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Abstract—This paper presents a design of a low cost 3D laser
scanner. It was developed by adding an additional axis of rotation
to a planar (2D) laser scanner. By tilting the laser scanner
with respect to the additional axis of rotation, a more even
scan point distribution can be achieved. This paper provides an
analysis of the 3D scanning performance that can be expected
from such a configuration. Then a review of methods that could
be appropriate for 3D mapping with such a low-cost 3D laser
scanner design is provided. Experiments show that this setup
can be used onboard small vehicles to perform simultaneous
localization and mapping in three dimensions.

Index Terms—Laser scanner, SLAM, ICP-alignment

I. INTRODUCTION

Over the last couple of years, small autonomous ground
and aereal vehicles have become incredibly popular. For
autonomous navigation, those vehicles rely almost completely
on (differential) GPS, inertial sensors and sometimes a cam-
era. While GPS allows for a very precise localisation in a
global reference frame, it does not provide information on
the environment. Cameras, on the other hand, provide de-
tailed information on the surrounding, however, vision-based
localization algorithms are computationally demanding. This
usually requires powerful computers, which can be deployed
as a ground station, but which are rather unsuited aboard a
moving autonomous vehicle.

As an alternative to sense the environment, laser scanners
have become popular in academia and industry. Laser scanners
directly provide accurate data on the depth of a scene and are
hence ideally suited for autonomous navigation. Scanners that
only scan in a plane are called 2D laser scanners and a number
of afforable and light-weight devices are available. However,
often a two-dimensional representation of the surrounding is
not enough for navigation and obstacle avoidance in 3D-space
making a 3D scanner a neccesity. The commercially available
systems are heavy (e.g. velodyne), expensive (e.g. Hukoyo)
and require much energy.

This paper presents a low-cost and light-weight 3D laser
scanner that was developed by adding an additional axis of
rotation to a 2D scanner. First, the mechanical design is dis-
cussed. Second, an analysis of the system performance based
on simulations is provided. Third, an overview of approaches
for simultaneous localization and mapping (SLAM) is given.
Last, experimental results with a ground vehicle are shown.
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Fig. 1. Mechanical design of the 3D laser scanner. The upward direction is
defined along the additional axis of rotation (referred to as µ-axis) and the
scanning plane of the 2D laser scanner is spanned by the x- and y-axis. This
coordinate system will be used throughout the paper.

II. DESIGN OF THE SCANNER

In Fig. 1, the design of the developed 3D laser scanner
is shown. To turn the scanner around the additional axis of
rotation µ, a servo is used. The laser scanner is mounted with
an inclination angle θ with respect to the horizontal direction
on a hollow aluminum axis, which is connected to a hollow
gear. This allows for optimal cable routing.

A. Hardware

Due to its small form factor and low price, the RPLidar
A2M4 has been chosen as a 2D laser scanner. It has a
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Fig. 2. Comparison of the scan point distribution when the inclination angle theta is changed. The axis µ is aligned with the z-direction of the 3D plots
above. The simulation of the point distribution ignores any obstruction of the view due to the mechanical design.

range of 6 m, a resolution of 1 ◦ and a frequency of 10 Hz.
While this is good for planar scanning, it will result in a
rather low resolution, when turned into a 3D scanner. A
Dynamixel XL320 servo is used to actuate the additional axis
of rotation. This servo is particularly well suited, because it is
a continuous rotation servo that measures its own position. A
typical operating speed of the servo is 0.5 Hz. The 3D scanner
then scans the environment in 3D with 1 Hz. The factor of
two is because the scanning plane passes each point twice per
revolution of the servo. Both the scanner and the servo can be
easily interfaced with the Robot Operating System (ROS).

B. Scanner Inclination

Ideally, a 3D laser scanner has an even point distribution,
meaning that an equal amount of scanning points lies in each
spherical sector. Only then, the resolution of the 3D scanner is
independent of the object location. Since this is not achievable
in practice, one tries to get a high point-density in the primary
plane of motion, which is often horizontal.

Case 1, θ = 90◦: If the axis µ lies in the scanning plane
(i.e. θ = 90◦), the point density will be very high along µ and
very low in the radial direction as shown in Fig. 2 case a).
Here the axis µ is pointing upwards. Eventhough this setup
allows to scan the full sphere, this distribution is not ideal.
The highest resolution is achieved directly above and below
the scanner. The view ‘down’ is obstructed by the servo and
the vehicle, resulting in a large number of scan points to be
filtered out. More importantly, most vehicles move primarily
horizontally (x-y plane in Fig. 2 case a)), but there the point
density is the lowest.

Case 2, θ < 90◦: By tilting the scanner by an angle (θ <
90◦), its scanning plane does not contain the axis of rotation
anymore which changes the scan point distribution as shown in
Fig. 2 case b) and c). The 3D scanner has now a limited field
of view (±θ degrees latitude) but an increased scan resolution
in the horizontal plane. The smaller the inclination, the higher
the scan resolution in the x-y plane gets. A setup like shown
Fig. 2 b) is suited for autonomous vehicles since walls and

other obstacles are well resolved in the scan. Even smaller
inclination angles (e.g. 5 ◦) are possible to increase the scan

−2 −1 0 1 2

−2

0

x [m]

y
[m

]

a) θ = 60◦

−2 −1 0 1 2

−2

0

x [m]

y
[m

]

b) θ = 90◦

Fig. 3. Comparison of two real pointclouds representing the same object.
Pointcloud a) was obtained using a tilted scanner (θ = 60◦) and b) with no
tilt (θ = 90◦), but both consist of the same number of points. The double
cone of unscanned space and the higher point density along the walls are
clearly visible in image a) compared to b).



resolution close to the x− y plane but such a device is not a
true 3D scanner anymore.

When looking at a real-world scene, the advantage of a tilted
scanner becomes clearly visible. Figure 3 shows two scans
with different inclination angles of the same room. When the
inclination is set to 90 ◦ (Fig. 2 b)), the walls are not resolved
well since most of the points fall on the ceiling. With the tilted
scanner, the important features of the scene (i.e. obstacles) are
scanned with a higher resolution and thus can be recognized
better.

The inclination θ should generally be chosen as small as
possible to increase the resolution in the x − y plane. The
smallest inclination is given by the largest acceptable cone of
unscanned space. Therefore, the optimal choice of the scanner
tilt depends on the problem at hand.

III. LOCALIZATION AND MAPPING - REVIEW

An autonomous vehicle must be able to locate itself in an
unknown environment and incrementally construct a map of
it, without any external aids. To do so, multiple steps are
necessary as shown in Fig. 4. This section briefly reviews com-
mon approaches for each step and details the feature detection
and matching process, since this is strongly influenced by the
resolution of the data and hence the choice of the laser scanner
is important.
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acquired data

Cluster data
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Feature detection
and matching

SLAM-
framework

Map

Fig. 4. Steps that any vehicle with autonomous navigation needs to perform
to get from the laser scan to the map. First the data is preprocessed (filtered
and clustered) and then the laser scans obtained at different times need to be
matched. Last, the map is updated by the SLAM-framework.

A. Filtering and Clustering

In this first step, the incoming raw data from the laser
scanner is filtered and then output. Whenever a physical
quantity is measured, there is measurement error. The noise
of laser scanners typically consists of two types: 1) there
is a normally distributed measurement noise and 2) there is
a significant number of outlier points, where a completely
‘wrong’ value was measured. This noise-type is often referred
to as salt-and-pepper noise and it can be removed with a simple
threshold or with a non-linear filter. The computationally
lightweight thresholding technique can be used, when the
scanner produces a salt-and-pepper noise with values out of the
specified scanner range. Otherwise, a non-linear filter needs to
be used. Linear filters have a bad performance when used to
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Fig. 5. The top image shows the situation in a global, stationary reference
frame. The two pictures at the bottom show the location of the features in
the UAVs local frame. To determine its position the UAV needs to establish
correspondances between physical objects over time.

remove salt-and-pepper noise, because they cannot ignore the
wrong information from outlier points. The most common non-
linear filter is the median filter or one of the derivates, e.g. the
adaptive median filter [1]. An alternative to the median filter is
the nearest-neiborhood smoothing [2], which preserves corners
better.

Clustering or segmentation is the process of grouping points
together that are similar according to certain criteria. This
step is optional, since not all feature detection and matching
techniques profit from segmented data. The points are assigned
labels indicating their cluster affiliation. In the context of
3D pointclouds, clustering is performed on a per-scan basis
with respect to whether points belong to the same physical
surface / object. For more information, the reader is referred
to “Clustering techniques: The user’s dilemma” [3].

B. Feature Detection and Matching

In order to perform simultaneous localization and mapping,
the pose of the vehicle must be known with respect to fixed,
physical objects as shown in Fig. 5. This relative position
can be estimated by finding out which points – in two
different laser scans obtained at different times and positions
– correspond to the same physical object. One can imagine
this as aligning the current laser scan with a map of the
environment by applying a proper rigid transformation to it.
The map is iteratively built and stores information about the
environment obtained from the previous scans, i.e. the map is
often the collection of all past scans.

With the newly developed 3D scanner, the scan alignment
is a challenge. It has a low range and a low and uneven
resolution. To align laser scans, either all scan points are
matched (brute-force approach) or only certain keypoint points
(feature-based approach) are considered. A keypoint or a
feature is a very distinctive point (and the region around it) of a



physical object, e.g. a corner. To identify such keypoints, so-
called detectors are used. Once the keypoints are identified,
a descriptor is applied to calculate the feature vectors. The
vectors are a mathematical and compact representation of what
makes the selected point distinctive. Feature matching is about
finding out which keypoints correspond to the same physical
object. It is done by comparing the feature vectors.

1) Feature-based Approach: With a feature-based ap-
proach, the feature points need to be identified first. The most
popular detector in two- and three- dimensional images is the
Harris corner and edge detector proposed by C. Harris and
M. Stephens in 1988 [4]. It was originally meant only for 2D
images, but extensions to 3D data exist. [5]

1.1) Detectors: Figure 6 shows how the original detector
works. Square A marks an area that is not distinctive by any
means, since moving it slightly to the left or right, top or bot-
tom, does not change anything. Area B is an edge, and there-
fore only distinctive in the x-direction. Nothing changes if B is
moved in the y-direction. Only area C is distinctive, since any
slight movement in any direction causes a drastic change. Thus
C is a good feature. This means that a point is a keypoint, if
any shift of the filter window causes its content to change sig-
nificantly. The above can be expressed in a mathematical way:
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Fig. 6. Schematic illus-
trating the Harris Detector

Performing a Taylor expansion
around the center point (x, y) of the
filter window gives an approximation
of the gradients Ix and Iy in the x
and y direction. Let I(i, j) denote the
intensity value of the pixel in the i-th
column and j-th row and pixel size ∆:

Ix =
I(i, j + 1)− I(i, j − 1)

2∆
(1)

Iy =
I(i+ 1, j)− I(i− 1, j)

2∆
(2)

When this is repeated for all possible shifts (u, v) of the filter
window, the matrix M can be calculated:

M =

[ ∑
u,v I

2
x

∑
u,v IxIy∑

u,v IxIy
∑

u,v I
2
y

]
(3)

Harris and Stephens [4] then define a corner-response func-
tion R with a tunable parameter k. The corner response
function is large and positive for corners and large but negative
for edges. Otherwise it is small.

R = Det(M)− kTr(M)2 (4)

A possible extension to three dimensions, which is used
in the Point Cloud Library is described in [5]. The image
gradient (in 2D) is replaced with the surface normals which
have the same meaning in 3D. They are esimated over a
neighborhood of tunable size. The corner response function
must also be replaced. This can be done differently, but one
approach presented in [5] is the Lowe-method. There the
corner-response function R is given by:

R =
Det(Cov(x, y, z))

Tr(Cov(x, y, z))2
(5)

The Harris Detector is known to perform well for a wide
input range of scenes. For specific data (e.g. only face recog-
nition) often more specific detectors perform better.

Next to the Harris Detector, there is a second very prominent
detector that can be used for any scene. The SIFT detector
was proposed in 2004 by David Lowe [6] for 2D images.
Flint et al. presented an extension to three dimensions in 2007
[7]. Both the 2D and 3D version are widely used for non
realtime applications, since the SIFT detector is very accurate
but computationally extremely demanding. In a comparison
between the Harris3D detector and the SIFT3D detector, it
has been found that the Harris3D detector is about ten times
faster than the SIFT3D detector while providing comparable
accuracy [5].
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Fig. 7. The local coordi-
nate system is used by the
Spin-Image descriptor.

1.2) Descriptors: The keypoint de-
tector returns a set of highly distinc-
tive points for each scan analyzed.
Now the task is to find out, which key-
points correspond to the same location
on a physical object. This is done
by using a descriptor to compute the
feature vectors of the keypoint and its
surrounding. Those feature vectors are
then typically compared in a nearest-
neighbor fashion. One of the very first
true 3D descriptors proposed (i.e. not
just an extension of a 2D descriptor
to 3D), is the Johnson Spin Image
[8] descriptor. First, a point centered,
partial cylindrical coordinate system is defined as shown in
Fig. 7. Let the z-axis be parallel to the estimated surface
normal ~n and passing through the considered point p0. Now
a radial coordinate r can be introduced as the perpendicular
distance of a point p to the z-axis. A second coordinate h can
be defined as the distance of p to a plane with normal vector ~n
passing through p0. The elevation is h. The angular coordinate
is not introduced, as it can not be defined robustly.

Then, the cylinder is split into multiple sections (called bins)
radially and vertically. In a next step, every point in the support
region is considered and it is calculated into which bin it falls.
Finally one can write all bin values into the feature vector
in a predefined order. The Spin Image descriptor is invariant
to rotation, because the feature vector does not change, if
the input image is rotated. This is because the azimuthal
coordinate is omitted in the coordinate frame constructed. It
becomes very clear, when thinking about the descriptor in
a graphical way: it does spin the image around the surface
normal at the considered point p0 and thus reduces the number
of degrees of freedom by one.

This descriptor is suited for low-resolution data, because
only the surface normal needs to be estimated. Compared to
techniques like the principal component analysis (PCA) this
requires less dense data.

Other feature descriptors like the Spherical Spin Images [9]
or the 3D Div [10] exist. They are, however, less suitable for
low resolution scan data or computationally expensive. When



TABLE I
COMPARISON OF DESCRIPTORS FOR 3D LASER SCAN MATCHING.

Descriptor Sensibility to
keypoint quality

Sensibility to
scan resolution

Computational
complexity

SIFT 3D low low high
Spin Img low medium low
Sph. Spin Img low high medium
3D-Div high medium low
ICP none low high

the feature detection and matching approach is used, scan
alignment is done by considering only the matched keypoints.
Therefore, this approach is fast and possibly accurate at the
same time.

2) Non-feature Based Approach: A non-feature based brute
force approach has no need for a detector or a descriptor
but directly aligns a laser scan with a given reference. The
most common technique is the iterative closest point (ICP)
algorithm. First, it looks at all points in the new scan and
searches for the nearest neighbors in the reference. Then, the
new scan is rigidly transformed such that the sum of squared
distances between all nearest neighbors is minimized. Both
steps are performed multiple times and hence the alignment
is refined iteratively [11].

Because ICP considers all points and not only the special
keypoints, it is robust even with a low-resolution scanner.
However, it is subject to local minima and can converge to
the wrong solution when the inital guess is bad (i.e. ICP is
not guaranteed to be globally optimal). Table I compares the
above-mentioned descriptors according to their sensibility, to
the quality of the data, and their computational complexity.

IV. EXPERIMENTS

First, the experimental setup is briefly described from a
hard and software point of view. Then a feature-based scan
alignment and a brute-force scan alignment are compared.

A. Experimental Setup

The laser scanner is mounted on a ground vehicle which
can move freely in two dimensions and rotate. To interface the
RPLidar A2M4 laser scanner and the Dynamixel XL320 servo,
an Intel UPBoard is used. This small form-factor computer
features a 1.9 GHz quad core processor and is capable of
running an Ubuntu-Linux with ROS. A car battery is used
as a power supply, but smaller batteries would suffice, since
the total power consumption is typically below 10 W. The
institute’s corridor is used as the test environment and the
setup is pulled by hand, as shown in Fig. 8.

On a software level, the processing and alignment of the
laser scans is implemented in a ROS node relying on the
widely used Point Cloud Library. This library also includes
implementations of many feature detector and descriptor al-
gorithms (e.g. Harris3D, Spin Images, SIFT, Iterative Closest
Point) and can be easily integrated into the ROS framework.

B. Experimental Results - Feature-Based Approach

The goal of the experiments was to verify that the developed
3D laser scanner has sufficient performance (resolution, update

Fig. 8. The 3D laser scanner is mounted on a ground cart, which is pulled
with a string

rate etc.) for a SLAM application. Since a feature-based ap-
proach is common in computer vision for robotics applications,
this approach has been tried first. The keypoints are extracted
with the Harris3D keypoint detector and then the Spin Image
descriptor is used for the matching part. However, this approch
was not successful, and three issues were observed:

• Only very few keypoints were identified.
• The descriptor needed a large support region.
• Corners were not uniquely described by the descriptor.

1) Few keypoints: The Harris3D detector uses surface nor-
mals to identify edges in the three-dimensional space. To
reduce the effect of noise and outliers, the surface normals
are estimated from more than three points. To robustly detect
a corner, each enclosing wall should consist of more than 5
points. This corresponds to an angular diameter of roughly
30 ◦ in each direction. Features smaller than that, will not be
detected by the Harris3D algorithm.

2) Large support region: Because of the low scan density,
the descriptor needs a large support region. The support region
is the amount of space that is described by the feature vector
since all points within the support region are considered
by the descriptor, when the feature vector is calculated. A
large support region also means that small details have lower
relative importance. Hence, the feature vectors outputted by
the descriptor are less distinctive.

3) Not unique corners: From the two issues mentioned
above, one might conclude that the ideal environment for this
approach is a room with large features (tables, couch etc.)
that is not cluttered with small furniture. However, this is
not true due to the invariance to rotation of the Spin Image
descriptor. Every rectangular corner has the same feature
vector, no matter how it is oriented. Keypoints are matched
using a nearest-neighbor search in a multi-dimensional space.
When the feature vectors of all corners are similar, no reliable
matches can be established.

From the above, we conclude that the feature-based ap-
proach is not suitable for such a low-resolution scan. Increas-
ing the scan resolution by a factor of 5-10, would likely suffice
to make the feature-based approach feasible.



Fig. 9. Resulting 3D map of corridor shown in Fig. 8. It was generated using
the non-feature based ICP approach and the low-cost 3D scanner designed in
this work.

C. Experimental Results - Non-Feature-Based Approach

The non-feature-based ICP approach was implemented next.
Scan resolution is not much of an issue since all points
are used for alignment anyway, but one needs an accurate
(≈30 cm) initial guess. When used on a ground vehicle or an
aerial vehicle that moves slow (< 0.25m/s) compared to the
update rate of the scanner, the last known position can be used
as an initial guess.

Figure 9 shows the result of the ICP algorithm, when the
ground vehicle was pulled with a speed of 5 m/min. Due to
the accumulative nature of the map, even details far below
the individual scan’s resolution (doorframe, chair on the left)
become visible.

Running on the small onboard computer, a real-time im-
plementation was not successful. It ran with a speed of about
0.5 realtime. This is rather close to real-time and hence small
form-factor computers of the near future could make a real-
time 3D SLAM with ICP possible.

V. CONCLUSION

This paper introduces a low-cost, light-weight and versatile
3D laser scanner. With its low power consumption and its
small form-factor, it is ideally suited for onboard applications
on autonomous ground robots. Aerial applications are prob-
lematic because of the slow update rate. By using a faster 2D
laser scanner, the servo velocity could be increased resulting
in a higher overall update rate without sacrificing resolution.

Experiments have successfully demonstrated the simul-
tanous localization and mapping capabilities (see Fig. 9) of this
device. The laser scanner was mounted on a ground cart and a
3D iterative closest point alignment was used to generate the
map. The workflow that led to the 3D map shown in Fig. 9 is
summarized in Fig. 10. This map also shows small details that
are not visible in the individual scans. The algorithm we used
for 3D iterative closest point scan matching is currently not
able to run in real time. However, this likely will be possible

LIDAR

Filter
acquired data

Threshold filter: This filter does not
reduce the gaussian measurement noise,
but robustly removes outliers beyond the
maximum scanner range.

3D laser scanner: A 2D laser scanner
(RPLidar A2M4) is rotated around an
additional axis. Hence the 2D scanner
was turned into a 3D laser scanner.

Scan matching
Iterative closest point (ICP): Eventhough
computationally expensive, ICP can cope
with low-resolution data where a feature-
based approach fails.

SLAM-
framework

Adding to map: No sophisticated SLAM-
framework was used. All laser scans were
simply added to the overall map.

Map

Map: The map is represented internally
as a point cloud. From this basic
representation, also range images can
be calculated.

Fig. 10. Steps used to obtain a 3D map. The newly developed 3D laser
scanner was mounted on a moving ground cart and slowly pulled along the
institute corridor. Then the steps shown above were performed to obtain the
final result shown in Fig. 9. All steps are implemented within one ROS node
to achieve good computational performance.

with more powerful hardware (CPUs with higher FLOP/s per
core) in the near future.
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