural transformation from F to F p¨ b V q, and we have

S˚Y F pT b idq “ F pT q ˝ S˚Y , for all morphisms in C. (23)
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We will also need the following modification of [14], Proposition 3.1:

Proposition 5.3 Let M be a strict left module C˚-category over a strict
C˚-tensor category C, M be an object in M, and denote by R the unital C˚-
algebra EndpMq. Then the map F pUq “ MpM,U bMq @U P C defines a
weak tensor functor F : C Ñ CorrpRq, where X “ F pUq is a right R-module
via the composition of morphisms, a left R-module via rX “ pid b rqX,
the R-valued inner product is given by ă X, Y ą“ X˚Y , the action of F on
morphisms is defined by F pT qX “ pTbidqX, and JX,Y pXbY q “ pidbY qX,
for all X P F pUq, Y P F pV q, X, Y P C.

Let us note that SY pXq “ pid b Y qX and S˚Y pZq “ pid b Y ˚qZ, where
Z P F pU b V q.

Now we will describe step by step the reconstruction procedure. Let M
be a strict left UCoreppGq-module C˚-category with generator M .

Let Ω be an exhaustive set of representatives of the equivalence classes of
irreducible objects in UCoreppGq. Consider the following vector space:

A “
à

xPΩ

AUx :“
à

xPΩ

pF pUx
q bHxq, (24)

and also a much larger vector space:

Ã “
à

UP}UCoreppGq}

AU :“
à

UP}UCoreppGq}

pF pUq bHUq, (25)

where F pUq “
À

i

F pUiq corresponds to the decomposition U “
À

Ui into

irreducibles, and }UCoreppGq} is an exhaustive set of representatives of the
equivalence classes of objects in UCoreppGq (these classes constitute a count-
able set). Ã is a unital associative algebra with the product

pX b ξqpY b ηq “ pidb Y qX b pξ bBs ηq, @pX b ξq P AU , pY b ηq P AV ,

and the unit
1Ã “ idM b 1B.

Note that pid b Y qX “ JX,Y pX b Y q P F pU j V q. Then, for any U P

UCoreppGq, choose isometries wi : Hi Ñ HU defining the decomposition of
U into irreducibles, and define the projection p : ÃÑ A by

ppX b ξq “ ΣipF pw
˚
i qX b w˚i ξq, @pX b ξq P AU , (26)
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which does not depend on the choice of wi. Indeed, for any other choice of
isometries vj there exists a unitary matrix uij such that wi “ Σi,juijvj. Note
also that if w : HU Ñ HV is an isometry between U, V P CoreppGq, then

ppF pwqX b wξq “ ppX b ξq, @pX b ξq P AU . (27)

Lemma 5.4 A is a unital associative algebra with the product x ¨y :“ ppxyq,
for all x, y P A.

Proof. It suffices to check that ppppaqppbqq “ ppaqppbq, for all a, b P Ã.
Let a “ pX b ξq P AU , b “ pY b ηq P AV , where U, V P UCoreppGq. Choose
isometries ui and vj corresponding to the decompositions U “

À

Ui and
V “

À

Uj into irreducibles, and let wi,j,k be isometries corresponding to the
decomposition of Ui j Vj into irreducibles. Then:

ppaqppbq :“ ΣipF pu
˚
i qX b u˚i ξqqΣjpF pv

˚
j qY b v

˚
i ηq “

“ Σi,jppidb F pv
˚
j qY qF pu

˚
i qX b u˚i ξ b v

˚
j ηq “ (28)

“ Σi,j,kpF pw
˚
i,j,kqpidb F pv

˚
j qY qF pu

˚
i qX b w˚i,j,kpu

˚
i ξ b v

˚
j ηqq.

On the other hand, if we apply p to (28), we get the same result. ˝

In particular, the vector subspace Aε “ R b Hε (where R “ EndpMq
and Hε “ Bs) is a unital C˚-subalgebra of A and any F pUq is an R-
correspondence (see Proposition 5.3).

Lemma 5.5 If X is in F pUq, then X‚ “ S˚XF pRUqp1Bq is the unique ele-
ment from F pUq satisfying

ă X‚, Y ą“ F pR˚UqJpY bXq for all Y P F pUq,

where RU and RU come from (2). We also have:

ă X, Y ą“ F pR
˚

UqJpY bX
‚
q, @Y P F pUq.

Proof. We compute:

ă X‚, Y ą “ă S˚XF pRUqp1Bq, Y ą“ă F pRUqp1Bq, SXpY q ą

“ F pR˚UqJpY bXq.
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The uniqueness follows from the faithfulness of the inner product. As for the
last statement, we compute:

F pR
˚

UqJpY bX
‚
q “ F pR

˚

UqJpY b S
˚
XF pRUqp1Bqq

“ F pR
˚

UqS
˚
XJpY b F pRUqp1Bqq

“ S˚XF pR
˚

U b idqF pidbRUqY,

where we have used (23). The latest expression equals to S˚XY , where S˚X :
RÑ F pUq is given by r Ñ JpX b rq “ r ¨X, so S˚XY “ă X, Y ą. ˝

Similarly, for any ξ P HU define ξ‚ P HU by

ξ‚ “ pξbidUqRUp1Bq “ Ĝ1{2 ¨ ξ (see (2)), so ă η, ξ‚ ą“ R
˚

Upξbηq @η P HU ,

and consider the map ‚ : ÃÑ Ã

pX b ξq‚ :“ X‚
b ξ‚.

Lemma 5.6 A is a unital ˚-algebra with the above product and the involution
x˚ :“ ppx‚q, for all x P A.

Proof. First, we prove that ppppaq‚q “ ppa‚q, for all a P Ã. Take a “
pX b ξq P AU and choose isometries ui corresponding to the decompositions
of U “

À

Ui and into irreducibles. Then for the standard duality morphisms
we have RU “ ΣipwibwiqRi and RU “ ΣipwibwiqRi, where Ri :“ RUi

, Ri :“
RUi

. Then

F pR˚UqpY bXq “ ΣiF pR
˚
i qJpF pw

˚
i qY b F pw

˚
i qXq “

“ Σi ă pF pw
˚
i qXq

‚, F pw˚i qY ą,

so X‚ “ ΣiF pwiqpF pw
˚
i qXq

‚. Similarly, ξ‚ “ Σiwipw
˚
i ξq

‚, therefore, applying
p to a‚ and using (27), we have:

ppa‚q “ ΣippF pwiqpF pw
˚
i qXq

‚
b wipw˚i ξq

‚q “

“ ΣipppF pw
˚
i qXq

‚
b pw˚i ξq

‚q.

On the other hand, the last expression equals to ppppaq‚q.
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Next, in order to prove that pppaqppbqq˚ “ ppbq˚ppaq˚, it suffices to prove
that pppa ¨ bq‚q “ ppb‚ ¨ a‚q, for all a, b P Ã. Take a “ pX b ξq P AU and
b “ pY b ηq P AV . The unitary σ : HV b HU Ñ HUdV mapping θ b ζ into

ζ b θ defines an equivalence between V j U and U j V , and we have

RUjV “ pσbidbidqpidbRUbidqRV andRUjV “ pidbidbσqpidbRVbidqRU .

Then we compute using Lemma 5.5, relations SJpXbY q “ SY SX and (23):

JpX b Y q‚ “ S˚JpXbY qF pRUjV qp1Bq “

“ S˚XS
˚
Y F pσ b idb idqF pidbRU b idqF pRV qp1Bq “

“ F pσqS˚XF pidbRUqS
˚
Y F pRV qp1Bq “ F pσqS˚XF pidbRUqpY

‚
q “

“ F pσqS˚XJpY
‚
b F pRUqp1Bqq “ F pσqJpY ‚ b S˚XF pRUqp1Bqq “

“ F pσqJpY ‚ bX‚
q.

Similarly, pξ b ηq‚ “ σpη‚ b ξ‚q, from where

pa ¨ bq‚ “ pF pσq b σqpJpY ‚ bX‚
q b pη‚ b ξ‚qq “ pF pσq b σqpb‚ ¨ a‚q.

Applying now p, we get pppa ¨ bq‚q “ ppb‚ ¨ a‚q.
In order to show that ˚˚ “ id on A, we will show that ppa‚‚q “ ppaq, for all

a P Ã. Take a “ pXbξq P AU and consider the unitary u : HU Ñ H
U

: ξ ÞÑ ξ.

Then RU “ pub idqRU , hence, applying twice Lemma 5.5, we have:

ă X‚‚, Y ą“ F pR˚
U
qJpY bX‚

q “ F pR
˚

UqF pu
˚
b idqJpY bX‚

q “

“ F pR
˚

UqJpF pu
˚
qY bX‚

q “ă X,F pu˚qY ą, for any Y P F pUq.

So X‚‚ “ F puqX. We also have ξ‚‚ “ ξ “ uξ, from where a‚‚ “ pF puqbuqa,
and applying p to both sides of this equality we get ppa‚‚q “ ppaq. ˝

Now define a linear map a : A Ñ A b B by apX b ξq “ X b p´ b

idBqU
xpξ b 1Bq or, in other words, by

apX b ξiq “ X b Σjpξj b U
x
j,iq, (29)

where X P F pUxq, tξju is any orthonormal basis in Hx and Ux
i,j are matrix

coefficients of Ux with respect to this basis (see Definition 2.17).
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Lemma 5.7 (i) The map a is a right coaction of G on A.
(ii) A admits a unique C˚-completion A such that a extends to a contin-

uous coaction of G on it.

Proof. (i) Clearly, pA, aq is a right B-comodule. In order to show that a
is an algebra homomorphism, remark that Ã is a right B-comodule via ex-
tension ã of a which is defined as in (29), but with arbitrary U P UCoreppGq.
It follows from (29) that p : ÃÑ A is a comodule map, and from the formula
UjV “ U13V23 that ã is a homomorphism, hence a is also a homomorphism.

In order to check that a is ˚-preserving, it suffices to show that ãpaq‚b˚ “
ãpa‚q, for all a “ pX b ξq P AU , U P UCoreppGq. This is equivalent to

Upξ b 1Bq
‚b˚

“ UpĜ1{2 ¨ ξ b 1Bq, @ξ P HU ,

which follows from Lemma 2.7 and a few relations that are easy to check:
pb̂ ¨ v1q b v2 “ v1 b pv2 à b̂q, pb̂ ¨ vq1 b pb̂ ¨ vq2 “ v1 b pb̂ á v2q, pb̂ á bq˚ “
Ŝpb̂q˚ á b˚, and pbà b̂q˚ “ b˚ à Ŝpb̂q˚, for all v P HU , b P B, and b̂ P B̂.

Finally, ap1Aq “ id1 b p. b idBqU
εp1B b 1Bq “ id1 b p´ b idBq∆p1Bq, so

ap1Aq P id1 bBs bBt.
(ii) By Lemma 3.4, the set Aa of all fixed points is a unital ˚-subalgebra

of A commuting with αpBsq. Moreover, the conditional expectation T a :“
pidA b hqa (where h is the normalized Haar measure of G) from A onto Aa

gives rise to a Aa-valued (pre)inner product for A defined by:

ă a, b ąT“ Tαpa˚bq for all a, b P A.

Note that if a “ pX b ξq P AU , then T apppaqq “ ΣipF pw
˚
i qX ˆ w˚i ξq, where

wi are isometries corresponding to the decomposition of U into irreducibles
such that Σipwiw

˚
i q is the projection onto the component of ε. This implies

the mutual orthogonality of the spaces AUx @x P Ω, but 1A P Aε hence
T apAUxq “ 0 for all x ­“ ε. The component Aε “ EndpMq b Bs is a unital
C˚-algebra and using (29), by restriction a is a coaction of G on the C˚-
algebra Aε and T apAεq Ă Aε, which implies that Aa “ T apAq “ T apAεq Ă Aε
and by Lemma 3.4, Aa is a unital C˚-subalgebra of Aε. Therefore A is a
right pre-Hilbert Aa-module.

The map Tα is completely positive, the C˚-algebra Aa is unital, and the
number of the components AUx is finite, so the multiplication on the left
gives a faithful ˚-representation A Ñ LpAq. One can extend a to the C˚-
completion A of A using the reasoning from the proof of [6], Proposition 4.4.
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The map V on AbB defined by Xpabbq “ apaqp1Abbq, extends (due to the
invariance of h) to a partial isometry on the right Hilbert Aa-module AbHh.
The direct calculation shows that the formula a : a ÞÑ V pab1BqV

˚ gives the
needed extension of the coaction. ˝

6 Equivalence of categories

Definition 6.1 Let pA, aq be a unital G-C˚-algebra and Aε be its spectral
C˚-subalgebra corresponding to the trivial corepresentation ε. The spectral
functor associated with pA, aq is a functor F : UCoreppGq Ñ CorrpAεq
defined as follows: for any U P UCoreppGq, put F pUq “ tX P HU bBs

A|U13X12 “ pidA b aqpXqu “ tX “ Σipξi bBs aiq|apaiq “ Σjpaj b Uijq, @ iu,
where tξiu is an orthonormal basis in HU . Then F pεq “ Aε, all F pUq are Aε-
bimodules, and Aε-valued inner product of X “ ΣipξibBs aiq, Y “ ΣipξibBs

biq P F pUq defined by ă X, Y ą:“ Σipa
˚
i biq, does not depend on the choice of

tξiu. Putting also F pT q :“ T b id for morphisms, we have a unitary functor
respecting tensor products: if X “ ΣipξibBs aiq P F pUq, Y “ Σjpηj bBs bjq P
F pV q, U, V P UCoreppGq, then the maps JU,V : X b Y ÞÑ Y23X13 are Aε-
bilinear isometries between F pUq bAε F pV q and F pU j V q.

Remark 6.2 1) The spectral functor pF, Jq associated with a G-C˚-algebra
pA, aq is a weak unitary tensor functor. Indeed, properties (i) - (iv) are
immediate, and (v) follows by observing that the adjoint of the map

SY : F pUq Ñ F pU j V q : X Ñ Y23X13,

is given by S˚Y pZq “ Y ˚23Z. Namely, if Y “ ΣipηjbBs ajq and Z “ Σi,jpξibBs

ηj bBs zi,jq for some orthonormal bases tξiu P HU and tηju P HV , then

S˚YZ “ Σi,jpξi bBs a
˚
j zi,jq P F pUq. (30)

2) The spectral subspaces AU can be recovered from F pUq using the canon-
ical surjective maps

F pUq bHU Ñ AU ,

which are isomorphisms for irreducible U .

Theorem 6.3 Fix a regular coconnected finite quantum groupoid G and a
C˚-algebra C. By associating to a G-C˚-algebra pA, aq its spectral functor,
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we get a bijection between isomorphism classes of triples pA, a, ψq, where ψ :
C Ñ A is an embedding such that Aε “ ψpCq, and natural unitary monoidal
isomorphism classes of weak tensor functors UCoreppGq Ñ CorrpCq.

Proof. Isomorphic G-C˚-algebras produce naturally unitarily monoidally
isomorphic weak unitary tensor functors, and vice versa. It remains to show
that up to some isomorphisms these constructions are mutually inverse.

Let pA, aq be a G-C˚-algebra with its spectral C˚-subalgebra Aε corre-
sponding to the trivial corepresentation of G, and let F be the associated
spectral functor. As F is a weak unitary tensor functor, Lemmas 5.6 and 5.7
allow to construct a unital G-˚-algebra pAF , aF q. One can check that linear
maps sending ppXbξq to pξb idqX P AU , for any pXbξq P F pUqbHU pU P
UCoreppGqq, define a unital G-equivariant homomorphism of algebras. In
order to show that it is ˚-preserving, fix irreducibles Ux and an orthonormal
basis tξiu in Hx @x P Ĝ. For an element X “ Σipξi bBs aiq P F pU

xq, we
compute, using Lemma 5.5 and identity (30):

X‚
“ S˚XF pRUxqp1Bq “ S˚XpΣjpĜ´1{2ξj b ξj b 1Bqq “ ΣjpĜ´1{2ξj b a

˚
j q.

Then the image of the element pX b ξq˚ “ ppX‚b ξ‚q “ ppX‚b Ĝ1{2ξq P AF
equals to

ΣjpĜ1{2ξ, Ĝ´1{2ξjqa
˚
j “ pΣjpξj, ξqajq

˚,

which shows that the homomorphism is ˚-preserving. Passing to the C˚-
completion, we have the first part of the proof.

Conversely, let us start with a unitary weak tensor functor F , construct a
unital G-C˚-algebra pAF , aF q, and consider the spectral functor F 1 associated
with it. For any irreducible Ux P UCoreppGq, x P Ω, fix an orthonrmal basis
tξiu P Hx, then the space F 1pUxq consists of vectors of the form ΣipξibXbξiq,
where X “ F pUxq. The map X ÞÑ Σipξi b X b ξiq from F pUxq to F 1pUxq

is clearly Aε-bilinear, let us check that it is isometric. Taking X 1 “ Σipξi b
X b ξiq, Y

1 “ Σipξi b Y b ξiq in F 1pUxq, we compute:

ă X 1, Y 1 ą“ ΣipX b ξiq
˚
pY b ξiq “

“ ppΣipX
‚
b Ĝ1{2ξiqpY b ξiq “ ppJpX‚

b Y q bRUxp1Bqq.

Lemma 5.5 and the fact that the morphism RUx : Bs Ñ UxjUx is an isom-
etry imply that the last expression equals to ă X, Y ą, so the isomorphisms
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F pUxq – F 1pUxq are unitary and extend uniquely to a natural unitary iso-
morphism of functors F and F 1. Finally, one can check directly that this
isomorphism is monoidal. ˝

Proposition 6.4 Let G be a regular coconnected finite quantum groupoid
and M be a strict right UCoreppGq-module C˚-category with generator M .
If pA, aq is a unital G-C˚-algebra constructed by this data in Lemma 5.7, then
the category DA (see Definition 4.1) is unitarily equivalent, as a UCoreppGq-
module C˚-category, to M, via an equivalence sending A to M .

Proof. As we have seen, pF, Jq is a weak tensor functor. Note that
there are canonical isomorphisms of vector spaces

F pUq – DApA,U bBs Aq

that map ΣipξibBs aiq P F pUq into the morphism a ÞÑ ΣipξibBs aiaq. There-
fore, the spectral functor is naturally unitarily monoidally isomorphic to the
weak tensor functor F 1 : UCoreppGq Ñ CorrpRq defined by DA as in Propo-
sition 5.3, where R “ EndpAq. If ψ : F 1 Ñ F is such an isomorphism, then
ψ : A “ F 1pU εq Ñ F pU εq “ A is the identity map since it is a bimodule map
such that ψ ˝ J “ J 1pψ b ψq.

Let us now define a functor of linear categories E : D̃A Ñ M̃, where
D̃A Ă DA and M̃ ĂM are full subcategories consisting of objects U bBs A
and U b M , respectively. We put EpU bBs Aq “ U b M on objects and
EpT q “ ψpT q on morphisms T P DApA,U bBs Aq. More generally, if T P

DApUbBsA, V bBsAq, where U, V P UCoreppGq, then pidUbT qpRUb idAq P
DApA,UjV bBsAq is Frobenius reciprocity isomorphism with inverse sending
S P DApA,U j V bBs Aq to pR

˚

U b idb idqpidU b Sq. We can define similar
isomorphisms in M and then define linear isomorphisms

E : DApU bBs A, V bBs Aq ÑMpU bBs M,V bBs Mq

by EpT q “ pR
˚

U b idb idqridU b ψppidU b T qpRU b idAqqs.
Let us note that the naturality of ψ implies that if T : UbBsAÑ V bBsA,

S : V Ñ W , where U, V,W P UCoreppGq, then:

EpidW b T q “ idW b EpT q and EppS b idqT q “ pS b idqEpT q. (31)

Consider now morphisms Q : UbBsAÑ V bBsA and T : V bBsAÑ WbBsA,
and define the morphisms P “ pidU b QqpRU b idAq : A Ñ pU j V q bBs A
and S “ pidV b T qpRV b idAq : AÑ pV jW q bBs A, which give:

TQ “ pR
˚

V b idW b idAqpidV b SqpR
˚

U b idV b idAqpidU b P q “
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“ pR
˚

V b idW b idAqpR
˚

U b idV b idV b idW b idAqpidU b idU bSqpidU bP q “

“ pR
˚

U bR
˚

V b idW b idAqpidU b J
1
pP b Sqq,

where J 1pP b Sq “ pidU b idV b SqP : AÑ U b V b V bW bA. A similar
calculation gives

EpT qEpQq “ pR
˚

U bR
˚

V b idW b idMqpidU b JpψpP q b ψpSqqq,

from where, using (31) and monoidality of ψ, we get EpTQq “ EpT qEpQq,
which means that ψJ 1pP b Sq “ JpψpP q bψpSqq. Therefore, E is a functor,
and since it is surjective on objects and fully faithful, it is an equivalence of
linear categories D̃A and M̃ .

Next, let us show that E is unitary, i.e., EpT ˚q “ EpT q˚ on morphisms.
First, let T : A Ñ U bBs A. Since ψ is unitary and ψ|A “ idA, we have for
any S : AÑ U bBs A:

EpT q˚EpSq “ ψpT q˚ψpSq “ă ψpT q, ψpSq ą“ă T, S ą“

“ T ˚S “ EpT ˚Sq “ EpT ˚qEpSq.

As S is arbitrary, this implies that EpT ˚q “ EpT q˚, and using (31), we also
have EppT b idq˚q “ EpT b idq˚. But any morphism in D̃A is a composition
of two morphisms: one of the above form T b idV and another of the form
idM b S for some morphism S in UCoreppGq. As a consequence of (31), we
have EpidMbSq

˚ “ pidMbSq
˚ “ EppidMbSq

˚q, it follows that E is unitary.
Further, if we define J “ JUbA,V : V bBs EpU bBs Aq Ñ EppV j Uq bBs

Aq to be the identity maps, the relations (31) show that we get a natural
isomorphism of bilinear functors ¨ bEp¨q and Ep¨ b ¨q. Therefore, pE, Jq is a
unitary equivalence of UCoreppGq-C˚-module categories D̃A and M̃.

Finally, since DA and M are completions of these categories with re-
spect to subobjects, the equivalence between D̃A and M̃ extends uniquely,
up to a natural unitary isomorphism, to a unitary equivalence between the
UCoreppGq-C˚-module categories DA and M. ˝

Now we are ready to prove Theorem 1.1.
Proof. Due to the previous proposition, it remains to show that two

unital G-C˚-algebras, pA1, a1q and pA2, a2q, are isomorphic if and only if the
pairs pDA1 , A1q and pDA2 , A2q are unitarily equivalent.

First, given such equivalent pairs, we have the isomorphism of the cor-
responding spectral subalgebras pA1qε “ EndpM1q and pA2qε “ EndpM2q.
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Identifying the above algebras via this isomorphism, we have a natural uni-
tary monoidal isomorphism of the weak tensor functors constructed in Propo-
sition 5.3 which implies a natural unitary monoidal isomorphism of the corre-
sponding spectral functors. Now theorem 6.3 gives the needed isomorphism
of unital G-C˚-algebras. Conversely, isomorphic unital G-C˚-algebras clearly
produce unitarily equivalent classes of pairs of the form pM,Mq. ˝

Note that: (i) one can precise the definition of the equivalence of module
functors between pairs pM,Mq as in [6], Theorem 6.4; (ii) under the above
equivalence, the unital C˚-algebra Aε is isomorphic to EndMpMq bBs.

Corollary 6.5 Let M be a strict left module C˚-category over a strict rigid
finite C˚-tensor category C, M be a generator inM, and denote by R the uni-
tal C˚-algebra EndpMq. Then there exist a regular biconnected finite quan-
tum groupoid G (even with commutative base) and a unital G-C˚-algebra
pA, aq such that C is equivalent to UCoreppGq as C˚-tensor categories and
M is equivalent to DA as left UCoreppGq-module C˚-categories via an equiv-
alence that maps M to A.

Indeed, the existence of G is guaranteed by Theorem 2.21, and the second
statement - by Proposition 6.4.

Corollary 6.6 If G is regular and coconnected, then Aε “ AaαpBsq.
Indeed, we have seen that Aε “ EndMpMqbBs and that Aa “ EndMpMq.

Example 6.7 The C˚-algebra B with coproduct ∆ viewed as G-C˚-algebra,
corresponds to the UCoreppGq-module C˚-category Corrf pBsq with genera-
tor M “ Bs: for any element U P UCoreppGq and N P Corrf pBsq, one
defines U b N :“ F pUq bBs N , where the functor F : UCoreppGq Ñ
Corrf pBsq pF pUq “ HUq is the forgetful functor. Indeed, if one identifies
MpBs, HUq with HU , we get an isomorphism of the algebra Ã constructed
from the pair pM,Mq onto B̃ “

À

U

pHU b HUq and then an isomorphism

A – B “
À

xPĜ

pHx b Hxq such that p : Ã Ñ A turns into the map B̃ Ñ B

sending ξ b η P HU bHU into the matrix coefficient Uξ,η.
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compact quantum homogeneous spaces. I. General theory. Theory Appl.
Categ., 28:No. 31, 1099–1138, 2013. 2, 3, 28, 33, 35, 40, 45

[7] Kenny De Commer and Makoto Yamashita. Tannaka-Krĕın duality for
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Courses]. Société Mathématique de France, Paris, 2013. 4, 6, 18

[17] Sergey Neshveyev and Makoto Yamashita. Categorical duality for
Yetter-Drinfeld algebras. Doc. Math., 19:1105–1139, 2014. 2, 3

[18] Dmitri Nikshych, Vladimir Turaev, and Leonid Vainerman. Invariants
of knots and 3-manifolds from quantum groupoids. In Proceedings of the
Pacific Institute for the Mathematical Sciences Workshop “Invariants of
Three-Manifolds” (Calgary, AB, 1999), volume 127 1-2, pages 91–123,
2003. 2

[19] Dmitri Nikshych and Leonid Vainerman. Algebraic versions of a finite-
dimensional quantum groupoid. In Hopf algebras and quantum groups
(Brussels, 1998), volume 209 of Lecture Notes in Pure and Appl. Math.,
pages 189–220. Dekker, New York, 2000. 2

[20] Dmitri Nikshych and Leonid Vainerman. A characterization of depth 2
subfactors of II1 factors. J. Funct. Anal., 171(2):278–307, 2000. 2

[21] Dmitri Nikshych and Leonid Vainerman. A Galois correspondence for
II1 factors and quantum groupoids. J. Funct. Anal., 178(1):113–142,
2000. 2

47



[22] Dmitri Nikshych and Leonid Vainerman. Finite quantum groupoids and
their applications. In New directions in Hopf algebras, volume 43 of Math.
Sci. Res. Inst. Publ., pages 211–262. Cambridge Univ. Press, Cambridge,
2002. 2, 4, 16, 21, 22

[23] Florian Nill. Axioms for weak bialgebras. Preprint,arXiv: math/9805104
[math.QA], 1998. 8

[24] Gert K. Pedersen. C˚-algebras and their automorphism groups, vol-
ume 14 of London Mathematical Society Monographs. Academic Press,
Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979.
20

[25] Hendryk Pfeiffer. Finitely semisimple spherical categories and modular
categories are self-dual. Adv. Math., 221(5):1608–1652, 2009. 8, 19
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