Alessio Alexiadis

From Discrete Multiphysics to Deep Multiphysics: a case study concerning the design of continuous microfluidic devices for cell separation

This paper introduces Deep Multiphysics; a common computational framework that has Discrete Multiphysics and Artificial Neural Networks as special cases. The concept of particle-neuron duality is presented. The computational framework that allows integrating particles and neurons in the same computational domain is applied to a practical example, which involves the design of a microfluidic device for separating cell populations with different levels of stiffness. Deep Multiphysics simulates and, at the same time, trains the model to effectively separate soft and rigid cells.

Introduction

Differently from traditional multiphysics, Discrete Multiphysics is a mesh-free Multiphysics technique based on 'computational particles' rather than on computational meshes [START_REF] Alexiadis | A smoothed particle hydrodynamics and coarse-grained molecular dynamics hybrid technique for modelling elastic particles and breakable capsules under various flow conditions[END_REF], Alexiadis 2015a). It is a hybrid approach that combines different particle methods such as Smoothed Particle Hydrodynamics (SPH), Lattice-Spring Model (LSM) and the Discrete Element Method (DEM). The algorithm of particle methods, such as SPH LSM and DEM, follows the same flowchart (Figure 1a); with the only difference consisting in how the internal forces are calculated. In solid-liquid flows, for instance, there are three types of forces: (i) pressure and viscous forces occurring in the liquid, (ii) elastic forces occurring in the solid, and (iii) contact forces occurring when two solids collide with each other. In Discrete Multiphysics, these forces are achieved by means of three different particle-based methods (Figure 1b): (i) SPH for the liquid, (ii) LSM for the solid, (iii) DEM for the contact forces. Boundary conditions (BC) are also represented by forces: non-compenetration, for instance, is achieved by means of repulsive forces preventing particles overlapping (Alexiadis 2015a). DMP, therefore, is a metamodel: i.e. a framework for coupling different models within multiphysics simulations. SPH, LSM and DEM are the most common models in DMP, but other choices are possible, as long as they follow the flowchart of Figure 1a. Fluctuating hydrodynamics, for instance, could include Brownian Dynamics (BD) to account for Brownian fluctuations in the flow.

Discrete Multiphysics has proven itself to be more than just an alternative to traditional Multiphysics. There is a variety of situations where DMP tackles problems that are very difficult, if not impossible, for traditional multiphysics.

In traditional multiphysics, domains are assigned during pre-processing: the user establishes, before the simulation, which part of the domain belongs to the solid domain and which part to the fluid domain: this choice cannot change during the simulation. In DMP, the distinction between solid and fluid only depends on the type of force applied to the computational particles and, by changing the type of force, we can change the behaviour of the particles from solid to liquid and vice versa, during the simulation. This confers an advantage to Discrete Multiphysics in a variety of cases (Figure 2) such as cardiovascular flows with blood agglomeration (Ariane et al. 2017a;Ariane et al. 2017b[START_REF] Ariane | Using Discrete Multi-Physics for studying the dynamics of emboli in flexible venous valves[END_REF], phase transitions (Alexiadis 2018), capsules and cells breakup (Alexiadis 2015b, Rahmat at al. 2019a), and dissolution problems (Alexiadis 2015a, Rahmat et al. 2019b). In addition, the particle framework of DMP has proven itself particularly effective when coupled with Artificial Intelligence (AI) algorithms. In [START_REF] Alexiadis | Coupling Discrete Multiphysics with Machine Learning[END_REF], DMP was coupled with Reinforcement Learning (RL) to account for the effect of the autonomic neural system in multiphysics simulations of human physiology. As a benchmark case, the DMP + RL approach was used for a computer model of the oesophagus with the ability to learn by itself how to coordinate its contractions and propel the food in the right direction. In this article, we show that, by establishing a particle-neuron duality, DMP can be also effectively coupled with another AI algorithm: Artificial Neural Networks.

The article is divided in two parts: the first introduces the general framework for coupling Discrete Multiphysics (DMP) with Artificial Neural Networks (ANN); the second applies this concept to a practical application (e.g. design of microfluidic devices for the identification and separation of leukemic cells).

From Discrete Multiphysics to Deep (Discrete) Multiphysics

This section provides a brief introduction to Artificial Neural Networks followed by the description of the particle-neuron duality.

Artificial Neural Networks

Artificial Neural Networks (ANN) are computer algorithms used to solve complex problems.

The building block of an ANN is the McCulloch-Pitts neuron [START_REF] Mcculloch | A logical calculus of the ideas immanent to nervous activity The bulletin of mathematical[END_REF], a mathematical function vaguely inspired by the functioning of biological neurons (Figure 3a). Several inputs xn enter the neuron; each of these inputs are multiplied by a weight wn, summed together, and fed to an activation function σ, which produces the output y. When many of these neurons are interconnected, they form an artificial neural network [START_REF] Rosenblatt | The Perceptron: A Probabilistic Model For Information Storage And Organization In[END_REF]. Typically, these networks are organized in layers: input data are introduced via an input layer, which communicates to one or more hidden layers and, finally, to an output layer (Figure 3b). The weighted output of each layer is fed as input of the next layer until the output layer calculates the final output of the network. An artificial neural network (ANN) with multiple layers between the input and output layers is called a Deep Neural Network.

Deep Neural Networks are universal approximate functions, meaning that, given a large enough number of neurons in the hidden layer, they can approximate almost any function no matter how complicated. To achieve this goal, the ANN needs to be trained. We provide the machine with real-word data (xn, y) and, by using a learning rule (e.g. backpropagation, [START_REF] Werbos | Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Published by[END_REF]), the ANN modifies its weights to correctly map xn to y.

The particle-neuron duality.

As mentioned above, discrete models, such SPH, LSM and DEM, work by exchanging forces among computational particles (Figure 4a). These forces change the velocity and the position of the particles and, by doing that, the model achieves a discrete representation of the mechanics. Besides velocity and position, computational particles can have other properties. In heat transfer problems, for instance, particles require a new property called 'temperature'. If we want this property to behave like the physical temperature, we must link it to the heat transfer equation. In this case, the particles do not exchange forces, but more general interactions that simulate the physical process of heat transfer from one computational particle to another (Figure 4b). This can be generalized to any conservation law: we assign a new property to the particles and the corresponding transfer equation calculates the interactions that dynamically evolve this property with time. Interactions are more general than forces. If we only account for forces, we have a 'Discrete Mechanics' tool that is limited to momentum-conservation problems. If include interactions, we have a 'Discrete Multiphysics' tool that applies to a wider variety of conservation problems. Discrete Multiphysics, therefore, is a generalization of Discrete Mechanics (Figure 5).

A natural question, at this point, would be: can we generalize this idea even further? And, to achieve this, what concept, more general than 'interaction', can we use?

The most general exchange of 'something' we can think of is information. Whenever two computational particles exchange forces, interactions, or any other property, they exchange information.

An exchange of information is exactly what happens in ANNs, where information is transferred from one neuron to another (Figure 4c). In the case of ANNs, this information has no direct connection with any physical property. However, 'physical interactions' or 'physical forces' can be seen as a form of information transfer and, as such, a subset of the more general concept of 'information' (Figure 5).

This idea constitutes the basis of the particle-neuron duality we use to establish the general framework of Deep Discrete Multiphysics (or simply Deep Multiphysics). The elemental building block of Deep Multiphysics is a particle-neuron hybrid: it behaves like a DMP particle when it carries physical interactions, and like a neuron when carries non-physical information. And, like a neuron, it can be trained.

To illustrate and clarify this point, the rest of the article focuses on a case study where a practical implementation of Deep Multiphysics is presented.

A practical implementation: identification and separation of leukemic cells from healthy ones

As practical example, we use Deep Multiphysics to design a microfluidic device that, potentially, can be used to separate leukemic cells from healthy ones in the peripheral circulation system.

In Section 3.1, we describe the biomedical rational for such a device, while in Sections 3.2 and 3.3, we explain the Deep Multiphysics model used for the calculations.

Leukemic cell detection: biomedical rationale

Acute Myeloid Leukaemia is a malignant neoplasm of the bone marrow accounting for 10% of all haematological disorders. Although in recent years new therapeutic approaches have been determined, the overall survival of patients is below 30%. This is mostly due to the high rate of disease relapse that is observed in patients treated with standard targeted chemotherapy. After treatment, often the disease has not been completely eradicated and leukemic cells still persist although in numbers that are below detectable levels by standard means. A microfluidic device that can easily distinguish malignant from healthy cells, therefore, would be extremely useful. Most common microfluidics separation techniques, however, works with cells of different sizes, but, in the present case, this would not work since malignant and healthy cells are approximately of the same size.

The proposed solution takes advantage of the fact that malignant cells are more flexible than healthy ones. A microchannel is lined with several hair-like flexible structures that, in the rest of the paper, are called call cilia. When cells move along the channel, the cilia bend to allow the passage of the cell. When cilia bend, stresses are generated at their base. The idea of the microfluidic separator is to distinguish between rigid or flexible cells looking at the stress patterns occurring during their passage. In a real device, these stresses could be measured by using a piezoelectric material at the base of the cilia. AI is used to associate specific stress patterns with the stiffness of the cell. The geometry of the microfluidic device is shown in Figure 6: the length of the channel is 200 μm, the width 50 μm. In the channel, there are 11 flexible cilia: 6 on the upper wall and 5 on the lower wall. The distance between two contiguous cilia is 20 μm. On the right end of the channel, there are two gates, one that connects the channel with a chamber where soft cells are collected, and another that connects with a chamber where rigid cells are collected.

In a real device, a magnet can be used to open or close these gates. However, this study focuses on the modelling aspects and we do not deal here with the more technical aspects of building the microchannel.

In Section 3.2, the DMP model of the device is introduced. In Section 3.3, the model is coupled with an ANN to obtain a Deep Multiphysics model.

The DMP model

Figure 6 shows the (two-dimensional) domain used in the simulations. The Lattice Spring Model (LSM), which models the mechanical properties of solids material by means of linear bonds and angular springs, is used for both the cilia and the cell. In this study, all bonds are rigid (i.e. inextensible) with fixed distance Δr = 2 μm, while the force F generated by an angular spring that connects three consecutive particles is given by the gradient of the potential

  2 0 1 2 a U k     , (1
)
where k is the stiffness of the spring, θ0 the equilibrium angle at rest, and θ the angle after deformation. In a real microfluidic application, liquid would flow into the device and convey the cells by means of drag forces. To simplify the model, liquid is not directly considered in this work and the effect of drag accounted by Stokes' law

3 v F dv   , (2
)
where μ is the dynamic viscosity, d the radius of the cell and v the flow velocity relative to the object. This force is distributed among all the computational particles that compose the cell. A body force is applied to the cell (a = 4•10 -3 m s -2) to move it along the channel with velocities typical of microfluidic channels (~1 mm s -1 without the cilia). Non-penetration among computational particles is achieved by a soft repulsive potential of the type 1 cos ()

c c r E A r r r           , (3
)
where r is the distance between the two particles, rc a cut-off distance and A an energy constant. In the simulation, the same repulsion force and cut-off (A = 4•10-5 J, rc = 2 μm) is used for all the particles.

Different types of computational particles are used to represent the system. A schematic representation is shown in Figure 7. Type-1 (red) particles represent the wall and are stationary during the simulation.

Figure 7. Schematic representation of the particle types used in the simulations

Type-2 (blue) particles represent the cilia and are connected by rigid bonds and angular springs with k = 2.5•10 -14 J and θ0 = 180°. Type-3 (white) particles represent the cell membrane and are connected with rigid bonds and angular springs with k variable (depending on the cell population) and θ0 = 172°; the cytoplasm is neglected and all its mechanical properties are attributed to the membrane. Type-4 (yellow) particles represent the root of the cilium. They are connected with rigid bonds and angular springs like type-2 particles. These are the particles where the stress caused by the bending of the cilia is measured. Type-4 particles are, therefore, anchored to their initial position by means of a self-tethered linear bond

s s F k r  , (4)
where ks = 0.01 N m -1 is the stiffness of the bond and r is the distance between the actual position of the particle and its initial position. The force Fs generated by this bond is recorded during the simulation and used to train the ANN. There is also a type-5 particle, which is used for the gates in Figure 6, but is not represented in Figure 7. Type-5 particles are interconnected with rigid bonds and angles. They are also connected with the closest wall particles with an angular spring. This spring can be switched from rigid to soft to allow for the opening of the gate according to the output of the ANN. Overall, in the model there are 776 particles type-1, 154 particles type-2, 44 particles type-3, 47 particles type-4, and 48 particles type-5.

Coupling with ANN.

The DMP model accounts for the physics and mechanic of the system, but, by itself, cannot discriminate between flexible and rigid cells. To achieve this goal, several additional particles (type-6) are added to the model. By taking advantage of the particle-neuron duality, we can make these particles behave like artificial neuron and, by connecting then in layers, we can make these neurons behave like an ANN. Figure 8 illustrates the logic behind the resulting Deep Multiphysics (DMP + ANN) model. Type-4 particles represent, at the same time, the root of the cilia and the input layer of the ANN. They exchange forces with the other particles in the computational domain (types 1-5), and information with the neuron-particles (type-6). Type 4 particles, therefore, are hybrid particles with both DMP and neural properties.

Type-5 particles, and in particular the particles next to the wall separating the two chambers (see Figure 6), are also hybrid. On the one hand, they constitute the output layer of the ANN and, as such, exchange information with the hidden layers. On the other hand, they belong to the DMP computational domain and exchange forces with other DMP particles. The particle-neuron duality integrates these two properties and, according to the information coming from the hidden layer, the forces acting on type-5 particles are switched on or off to open or close the separating gates.

Finally, type-6 particles are pure neurons and are used to represent the hidden layers of the network. They exchange information with (i) other type-6 particles from another hidden layer, (ii) type 4 particles from the input layer, and (iii) type 5 particles from the output layer. Since they do not exchange forces, they do not possess a position or a velocity property, which can be modified by the forces.

In the next section, we call ANN the combination of type-6 particles plus type-4 and type-5 when they act as, respectively, input and output layers. We call 'DMP model' the combination of type 1-3 particles plus type-4 and type-5 when they act as DMP-particles.

Results

Before the ANN can predict the cell stiffness, it must be trained with known data. We use the DMP model to simulate cell populations with different levels of stiffness training, at the same time, the ANN. We run three hundred simulations: half of these data are used for training, half for validation. In real conditions, both the stiffness k and the diameter d of the population are not constant but vary within a certain range. To account for this, at the beginning of each simulation both the k and d are randomly selected (uniform distribution) within ±10% of their given values. Another random variable is the initial position of the cell in the channel. In Figure 6, the cell is initially placed at the centre of the channel height, but, in reality, it can be located at any height compatible with its diameter. The initial position of the cell, therefore, is also randomly allocated.

In order to move along the channel, the cell must bend the cilia. When the cilia bend, they generate stress at their basis. The value of the total force acting at the basis of each of the 11 cilia is recorded every 0.2 s for 15 timeframes. After the cell passes through the ciliated section, therefore, we have 15x11 stress values that can be stored in a matrix F. If the force f is normalized according to * min max min

f f f f f    , (5
)
the normalized matrix F * can be seen as a greyscale image (Figure 9). Each cell according to its stiffness, size and initial position produce a slightly different image. This image represents a sort of fingerprint of the cell and the ANN is trained to distinguish between. soft and rigid fingerprints. In all the simulations, we assume the two populations have the same average diameter d = 30 μm (±3 μm) and their only difference consists in their stiffness. We consider three different cases where the stiffness of the two populations gets gradually closer (Table 1).

Table 1. Minimal, average and maximal stiffnesses of the two populations for the three cases considered. Err is the percentage of soft cells erroneously classified as rigid by the ANN, and vice versa, in the validation set.

The same ANN, with one hidden layer is used in all three cases. The input layer has 165 nodes (the size of the matrix F), the hidden layer 3 nodes and the output layer 1 node.

k k k k k    , (6
)
where k is the stiffness of the cell and kmin and kmax are, respectively the minimal and maximal stiffness of the set1 . The training occurs together with simulation in batch mode (10,000 epochs), where each batch represents one of the three cases described in Table 1. Figure 10 shows the comparison between the data and the ANN output for both the training and the validation sets in Case 1: when k * < 0.5 the cell is classified as soft, when k * > 0.5 is classified as rigid. When the difference of stiffness the two populations is one order of magnitude (Case 1 in Table 1), the ANN identifies correctly all the cells with 100% accuracy. In Case 2, the stiffness of the rigid cells is only 2.5 times higher than that of the soft cells (Figure 11). The differences in k * are higher than the previous case, but the model is still capable of distinguish between the two population with 100% accuracy. In Case 3, the stiffness of the two populations only differs by 10% and the range of stiffnesses of the two populations partially overlaps. The output of the ANN is reasonably accurate and it fails to classify correctly only 11% of the cells.

After the neural component of the Deep Multiphysics model is trained, the model acquires the ability to separate cells with unknown stiffness (Figure 12). As a new cell moves into the device, the ANN reads the 'stress fingerprint' and classifies it as rigid or solid. In the first case, it opens the lower gate so the cell goes in the lower chamber; in the second case, opens the upper gate and the cell goes in the upper chamber.

Figure 12. The final Deep Multiphysics model in action

It is interesting to compare the performance of the model with respect to visual observation.

Figure 12 shows two cells from Case 1, where the stiffness difference is one order of magnitude. The different behaviour of the two cells can be clearly identified by visual observation. In Case 3, instead, the cells stiffness is very close. As Figure 13 shows, visually it is not easy to distinguish the two populations. However, the ANN is able to correctly separate the two cells in 89% of the cases. In all the examples above, FPM and ML cooperate to accomplish a specific task, such as extracting constitutive relationships from data, that would be more complicated, or computational expensive, to achieve without ML. In principle, however, constitutive relationships are always data-driven: ML enables new and more complicated constitutive relationships, but, conceptually, this is hardly different from what scientists have done for centuries. Similarly, using FPM to train AI models is not conceptually different from using real-world data to train the AI, just more convenient is certain cases.

From this point of view, Deep Multiphysics is different; it is a common computational framework that has Discrete Multiphysics and Artificial Neural Networks as special cases. This paper introduces, for the first time, the concept of Deep Multiphysics and, by means of an example, discusses the computational framework that allows integrating particles and neurons in the same computational domain.

The common framework of Deep Multiphysics gives the opportunity to look at first-principle modelling (specifically DMP) and Machine Learning (specifically ANNs) as a 'synolon'.

This new perspective has the potential to lead to new, uncharted, research territories. An idea, for instance, could be fluid neural networks: ANNs that are not organized within a fixed layered structure, but, like a fluid, change their local structure and connectivity with time.

Figure 1 .

 1 Figure 1. Typical flow chart of particle methods (a) and various internal forces used in DMP (b)

Figure 2 .

 2 Figure 2. Examples of applications of Discrete Multiphysics: cardiovascular flow (a), capsules breakup (b), phase transitions (c), dissolution of solid particles (d)

Figure 3 .

 3 Figure 3. A single artificial neuron (a) and an example of (Deep) Artificial Neural Network with two hidden layers

Figure 4 .

 4 Figure 4. Solid and fluid particles exchange mechanical forces (a); hot and cold particles exchange heat (b); layers of neurons exchange information (c)

Figure 5 .

 5 Figure 5. Mutual relations between 'forces' and Discrete Mechanics, 'interactions' and Discrete Multiphysics, and 'information' and Deep Multiphysics

Figure 6 .

 6 Figure 6. The concept of the proposed microfluidic separator

Figure 8 .

 8 Figure 8. Deep Multiphysics (DMP+ANN) model of the separation device. The number of neurons/layers is not representative of the actual ANN used, but is only for illustrative purposes Types 1-3 particles (DMP particles) only exchange forces, but not information. They possess the property of position (which changes by effect of forces), but do not have a neuron-like output. Type 1-3 particles, therefore, are pure DMP particles.

Figure 9 .

 9 Figure 9. The 'stress' fingerprint of a cell with stiffness k = 4.5•10 -15 J.

Figure 10 .

 10 Figure 10. Comparison between the data and the ANN results for both the Training and the Validation sets in Case 1. In both cases, the first 50 simulations refer to cells from the soft population and the other 50 from the rigid population.

Figure 11 .

 11 Figure 11. Comparison between the data and the ANN results for both the Validation set in Case 2

Figure 13 .

 13 Figure 13. Soft and rigid particles in Case 3

 All the layers are fully connected and the logistic function is used as activation for all the nodes. The output of the ANN is the normalized stiffness

			*		min			
				max	min			
		k soft population [J•10 15]	k rigid population [J•10 15]	
	Case	Min.	Ave.	Max	Min.	Ave.	Max	Err %
	1	1.8	2	2.2	18	20	22	0
	2	3.6	4	4.4	9	10	11	0
	3	4.05	4.5	4.95	4.5	5	5.5	11

The max. and min. stiffnesses in Table1and equation 6 should not be confused. The former are the maximal and minimal values of the population, the latter of the data set (which include instances of both populations)

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant number: EP/S019227/1.