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We present CheSS, the “Chebyshev Sparse Solvers” library, which has been designed to solve
typical problems arising in large scale electronic structure calculations using localized basis sets.
The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials, and
presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary
powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity
of the matrices and scales linearly with respect to the number of non-zero entries, making it well
suited for large scale calculations. The approach is particularly adapted for setups leading to small
spectral widths of the involved matrices, and outperforms alternative methods in this regime. By
coupling CheSS to the DFT code BigDFT we show that such a favorable setup is indeed possible in
practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized,
and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

I. INTRODUCTION

Sparse matrices are abundant in many branches of sci-
ence, be it due to the characteristics of the employed
basis set (e.g. finite elements, wavelets, Gaussians, etc.)
or due to intrinsic localization properties of the system
under investigation. Ideally, an operator acting on such
matrices should exploit this sparsity as much as possi-
ble in order to reach a high efficiency. Due to the great
variety of specific needs there is no simple and unique ap-
proach to perform this general task, and various solutions
have been conceived to satisfy the respective demands1.

The CheSS library, which we present in this paper, has
its origins in electronic structure calculations, in partic-
ular Density Functional Theory (DFT)2,3, and is conse-
quently capable of performing the specific matrix opera-
tions required in this context. In principle, these can all
be solved straightforwardly using highly optimized Linear
Algebra libraries such as LAPACK4/ScaLAPACK5,
which is indeed the fastest solution for small to medium
size matrices. However, this approach gets increasingly
expensive for large systems, since it uses the matrices
in their dense form, which exhibits an inherent cubic
scaling. With the recent widespread availability of DFT
codes that are able to tackle the regimes of many thou-
sands atoms systems, such challenging large scale calcu-
lations are becoming more and more abundant6, and the
above mentioned cubic scaling is clearly a serious limita-
tion.

An overview of popular electronic structure codes,
in particular focusing on large scale calculations, can
be found in Ref. 6. In general these large scale DFT
codes work with localized basis sets, e.g. BigDFT7–9,
SIESTA10,11, Quickstep12, ONETEP13–16 or Con-
quest17–19, and the matrices expressed in these bases con-
sequently exhibit a natural sparsity, i.e. only those matrix

elements where the basis functions overlap are different
from zero. Hence it is advantageous to use — beyond
a certain crossover point — sparse algorithms instead of
the basic dense approaches. Since exploiting the sparsity
is also the key towards linear scaling algorithms — i.e.
methods where the computational demand only increases
linearly with respect to the system size — efficient sparse
solvers are crucial in this domain.

The central task within DFT is the calculation of the
density matrix F̂ , and many different approximate ways
of calculating it with a scaling being more favorable than
the default cubic one have been derived. The so-called
Fermi Operator Expansion (FOE)20,21, which gave the
inspiration to the creation of CheSS, calculates the den-
sity matrix as a direct expansion of the Hamiltonian
matrix in terms of Chebyshev polynomials. Another
method, which is similar in spirit, writes the density ma-
trix as a rational expansion22,23, exploiting Cauchy’s in-
tegral theorem in the complex plane. This method has
the advantage that — unlike FOE — it only has to cope
with the occupied states, which makes it advantageous
for large basis sets containing many high energetic vir-
tual states. One particular implementation is the PEXSI
package24, which we will use later on for a comparison
with CheSS. Other popular approaches to calculate the
density matrix are the density-matrix minimization ap-
proach25, which calculates the density matrix by min-
imizing a target function with respect to F̂ , and the
divide-and-conquer method26, which is based on a par-
titioning of the density matrix into small subblocks. An
overview over further popular methods — in particular
focusing on linear scaling approaches — can be found in
Refs. 23 and 27.

Several studies have compared the various meth-
ods28–33, but it is very hard — if not impossible — to
determine the ultimate method that performs best un-
der all circumstances. Rather all of these methods have
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their “niche” in which they are particularly efficient, and
the task of choosing the appropriate approach is there-
fore strongly influenced by the specific application. In
particular, the choice depends on the physical properties
of the system (e.g. insulator versus metal), the chosen
formalism (e.g. all-electron versus pseudopotential), and
on the basis set that is used. These factors influence
the properties of the matrices that shall be processed in
various ways; we will focus in the following on the spec-
tral width. For some of the aforementioned methods this
property has only little influence, whereas for others it is
crucial.

The other main operation available within CheSS,
namely the calculation of a matrix power, where the
power can have any — in particular also non-integer —
value, is a more general problem appearing also outside
of electronic structure calculations. Among the various
powers, calculating the inverse is presumably the most
important one, and there exist various approaches to
do this efficiently for sparse matrices. Some approaches
allow to calculate the inverse in an efficient way for
some special cases. For banded matrices, for instance,
Ran and Huang developed an algorithm34 that is about
twice as fast as the standard method based of the LU -
decomposition. To determine the diagonal entries of the
inverse, Tang and Saad developed a probing method35

for situations where the inverse exhibits decay properties.
Another algorithm for the calculation of the diagonal en-
tries is the one by Lin et al.36, which calculates the diago-
nal elements of the inverse by hierarchical decomposition
of the computational domain. To get an approximation
of the diagonal entries of a matrix, Bekas et al. proposed
a stochastic estimator37. The FIND algorithm by Li et
al.38, which follows the idea of nested dissection39, was
as well designed to calculate the exact diagonal entries of
Greens functions, but can be extended to calculate any
subset of entries of the inverse of a sparse matrix. In
the same way, the Selected Inversion developed by Lin et
al.40,41, which is based on an LDLT -factorization, allows
to exactly calculate selected elements of the inverse. As
for the calculation of the density matrix, the choice of the
method for the calculation of matrix powers depends as
well on the specific application, and therefore there is no
universal best option. However, we would like to point
out again the importance of the spectral width, which
might favor or not a particular approach.

In this paper we present with CheSS the implementa-
tion of a general approach that can efficiently evaluate a
matrix function f(M) using an expansion in Chebyshev
polynomials. Since CheSS has first been used for elec-
tronic structure calculations, the functions that are im-
plemented so far are those needed in this context; more
details will be given later. However, there are no re-
strictions to go beyond this, as the function f can in
principle be chosen arbitrarily, with the only restriction
that it must be well representable by Chebyshev polyno-
mials over the entire eigenvalue spectrum of M. CheSS
has been particularly designed for matrices with a small

eigenvalue spectrum, and in this regime it is able to out-
perform other comparable approaches. We will show
later that such a favorable regime can indeed be reached
within the context of DFT calculations.

In addition CheSS exploits the sparsity of the involved
matrices and hence only calculates those elements that
are non-zero. Obviously, this requires that the solution
f(M) can reasonably well be represented within the pre-
defined sparsity pattern; however, since the sparsity pat-
tern is defined by the underlying physical or mathemat-
ical problem, we leave the responsibility of well defining
this pattern to the code interfacing CheSS. If the cost
of calculating one matrix element can be considered as
constant (which is the case for a high degree of sparsity),
we consequently reach an approach that scales linearly
with respect to the number of non-zero elements. Hence,
CheSS is an ideal library for linear scaling calculations,
which are crucial for the treatment of large systems.

In summary, we present with CheSS a flexible and
powerful framework to compute sparse matrix functions
required in the context of large scale electronic struc-
ture calculations. If the above mentioned requirement
— namely a small eigenvalue spectrum of the matrices
— is fulfilled, CheSS can yield considerable performance
boosts compared to other similar approaches. Hence, this
library represents an interesting tool for any code work-
ing with localized basis functions that aims to perform
such large scale calculations.

The remainder of the paper is structured as follows:
In Sec. II we first show the basic theory behind CheSS,
starting with the applicability of CheSS for electronic
structure calculations (Sec. II A), detailing the basic al-
gorithm (Sec. II B) and available operations (Sec. II C),
giving a brief discussion about sparsity (Sec. II D), and
finishing with a presentation of our format to store
sparse matrices (Sec. II E). In Sec. III we then give var-
ious performance numbers of CheSS, showing the ac-
curacy (Sec. III A), the scaling with matrix properties
(Sec. III B), the parallel scaling (Sec. III C), and a com-
parison with other methods (Sec. III D). Finally we con-
clude and summarize our work in Sec. IV and give an
outlook on future research.

II. MOTIVATION AND THEORY

A. Applicability of CheSS for electronic structure
calculations

As discussed in the introduction, there is a variety of
methods to solve the typical problems arising in elec-
tronic structure theory and DFT in particular. Conse-
quently most approaches exhibit their best performance
in a particular regime, determined by the properties of
the matrices which are at the input of the problem. In
this section we briefly want to discuss the motivation for
the creation of CheSS, i.e. present the conditions under
which it works best.
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(a) solvated DNA
(15613 atoms)

(b) bulk pentacene
(6876 atoms)

(c) perovskite
(PbI3CNH6)64

(768 atoms)

(d) Si-wire
(706 atoms)

(e) water
(1800 atoms)

FIG. 1. The systems used for the analysis of the matrices produced by BigDFT; their data are shown in Tab. I.

S H

system #atoms sparsity εmin εmax κ sparsity εmin εmax λ ∆HL

DNA 15613 99.57% 0.72 1.65 2.29 98.46% -29.58 19.67 49.25 2.76
bulk pentacene 6876 98.96% 0.78 1.77 2.26 97.11% -21.83 20.47 42.30 1.03
perovskite 768 90.34% 0.70 1.50 2.15 76.47% -20.41 26.85 47.25 2.19
Si nanowire 706 93.24% 0.72 1.54 2.16 81.61% -16.03 25.50 41.54 2.29
water 1800 96.71% 0.83 1.30 1.57 90.06% -26.55 11.71 38.26 9.95

TABLE I. Sparsity, smallest and largest eigenvalue εmin and εmax, and condition number κ or spectral width λ, respectively,
for the overlap and Hamiltonian matrix for typical runs with BigDFT. The eigenvalues shown for the overlap matrix are those
of the standard eigenvalue problem Sci = εici, whereas in the case of the Hamiltonian matrix we report those of the generalized
eigenvalue problem Hci = εiSci. For the Hamiltonian matrix we additionally show the HOMO-LUMO gap ∆HL. For the
latter matrix all values are given in eV.

As will be explained in more detail in Sec. II B, CheSS
is based on a polynomial approximation, and hence the
performance is a function on the polynomial degree. The
latter depends, first, on the specific function that has to
be approximated and, second, on the interval over which
the function shall be represented by the polynomial. The
first criterion is, of course, rather general and depends on
the specific application; however, for electronic structure
calculations a characteristic function is the Fermi func-
tion, which has the property of becoming less smooth
(and hence harder to approximate) for systems with small
band gaps at low electronic temperature. Given this we
can already now conclude that CheSS works best for
systems exhibiting a decent gap between the Highest Oc-
cupied Molecular Orbital (HOMO) and the Lowest Un-
occupied Molecular Orbital (LUMO), or for calculations
with finite electronic temperature — more details will be
given later in Sec. III B. For the second point, namely the
interval of the polynomial approximation, the situation
is simpler: In general, the larger the interval is the more
polynomials will be required, since — as explained in
more detail later — the necessary rescaling of the over-
all domain to the unit interval [−1, 1] results in higher
polynomial degrees for the Chebyshev decomposition. In

our case, the interval of the approximation corresponds
to the eigenvalue spectrum of the matrices — the smaller
this spectrum the better CheSS will perform. Again we
will investigate this point in more detail in Sec. III B.

For DFT calculations the typical matrices that will be
processed are the overlap matrix Sαβ = 〈φα|φβ〉 and the
Hamiltonian matrix Hαβ = 〈φα|H|φβ〉, where {φα} is
the used basis set and H the Hamiltonian operator. The
spectral width of S — which we will from now on measure
with the condition number κ = εmax

εmin
, defined as the ra-

tio between the largest and smallest eigenvalue, since the
matrix is always positive definite — depends solely on
the basis set. Obviously, small and (quasi-)orthogonal
basis sets are better suited than large non-orthogonal
ones. With respect to H, the spectrum depends as well
on the basis; for instance, large basis sets include more
high energetic states than small ones. However, there is
also a dependence on the physical model that is used,
for instance whether the low energetic cores states are
absorbed into a pseudopotential or not. Since H has
in general both negative and positive eigenvalues, the
condition number is not a good measurement any more,
and we therefore rather consider the total spectral width
λ = εmax − εmin.
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To see whether optimal conditions for CheSS — i.e.
a small spectral width for both H and S — can be sat-
isfied in practice, we investigated the properties of these
two matrices for some typical calculations with BigDFT.
This code8,9 uses a minimal set of quasi-orthogonal and
in-situ optimized basis functions. The first property al-
lows to keep the condition number of the overlap matrix
small, whereas the second property — together with the
fact that BigDFT uses pseudopotentials to handle the
core electrons42,43 — allows to operate with a Hamilto-
nian exhibiting a small spectrum.

As an illustration, we show in Tab. I the detailed
values of the eigenvalue spectrum for typical runs with
BigDFT, using systems that were already used in other
publications9,44,45 and that are visualized in Fig. 1. As
mentioned, CheSS is mainly designed for systems ex-
hibiting a finite HOMO-LUMO gap, and therefore we
only chose examples belonging to this class of systems.
As can be seen, the condition number is of the order of
2, independently of the system. The same also holds for
the spectral width of the Hamiltonian matrix, which is
of the order of 40-50 eV. These low values are a direct
consequence of the particular features of the BigDFT
setup mentioned above. For other popular basis sets, the
condition numbers are usually considerably higher, even
in case the basis sets were specifically designed to exhibit
low values for κ, as for instance in the case of atomic or-
bitals (about two orders of magnitude larger)46 or Gaus-
sians (at least one order of magnitude larger)47. Thus,
the fact that such low values can be reached within a
DFT code illustrates the need for an algorithm that can
exploit this feature and thus lead to very efficient cal-
culations, and indeed CheSS is used with great success
together with BigDFT. Moreover a low condition num-
ber of the overlap matrix is also crucial in the context of
linear scaling algorithms, since it can be shown48 that a
localized and well-conditioned overlap matrix leads to an
inverse with similar decay properties and finally also to
an equally localized density matrix.

B. Algorithm

1. Expansion in Chebyshev polynomials

The basic ansatz of the algorithm behind CheSS is
to approximate the matrix function f(M) as a polyno-
mial in M. However, such a polynomial expansion can
become unstable for large degrees, which is known as
Runge’s phenomenon. A way to circumvent this is to
use Chebyshev polynomials, which are known to mini-
mize this issue. This way the polynomial approximation
becomes

f(M) ≈ p(M) =
c0
2
I +

npl∑
i=1

ciT
i(M) , (1)

where I is the identity matrix and the Ti(M) are the
Chebyshev matrix polynomials of order i. Since these
polynomials are only defined in the interval [−1, 1], the
matrix M has to be scaled and shifted such that its eigen-
value spectrum lies within this range. If εmin and εmax
are the smallest and largest eigenvalue of M, the modi-
fied matrix M̃ that enters Eq. (1) is given by

M̃ = σ(M− τI) , (2)

with

σ =
2

εmax − εmin
, τ =

εmin + εmax
2

. (3)

Obviously, the eigenvalue spectrum of M is not known
beforehand. However it is relatively easy to determine an
approximate lower and upper bound — denoted as ε̃min
and ε̃max — for the eigenvalue spectrum on the fly, as
will be shown later in Sec. II B 2.

The determination of the Chebyshev matrix polyno-
mials and the expansion coefficients is straightforward49.
The polynomials can be calculated from the recursion
relations

T0(M̃) = I ,

T1(M̃) = M̃ ,

Tj+1(M̃) = 2M̃Tj(M̃)−Tj−1(M̃) ,

(4)

and the expansion coefficients are given by

cj =
2

npl
×

npl−1∑
k=0

f

[
1

σ
cos

(
π(k + 1

2 )

npl

)
+ τ

]
cos

(
πj(k + 1

2

npl

)
,

(5)

where f(x) is the function that shall be applied to the
matrix M.

From Eq. (4) it follows that the individual columns
of the Chebyshev matrix polynomials fulfill as well a
recursion relation and can be calculated independently
of each other, i.e. we only need to apply local matrix-
vector multiplications. Eventually this also implies that
each column of the matrix p(M) can be calculated inde-
pendently, which makes the algorithm highly efficient for
large parallel computing architectures. This specific need
for sparse matrix-vector multiplications is in contrast to
the more abundant case of parallel sparse matrix-matrix
multiplications, for which various methods and libraries
exist50–53. In fact, there also exists the possibility to
calculate the Chebyshev matrix polynomials using such
matrix-matrix multiplications. In this case, it is possi-
ble to reduce the required multiplications from npl−1 to
about 2

√
npl

30. On the other hand, apart from loosing
the strict independence of the columns and thus compli-
cating the parallelization, this method has the additional
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drawback that some of the multiplications have to be re-
peated if the expansion coefficients change. This is in
contrast to our approach, where the individual columns
can easily be summed up with different coefficients with-
out the need of redoing any multiplications; this feature
is in particular important for the calculation of the den-
sity kernel, as will be shown in more detail in Sec. II C 1.

2. Determination of the eigenvalue bounds and polynomial
degree

In order to get the estimates ε̃min and ε̃max for the
eigenvalue spectrum on the fly, we can use the same ap-
proach as outlined in Sec. II B 1. Analogous to Eq. (1)
we construct a penalty matrix polynomial Wp, where the
expansion coefficients cpi are again given by Eq. (5), but
with the function f(x) being this time an exponential:

fp(x) = eα(x−ε̃min) − e−α(x−ε̃max). (6)

If Tr(Wp) is below a given numerical threshold, then
all eigenvalues of M lie within the interval [ε̃min, ε̃max].
Otherwise, the trace will strongly deviate from zero,
with the sign indicating which bound has to be ad-
justed. The larger the value of α, the more accurate
the eigenvalue bounds can be determined, but on the
other hand a higher degree of the Chebyshev expansion
will be required to well represent this step-like function.
Since the calculation of the penalty matrix Wp uses the
same Chebyshev polynomials as the original expansion of
Eq. (1) and only requires to calculate a new set of expan-
sion coefficients — which is computationally very cheap
— this check of the eigenvalue bounds comes at virtu-
ally no extra cost and can therefore easily be done on
the fly. Nevertheless a good initial approximation of the
eigenvalue spectrum is of course beneficial, as it avoids
the recalculation of the polynomials in case the eigen-
value bounds have to be adjusted. This is usually the
case, since in a typical DFT setup CheSS is used within
an iterative loop — the so-called SCF cycle — where
the bounds only change little. For the very first step,
where no guess from a previous iteration is available, it
is usually enough to start with typical default values for
a given setup; in case that for some reason no such guess
is available, it would still be possible to resort to other
approaches, such as for instance a few steps of a Lanczos
method54, to get a reasonable starting value.

In order to determine automatically an optimal value
for the polynomial degree npl, we calculate a Chebyshev
expansion pmpl(x) for the one-dimensional function f(x)
— which is computationally very cheap — for various
degrees mpl, and then define the polynomial degree npl as
the minimal degree that guarantees that the polynomial
approximation does not deviate from the function f more
than a given threshold λ:

npl = min
{
mpl

∣∣|pmpl(x)− f(x)|max < λ
}
. (7)

Apart from the obvious dependence on the function f
that shall be represented, the minimal polynomial degree
is also strongly related to the spectral width that must
be covered. In general npl is smaller the narrower the
spectral width is. However, there can also be situations
where it is advantageous to artificially spread the spec-
trum, as we briefly illustrate for the important case of the
inverse. Assuming that we have a matrix with a suitable
condition number, but eigenvalues close to zero — for
instance a spectrum ranging from 10−2 to 1 —, a quite
high degree will be required to accurately reproduce the
divergence of the function x−1 close to 0. This problem
can be alleviated by rescaling the matrix, which results
in a larger spectral width, but yields a function that is
easier to represent. CheSS automatically detects such
situations and rescales the matrix such that its spectrum
lies further away from the problematic regions.

C. Available operations

1. Fermi Operator Expansion

A quantum mechanical system can be completely char-
acterized by the density matrix operator F̂ , as the mea-
sure of any observable Ô is given by Tr(F̂ Ô). Within
DFT, it can be defined in terms of the eigenfunc-
tions ψi(r) — which are solution of the single particle
Schrödinger equation Hψi(r) = εiψi(r) — as

F̂ (r, r′) =
∑
i

fiψi(r)ψ(r′) , (8)

with fi ≡ f(εi) being the occupation of state i, deter-
mined by the Fermi function

f(ε) =
1

1 + eβ(ε−µ)
, (9)

where µ is the Fermi energy and β the inverse electronic
temperature. After choosing a specific basis {φα(r)} —
i.e. ψi(r) =

∑
α ciαφα(r) —, the Schrödinger equation

becomes Hci = εiSci, and Eq. (8) corresponds to the
calculation of the density kernel matrix K,

Kαβ =
∑
i

ficiαciβ . (10)

The drawback of this straightforward approach based on
a diagonalization is that it scales cubically with respect
to the size of the matrices and must therefore be avoided
for the calculation of large systems.

The Fermi Operator Expansion (FOE)20,21 that is im-
plemented in CheSS aims at calculating the density ker-
nel directly from the Hamiltonian matrix (i.e. without a
diagonalization), making the ansatz K = f(H). In prac-
tice we can replace the Fermi function of Eq. (9) by any
other function as long as it fulfills the essential feature of
assigning an occupation of 1 to the occupied states and
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0 to the empty states. In our implementation we chose
the complementary error function, since it decays rapidly
from 1 to 0 around the Fermi energy:

f(ε) =
1

2

[
1− erf

(
β(ε− µ)

)]
. (11)

With these definitions the density kernel can then be
calculated as outlined in Sec. II B, with the subtlety
that the input matrix M̃ has to be replaced by M̃′ =
S−1/2M̃S−1/2, and the output matrix has to be postpro-
cessed as S−1/2p(M̃′)S−1/2. The calculation of S−1/2

is as well done with CheSS, as will be explained in
Sec. II C 2.

Since the resulting density kernel must fulfill the con-
dition Tr(KS) = N , where N is the total number of elec-
trons of the system, the parameter µ has to be adjusted
until this condition is satisfied. To do so we simply have
to reevaluate Eq. (1) with a different set of coefficients,
without the need of recalculating the Chebyshev polyno-
mials, and this operation is consequently rather cheap.
The choice of β is more delicate: It has to be chosen
such that the error function decays from 1 to 0 within
the range between the highest occupied state (i.e. the
first state with an energy smaller than µ) and the low-
est unoccupied state (i.e. the first state with an energy
larger than µ). Since this value is not known beforehand,
we have to determine β on the fly: After calculating K
with a first guess for β we calculate a second kernel K′

with a slightly larger decay length β′ > β. Then we com-
pare the energies calculated with these two kernels: If the
difference between E = Tr(KH) and E′ = Tr(K′H) is
below a given threshold, the decay length was sufficient;
otherwise the density kernel has to be recalculated with
a smaller value for β. Usually this means that npl must
be increased, and thus a new set of polynomials must be
calculated. The second kernel K′, on the other hand,
can be evaluated cheaply as only the set of expansion
coefficients in Eq. (1) changes.

2. Matrix powers

The calculation of matrix powers, i.e. Ma, can be done
exactly along the same lines as the calculation of the den-
sity kernel described in Sec. II C 1, with the only differ-
ence that the function that enters the calculation of the
Chebyshev expansion coefficients of Eq. (5) is now given
by f(x) = xa. Our approach allows to calculate any —
also non-integer — power a, as long as the function f can
be well represented by Chebyshev polynomials through-
out the entire eigenvalue spectrum. Depending on the
power a this might lead to some restrictions; for the in-
verse for instance this means that the matrix should be
positive definite, since otherwise the divergence at x = 0
will lead to problems. For typical applications within
electronic structure codes, the matrix M for which pow-
ers have to be calculated is the overlap matrix, and hence
the above requirement is always fulfilled.

3. Extraction of selected eigenvalues

The FOE formalism described in Sec. II C 1 can also be
used to extract selected eigenvalues from a matrix. To
this end one has to recall that for a system with total
occupation Tr(KS) = N the Fermi energy will be chosen
such that the error function of Eq. (11) decays from 1
to 0 between the Nth and (N + 1)th eigenvalue. There-
fore, in order to extract the Nth eigenvalue, we simply
perform an FOE calculation using a total occupation of
Tr(KS) = N− 1

2 . This will lead to an error function that
decays in such a way that it only half populates the Nth
eigenstate, which is the case if the Fermi energy coincides
with the Nth eigenvalue. The accuracy of the calculated
eigenvalue is related to the value of β; we will discuss this
in more detail in Sec. III A.

Even though this approach to extract eigenvalues is
originally related to the calculation of the density kernel,
it is generally applicable to any matrix as long as the er-
ror function of Eq. 11 is well representable by Chebyshev
polynomials over the entire eigenvalue spectrum. More-
over, the Chebyshev polynomials — whose calculation is
the most expensive part of this approach — can be reused
for each eigenvalue, since only the value of µ has to be
varied.

Nevertheless we should see this eigenvalue calculation
more as a “side product” of the usage of CheSS rather
than an individual feature. In other terms, once the
Chebyshev polynomials are determined — for instance
to calculate the density kernel — a rough estimate of
some eigenvalues (e.g. the HOMO-LUMO gap) can be
calculated using the very same polynomials with hardly
any additional cost. If, on the other hand, the accurate
(and not just approximate) calculation of the eigenvalues
and associated eigenvectors is a central point of an algo-
rithm, then one should most likely resort to more appro-
priate interior eigenvalue solvers, such as for instance the
shift-and-invert Lanczos method55, the Sakurai-Sugiura
method56 or the FEAST algorithm57. An example for
such an approach is shown in Ref. 58, where the Sakurai-
Sugiura method56 is used to compute hundreds of in-
terior eigenstate for a Hamiltonian matrix stemming
from a large-scale DFT calculation with the Conquest
code17–19.

D. Sparsity and Truncation

a. Truncation to a fixed sparsity pattern CheSS is
designed for large sparse matrices, meaning that most of
the matrix entries are zero and consequently not stored.
However, applying an operation to a sparse matrix — in
our case the matrix vector multiplications to build up the
Chebyshev polynomials — does in general not preserve
this sparsity, and repeated application of this operation
can eventually lead to a dense matrix. To avoid this, the
result after applying the operation is again mapped onto
a sparsity pattern, i.e. certain entries are forced to be



7

(a) original matrix M (b) exact calculation of M−1

without sparsity constraints

(c) sparse calculation of M−1

using CheSS within the
sparsity pattern

(d) difference between Fig. 2b
and Fig. 2c

FIG. 2. Heat map of the matrix elements for a 6000 × 6000
sparse matrix M and its inverse M−1. The sparsity pattern
of the matrices originate from a calculation of a small water
droplet with BigDFT, and contain 738, 316 non-zero elements
(97.95% sparsity) for M and — due to the buffer regions
— 4, 157, 558 non-zero elements (88.45% sparsity) for M−1.
We filled the matrix with random numbers, in such a way
that the matrix is symmetric and positive definite, and with
eigenvalues in the range from 0.1 to 1.1, corresponding to
a condition number of 11. Values that are zero due to the
sparsity pattern are marked in gray. For the sake of a better
visualization the coloring scheme ends at 10−9 and 10−20,
respectively, even though there are still much smaller values.

zero. There are various ways to enforce such a sparsity,
for instance simple methods such as setting all elements
below a given threshold value to zero or using information
about the distance of the basis functions corresponding
to a given matrix entry, as well as more sophisticated
approaches that allow to control the error introduced by
the truncation59. In our case, we work with a fixed spar-
sity pattern for the sake of simplicity. In order to keep
the error introduced by the truncation small, the spar-
sity pattern of the matrix after the applied operation has
to be slightly larger than the original one, meaning that
there must be some “buffers” into which the matrix can
extend during the applied operation. The size of these
buffers is related to the properties of the matrix and the
specific operation, and hence the correct setup depends
on the particular application.

As a small illustration we show in Fig. 2 the behavior
for the calculation of the inverse. In Fig. 2a we show
the values of the original matrix, with the entries that

are strictly zero due to the sparsity pattern marked in
gray. In Fig. 2b we show the inverse, calculated exactly
and without any sparsity constraint; as can be seen, this
matrix is less sparse than the original one, but neverthe-
less far from being dense. Consequently, it is reasonable
to again map its values onto a sparsity pattern. How-
ever, due to the larger extent, this sparsity pattern has
to contain the aforementioned buffer regions. This is il-
lustrated in Fig. 2c, where we show the inverse calculated
by CheSS within the predefined enlarged sparsity pat-
tern. Indeed we see that this pattern has been chosen
reasonably and is able to absorb the spread of the inverse
compared to the original matrix. This becomes even bet-
ter visible in Fig. 2d, where we show — using a different
scale for the colors — the absolute difference between
the exact solution and the one calculated by CheSS. We
show this difference for the entire matrix, i.e. both in-
side and outside of the sparsity pattern; as can be seen
the difference is very small throughout the entire matrix
— the maximal difference is only 1.2× 10−7 —, showing
firstly that the buffer region has been chosen reasonably
and secondly that the inverse within the sparsity pattern
has been accurately calculated by CheSS.

b. Effects on the error definitions The fact that the
resulting matrix is mapped back onto a sparsity pattern
has also an impact on the definition of the “exact so-
lution”. There are two ways to define the exact sparse
solution of an arbitrary operation f(M):

1. By defining the exact solution as the one that we
obtain by calculating f(M) without any constraints
and then cropping the result to the desired sparsity
pattern. The drawback of this definition is that it in
general violates the essential identity f−1(f(M)) =
M.

2. By calculating the solution directly within the spar-

sity pattern, symbolized as f̂(M), and then defin-
ing the exact solution as the one which fulfills

f̂−1(f̂(M)) = M.

CheSS calculates the solution by construction within
the predefined sparsity pattern, and the exact solution is
therefore defined in the second way. More quantitatively,
the error according to this second definition is given by

wf̂−1(f̂) =
1

|f̂(M)|
×√√√√ ∑

(αβ)∈f̂(M)

(
f̂−1(f̂(M))αβ −Mαβ

)2
, (12)

where
∑

(αβ)∈f̂(M) indicates a summation over all ele-

ments within the predefined sparsity pattern of f̂(M)

and |f̂(M)| denotes the number of elements within this
pattern. Nevertheless we will also report errors according
to the first definition, in order to asses the effect of the
sparsity pattern and the resulting truncation, and define
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this error as

wf̂sparse =
1

|f̂(M)|
×√√√√ ∑

(αβ)∈f̂(M)

(
f̂(M)αβ − f(M)αβ

)2
. (13)

c. Fixed versus variable sparsity Related to the
topic of sparsity and truncation, we finally also want to
point out an important advantage of our approach to
calculate the density kernel compared to another pop-
ular class of methods, namely density matrix purifica-
tion59–67. Both methods, i.e. FOE and purification, are
based on a series of repeated matrix multiplications; how-
ever, whereas the FOE method directly expands the den-
sity matrix as a polynomial of the Hamiltonian, purifi-
cation recursively applies low order polynomials. As a
result of this recursive procedure, these methods require
fewer matrix multiplications than the FOE method.

However, the cost of the multiplications performed in
recursive procedures and the FOE method are not equal.
This is because of matrix fill-in. In Fig. 3, we show the
fill-in over the course of a representative purification cal-
culation. This calculation used the fourth-order trace
resetting method (TRS4) of Niklasson64, and was per-
formed on a system representing a DNA fragment in so-
lution. The sparsity is here defined in a variable way,
namely by the magnitude of the matrix entries, i.e. all
elements below a given threshold are set to zero. In-
deed we see that the sparsity decreases considerably from
more than 98% to about 93%. This fill-in is even greater
for poor starting guesses, systems with smaller HOMO-
LUMO gaps, or calculations requiring greater accuracy.

During a density matrix purification calculation, the
performance is determined by the cost of multiplying two
matrices that have as many nonzero elements as the final
density matrix. By contrast, CheSS always multiplies
the intermediate density matrix by the sparser Hamil-
tonian matrix. This allows to determine beforehand the
(constant) cost of the matrix multiplications, whereas for
the purification schemes it may explode unexpectedly.
Finally, the fact that in FOE we always apply the same
matrix also permits a much easier parallelization — each
column of the final matrix can be calculated indepen-
dently — compared to the purification approach. This,
combined with the aforementioned strict sparsity, allows
CheSS to perform accurate calculations with great effi-
ciency, as will be demonstrated in section III.

E. Storage format of the sparse matrices

CheSS is designed to work with large sparse matrices
and consequently only stores the non-zero entries within
a single one-dimensional array. To describe the corre-
sponding sparsity pattern, it uses a special format that
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FIG. 3. Fill-in of the intermediate matrices, represented by
its sparsity, in the course of a purification calculation using
the fourth-order trace resetting method (TRS4)64. As a test
system we used a DNA fragment in solution (17947 atoms),
giving rise to a matrix of size 36460× 36460.

we denote as Segment Storage Format (SSF). The ba-
sic idea of the SSF format is to group together consecu-
tive nonzero entries as segments. Assuming that we have
nseg such segments, the SSF format then requires two
descriptor arrays, denoted by keyg and keyv, of dimen-
sion (2, 2, nseg) and (nseg), respectively. keyg indicates
the start and end of each segment in “dense coordinates”,
i.e. each entry has the form (cs, ce; rs, re), with cs and ce
denoting the starting and ending column, respectively,
and rs and re denoting the starting and ending row, re-
spectively. keyv indicates at which entry within the ar-
ray of non-zero entries a given segment starts; this array
actually contains redundant information that can be re-
constructed at any time from keyg and is only used to
accelerate the handling of the sparse matrices. An illus-
tration of this storage format for a simple 5× 5 matrix is
shown in Fig. 4.

The advantage of this format is that it allows to de-
scribe the sparsity pattern in a very compact form. For
a matrix containing nseg segments, it requires 5 × nseg
descriptor elements, or actually only 4 × nseg if the re-
dundant keyv descriptors are omitted. The CCS/CRS
format, which is a standard format to store sparse ma-
trices, requires for the same description ncol + nnz ele-
ments, with ncol being the number of columns/rows and
nnz being the number of non-zero entries. Assuming
that nnz � ncol and thus neglecting the contribution
coming from the ncol elements, we consequently see that
out format is more compact as soon as the average seg-
ment size is larger than 4, which is likely to be the case
for many applications. This does not only reduce the
memory footprint during a calculation, but also speeds
up I/O operations and cuts down the required disk space
for storage.

Even though CheSS is designed for large scale appli-
cations, the focus onto electronic structure methods —
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FIG. 4. Schematic illustration of the descriptors keyg and
keyv used by the SSF format to store a sparse matrix. Con-
secutive non-zero entries are grouped together in segments,
which are in this toy example however restricted to a sin-
gle row each. The values of each segment are simply stored
in a consecutive one-dimensional array. The example shows
the format for a row storage implementation, but the same
concept is also applicable to a column storage setup.

which are computationally very expensive — nevertheless
limits the matrix sizes that are typically handled by the
library. Consequently it is in most cases not necessary
to resort to complicated parallel distribution schemes for
the sparse matrices. Nevertheless we have implemented
such a distribution scheme to make CheSS also usable
in extreme situations. For technical details we refer to
the appendix of Ref. 9.

III. PERFORMANCE

In the following we will present various benchmarks
in order to evaluate the accuracy and performance of
CheSS. The sparsity patterns of all matrices used for
these tests are coming from calculations of small water
droplets with the BigDFT8,9 code. The buffer regions
mentioned in Sec. II D are based on simple geometrical
criteria; nevertheless this does not decrease the valid-
ity of the following tests, as the sparsity pattern is al-
ways something that depends on the specific application
and is therefore determined by the code interfacing with
CheSS. Moreover, we took — unless otherwise stated —
from the BigDFT runs only the sparsity pattern, but
not the content of the matrices; rather they were filled
with random numbers in order get the desired properties,
like for instance the spectral width.

For the case of the matrix powers, we focus on the
important case of the inverse; however this is not a re-
striction, as other powers can be calculated exactly along
the same lines. For the extraction of selected eigenvalues
we do not show many performance data, as most would
be redundant with the data shown for the calculation of
the density kernel.
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FIG. 5. Mean error for the calculation of the inverse, accord-
ing to Eq. (12) (“wf̂−1(f̂)”) and Eq. 13 (“wf̂sparse

”), however

considering the relative error instead of the absolute error. In
order to avoid divisions by zero only values larger than 10−12

were considered.

A. Accuracy

In this section we want to assess the accuracy of
CheSS, for each of the available operations. In all cases
we took as example a matrix of dimension 6000 × 6000,
with a degree of sparsity of 97.95% for S, 92.97% for H,
and 88.45% for S−1 and K.

a. Inverse In Fig. 5 we show the errors for the cal-
culation of the inverse, according to Eqs. (12) and (13),
as a function of the condition number. However, in order
to capture also differences between small numbers, we ac-
tually report the relative error, i.e. we replace in Eq. (12)(
f̂−1(f̂(M))αβ −Mαβ

)2
by
(
f̂−1(f̂(M))αβ−Mαβ

Mαβ

)2
and in

Eq. (13)
(
f̂(M)αβ − f(M)αβ

)2
by
(
f̂(M)αβ−f(M)αβ

f(M)αβ

)2
.

The polynomial degree was determined automatically, as
described in Sec. II B 2, with a value of α = −200 for the
penalty function of Eq. (6); this leads to values npl rang-
ing from 60 to 4670, depending on the condition number.
As can be seen, the error according to Eq. (12) is es-
sentially zero, confirming the accuracy of the Chebyshev
fit. The error according to Eq. (13) is slightly larger, but
nevertheless remains small for all values of the condition
number, indicating that the buffer regions have been cho-
sen sufficiently large.

b. Density kernel To asses the accuracy for the den-
sity kernel computation we compare the energy cal-
culated by CheSS using the FOE method (EFOE =
Tr(KFOEH)) and the one determined by a ref-
erence calculation using LAPACK ((ELAPACK =
Tr(KLAPACKH))). The polynomial degree was again
determined automatically, leading to values between 270
and 1080. In Fig. 6 we show the difference between these
two values as a function of the spectral width and the
HOMO-LUMO gap. As can be seen, the error shows
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FIG. 6. Difference between the energies calculated by CheSS
using FOE and a reference LAPACK calculation, respectively,
as a function of the HOMO-LUMO gap and for various spec-
tral widths. The larger error for the smaller spectral widths
can be explained by the eigenvalue spectrum being denser in
that case, thus increasing the error introduced by the finite
temperature smearing used by FOE.

only little variation with respect to both quantities and
is always of the order of 0.01%.

c. Selected eigenvalues For the assessment of the ac-
curacy of the selected eigenvalues, we work directly — i.e.
without modifying its values — with a matrix coming
from a calculation with BigDFT in order to have a real-
istic setup. The matrix has a spectral width of 41.36 eV,
which means that the 6000 eigenvalues only exhibit nar-
row separations among each other, being of the order of
some meV. The accuracy with which the eigenvalues can
be calculated depends strongly on the decay length of
the error function that is used; for this test we took a
value of β = 27.2 meV, leading to a polynomial degree
of 4120. Nevertheless we see from the results in Fig. 7
that this is enough to determine the eigenvalues quite
accurately; more precisely, the mean difference between
the exact result and the one calculated by CheSS is only
2.6± 2.3 meV.

If a higher accuracy than the one obtained is required,
a smaller value for β has to be chosen. This would, how-
ever, dramatically increase the cost due to the higher
polynomial degree that is required. Our method is thus
more suited to get a rough estimate of an (arbitrary)
eigenvalue rather than to calculate its exact value. In
the context of electronic structure calculations, an exam-
ple for such a situation is the calculation of the HOMO-
LUMO gap, where the intrinsic error of the used theory
(e.g. DFT) is usually much larger than that of the numer-
ical method to calculate the eigenvalues. Additionally, in
this context the polynomials of the density matrix expan-
sion can be reused, and an estimate of the HOMO-LUMO
gap can thus be obtained on the fly with hardly any extra
cost, comparable to the method in Ref. 68.
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FIG. 7. Errors of the calculated eigenvalues for a sparse
matrix of dimension 6000 × 6000, with characteristics as ex-
plained in the text.

B. Scaling with matrix properties

In this section we want to asses the performance of
CheSS with respect to certain specific properties of the
matrices, in order to determine under which circum-
stances it offers the biggest benefits. For the tests we
again used the same set of matrices as in Sec. III A.

1. Scaling with matrix size and sparsity

First we want to investigate how efficiently CheSS can
exploit the sparsity of the matrices. Since the sparsity
enters via the matrix vector multiplications for the con-
struction of the Chebyshev polynomials — which are the
same for all operations — we only present data for the
inverse. In Fig. 8 we show the runtime as a function
of the non-zero entries of the matrix, for various matrix
sizes. Moreover we distinguish between the runtime with
respect to the number of non-zero entries in the origi-
nal matrix (Fig. 8a) and the inverse (Fig. 8b). For each
matrix size we generated several matrices with different
“degrees of sparsity”, i.e. different numbers of non-zero
entries. All matrices were prepared to have a condition
number of about 11, leading to an automatically deter-
mined polynomial degree of 60, and the runs were per-
formed in parallel using 1280 cores.

As can be seen from Fig. 8a, the runtime scales linearly
with respect to the number of non-zero elements in the
original matrix and hardly depends on the matrix size.
This is not surprising, as the non-zero elements directly
determine the cost of the matrix vector multiplications,
and thus demonstrate the good exploitation of the spar-
sity by CheSS.

In Fig. 8b we see, however, a non-linear behavior. This
can be explained by the fact that the cost of calculat-
ing each of the non-zero elements of the inverse depends
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FIG. 8. Runtime for the calculation of the inverse as a function of the number of non-zero entries of the original matrix (Fig. 8a)
and the inverse (Fig. 8b), for various matrix sizes and “degrees of sparsity”. In Fig. 8a we see a linear scaling with respect to
the number of non-zero entries and hardly any dependence on the total matrix size, whereas in Fig. 8b there is a quadratic
scaling and a clear dependence on the total matrix size. The reasons for this different behavior are discussed in the text. All
runs were performed in parallel using 1280 cores (80 MPI tasks spanning 16 OpenMP threads each) on MareNostrum 3.

again on the number of non-zero elements, yielding in to-
tal this quadratic behavior. In addition we see here also a
dependence on the total matrix size, which is due to the
buffer regions. The number of non-zero entries in the in-
verse, |M−1|, is related to the number of non-zero entries
in the original matrix, |M|, via |M−1| = |M|+c, where c
depends linearly on the matrix size. Therefore, in order
to reach a given value of |M−1|, |M| must be larger the
smaller the matrix is, which explains the higher cost for
the smaller matrices.

2. Scaling with spectral properties

As mentioned earlier, the characteristics of the eigen-
value spectrum of the matrices are an important aspect
for the performance of CheSS, and we therefore want to
investigate this in more detail.

a. Condition number for the inverse For the calcu-
lation of the inverse we restrict ourselves to the case of
positive definite matrices, which means that the spectral
width can well be characterized by the condition number
κ. We prepared a set of matrices with condition numbers
ranging from 6 to 1423, and additionally conducted cal-
culations for two setups. In the first one we used a default
guess for the eigenvalue bounds of [0.5, 1.0], whereas in
the second setup we used already well adjusted values.

In Fig. 9 we show the results of this benchmark, with
the runs being performed in parallel using 480 cores. As
expected there is a very strong increase of the run time for
larger condition numbers, due to the higher polynomial
degree that is required. However we also see that a lot
can be gained by choosing a good input guess for the
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FIG. 9. Runtime and polynomial degree npl for the cal-
culation of the inverse as a function of the condition num-
ber. “bounds default” means that the runs where started
with default values for the upper and lower eigenvalue bounds,
whereas “bounds adjusted” means that well adjusted values
were used. All runs were performed in parallel using 480
cores (60 MPI tasks spanning 8 OpenMP threads each) on
MareNostrum 3.

eigenvalue bounds — something which is often possible
in practicable applications. In this case the polynomial
degree remains more or less the same, but the expensive
search for the correct eigenvalue bounds can be saved.
Moreover, looking again at the values of κ in Tab. I,
we see that the basis set employed by BigDFT indeed
enables CheSS to operate in the optimal range of small
condition numbers.



12

 0

 50

 100

 150

 200

 0.001  0.01  0.1  1
 0

 500

 1000

 1500

 2000

 2500

 3000
ru

n
ti
m

e
 (

s
e

c
o

n
d

s
)

p
o

ly
n

o
m

ia
l 
d

e
g

re
e

HOMO-LUMO gap (eV)
runtime, εmax-εmin=50.0 eV

runtime, εmax-εmin=100.0 eV
runtime, εmax-εmin=150.0 eV

npl, εmax-εmin=50.0 eV
npl, εmax-εmin=100.0 eV
npl, εmax-εmin=150.0 eV

FIG. 10. Runtime and polynomial degree npl for the density
kernel calculation as a function of the HOMO-LUMO gap, for
various spectral widths. The runs were started with already
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bounds and β, and performed in parallel using 480 cores (60
MPI tasks spanning 8 OpenMP threads each) on MareNos-
trum 3.

b. Spectral width and HOMO-LUMO gap for the den-
sity kernel For the determination of the density kernel
the essential characteristic is not the condition number
any more, but rather the total spectral width. Addition-
ally we have a dependence on the parameter β, which
determines how fast the error function used to assign the
occupation numbers decays between the highest occupied
and the lowest unoccupied state and is therefore directly
related to the HOMO-LUMO gap. The smaller β is, the
more the error function resembles a step function, which
is difficult to represent using polynomials. As a conse-
quence, the polynomial degree becomes very large for
both large spectra and small HOMO-LUMO gaps.

In Fig. 10 we show the runtime for a density kernel cal-
culation as a function of the HOMO-LUMO gap and for
various spectral widths, with the runs being performed
in parallel using 480 cores. Following the considerations
of the previous test for the inverse we used already well
adjusted values for the eigenvalue bounds and β. We
see our assumption confirmed, as calculations with small
gaps and large spectral widths are considerably heavier.
Whereas the value of the gap is imposed by the system
under investigation, the spectral width depends on the
specific computational setup — and in particular also
the basis set — that is used. In order to keep it small, it
is advisable to use a minimal basis set of optimized func-
tions, which — among other advantages44,45 — has the
benefit that it only contains few virtual (and therefore
high energetic) states. These conditions are fulfilled by
the basis set used by BigDFT, and indeed — as shown
in Tab. I — this leads to small values for the spectral
width, allowing CheSS to operate in an optimal range.

C. Parallel scaling

The most expensive part of the CheSS algorithm are
the matrix vector multiplications of Eq. (4) to construct
the Chebyshev matrix polynomials. However, since this
operation is independent for each vector, it can be paral-
lelized in a straightforward way. To account for possible
non-homogeneities of the sparsity pattern we have im-
plemented a mechanism that automatically assigns the
vectors to the parallel resources such as to optimize the
load balancing. CheSS exhibits a two level hybrid par-
allelization: On a coarser level the workload is paral-
lelized using MPI (i.e. distributed memory paralleliza-
tion), whereas on a finer level an additional paralleliza-
tion using OpenMP (i.e. shared memory parallelization)
is used. In this way it is possible to obtain a very efficient
exploitation of parallel resources.

a. Scaling for small to medium size matrices In
Fig. 11 we show the parallel scaling for the calculation
of the inverse; for the sake of simplicity we again focused
on this case, as the results for the other operations would
be very similar. We took matrices of three different sizes
(12000× 12000, 24000× 24000 and 36000× 36000), with
the number of nonzero entries chosen to be approximately
proportional to the matrix size, and varied the number of
cores from — depending on the matrix size due to mem-
ory limitations — 80, 160 and 320, respectively, up to
2560. The condition number for all matrices was set to
11, which led to an (automatically determined) polyno-
mial degree of 60.

In Fig. 11a we show the speedup with respect to the
minimal number of cores. The curves are very similar for
all matrices, meaning that a good exploitation of parallel
resources — and consequently speedup — can already
be obtained for small systems. Indeed it is possible to
bring down the calculation time to only a few seconds if
enough computational resources are available, as can be
seen from Fig. 11b. By fitting the data for the 6000×6000
matrix — which shows the worst scaling — to Amdahl’s
law69, we get an overall (i.e. also including communica-
tions) parallel fraction of 98.9%, which gives a maximal
theoretical speedup of about 90. However, it must be
stressed that this gives the speedup with respect to 80
cores, and hence the overall maximal speedup is consid-
erably higher.

b. Extreme scaling behavior In the previous para-
graph we have demonstrated the efficient exploitation of
the typically used parallel resources for small to medium
size systems. Now we also want to show the extreme
scaling behavior of CheSS, i.e. how the library behaves
when going to ten thousands of cores. For this pur-
pose we chose a slightly larger matrix, namely of size
96000 × 96000, again stemming from a calculation of a
water droplet with BigDFT. In Fig.12 we show the scal-
ing that we obtain for the calculation of the inverse of this
matrix, going from 1536 cores up to 16384 cores. Con-
sidering that the chosen matrix is still not extremely big,
CheSS scales reasonably well also for very large number
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of cores, demonstrating its capability to perform efficient
calculations under extremely parallel conditions.

D. Comparison with other methods

Finally we want to compare the performance of CheSS
with two other methods that allow to perform the same
operations. On the one hand we benchmark it against
(Sca)LAPACK, which is presumably the most efficient

way to perform general purpose linear algebra operations
for dense matrices. On the other hand we compare it
with PEXSI, which can exploit the sparsity of the ma-
trices and is an established package for large scale DFT
calculations, as demonstrated for instance by its coupling
with the SIESTA code70.

We tested five sets of matrices, ranging from 6000 ×
6000 to 30000 × 30000, with the number of non-zero el-
ements proportional to the matrix size. Moreover we
performed the comparison for various values of the spec-
tral width, in order to assess this important dependence.
Following the conclusions of Sec. III B 2 we started the
CheSS runs with well adjusted guesses for the eigenvalue
bounds, thus simulating the conditions in a real applica-
tion. We performed all runs in parallel, using 160 MPI
tasks with each one spanning 12 OpenMP threads, i.e.
using in total 1920 cores. We note that such a high num-
ber of threads does not seem to be optimal for PEXSI
due to only moderate OpenMP speedup. This is in con-
trast to LAPACK and CheSS, which can exploit this
wide shared memory parallelism in a very efficient way.
However such a setting might likely be imposed by the ap-
plication using the library — i.e. the electronic structure
code, in our case BigDFT —, for instance due to mem-
ory restrictions, or the usage of many-core systems —
becoming more and more abundant — that are designed
for shared memory parallelization, and overall our setup
thus corresponds to realistic situations. In other terms,
we are not just comparing the various solvers, but rather
the solvers within a given specific (but nevertheless re-
alistic) setup. Nevertheless, we will show for complete-
ness also some results using exclusively an MPI paral-
lelization, in order to see the effects on both CheSS and
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PEXSI

a. Inverse Due to the general character of
(Sca)LAPACK, we have to implement the required
functionality on our own. To calculate matrix powers
Ma, we first diagonalize the matrix M as D = UTMU,
with a diagonal matrix D and a unitary matrix U.
Then we can easily apply the desired power to the
diagonal elements Dii in order to get Da, and finally
we obtain the desired result as Ma = UDaUT . The
diagonalization was done using the PDSYEVD routine,
which is based on a parallel divide-and-conquer algo-
rithm. For the calculation of the inverse, there exist
more specific routines within (Sca)LAPACK; however
we nevertheless use the aforementioned approach as it is
the most general one and allows — as does CheSS —
to calculate any desired power. With respect to PEXSI,
we can invert a matrix using the Selected Inversion
algorithm, which this package contains as well as it
uses it for the pole expansion within the density kernel
calculation.

In Fig. 13 we show the timings that we obtain for the
calculation of the inverse as a function of the condition
number κ. As can be seen, CheSS is indeed the most
efficient method for matrices with small values of κ. The
only method that is competitive is the Selected Inversion,
which does not show any dependence on the condition
number and will therefore be faster for large values. The
crossover between CheSS and the Selected Inversion de-
pends on the matrix size — thanks to the linear scaling
property of CheSS it is higher the larger the matrices
are. Nevertheless we see that for all matrices used in
this test CheSS is the most efficient method, with the
crossover with respect to the condition number being lo-
cated at about 150. Following the discussion in Sec. II A
this is a value that is easily reachable in practical ap-
plications. Last but not least, we note that there is no
case where LAPACK or ScaLAPACK are the fastest
methods, demonstrating the need to exploit the sparsity
of the matrices.

b. Density kernel calculation Since CheSS is
mainly designed for systems with a decent HOMO-
LUMO gap, we are focusing on such systems; more specif-
ically we always set the gap to a value of 1 eV. In Fig. 14
we show the runtimes that we obtain for CheSS and
PEXSI as a function of the spectral width. Moreover
we show results for both a hybrid setup (160 MPI tasks
spanning 12 OpenMP threads each) and an MPI-only
setup (1920 MPI tasks). We do not show a comparison
with (Sca)LAPACK, since the tests for the inverse have
demonstrated the need of using methods that take into
account the sparsity of the matrices.

When using the hybrid setup, CheSS is in all cases the
most efficient approach even though the runtime slightly
increases as a function of the spectral width. PEXSI
does not exhibit such a a dependence, but the difference
to CheSS is so large that — according to the spectral
widths presented in Sec. II A — it is easily possible to
always operate in the regime where CheSS is the most

efficient approach. When using the MPI-only setup, the
runtimes of CheSS systematically worsen, whereas those
of PEXSI improve. This leads to an inversion of the
ranking for the smallest matrix, but for all the other ones
CheSS remains the fastest method. Finally it is impor-
tant to mention that the MPI-only setup does not allow
calculations beyond matrix sizes of 18000 due to memory
limitations. This clearly demonstrates the need of per-
forming calculations using a hybrid distributed memory
/ shared memory approach — a regime in which CheSS
is clearly superior.

IV. CONCLUSIONS AND OUTLOOK

We presented CheSS, the “Chebyshev Sparse Solvers”
library, which implements the flexible and efficient com-
putation of matrix functions using an expansion in
Chebyshev polynomials. The library was developed in
the context of electronic structure calculations — in par-
ticular DFT — with a localized basis set, but can also
be extended and applied to other problems. More specif-
ically, CheSS can calculate the density matrix, any —
in particular also non-integer — power of a matrix, and
selected eigenvalues. CheSS is capable to efficiently ex-
ploit the sparsity of the matrices, scaling linearly with
the number of non-zero elements, and is consequently
well suited for large scale applications requiring a linear
scaling approach.

The performance of CheSS for a specific problem de-
pends on how well the matrix function can be approx-
imated by Chebyshev polynomials. This depends, ob-
viously, on the function itself, but also on the spectral
width of the matrices. Whereas the first dependence
is imposed by the specific application, the second one
is as well related to the physical model and basis set
that is employed. CheSS has been designed for matri-
ces exhibiting a small eigenvalue spectrum, since this re-
duces the number of polynomials required to represent
the function that shall be calculated. We used the li-
brary together with the DFT code BigDFT, which uses
a minimal set of quasi-orthogonal in-situ optimized basis
functions, leading to the required small eigenvalue spec-
tra of the matrices. We showed that in such a favorable
setup CheSS is able to clearly outperform other compa-
rable approaches, and hence can considerably boost large
scale DFT calculations.

Finally, the algorithm on which CheSS is built can be
parallelized in a very efficient way, allowing the library
to scale up to thousands of cores. In addition, the par-
allelism can already be well exploited for relatively small
matrices, and consequently good speedups and low run-
times can be obtained for such systems. The initial per-
formance of CheSS was evaluated within an performance
audit by the Performance Optimization and Productivity
center of excellence (POP), which helped to understand
performance issues and gave recommendations and per-
formance improvements71. In addition, we continue to
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FIG. 13. Comparison of the runtimes for the matrix inversion using CheSS, the Selected Inversion from PEXSI, ScaLAPACK
and LAPACK, for various matrices and as a function of the condition number. All runs were performed in parallel, using
1920 cores (160 MPI tasks spanning 12 OpenMP threads each). The CheSS runs were started with well adjusted bounds for
the eigenvalue spectrum, and the polynomial degree ranged from 60 to 260. For LAPACK, no results for matrices larger than
18000 are shown due to their long runtime. The benchmarks were done on MareNostrum 4.
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cooperate with POP to further analyze and optimize the
parallel efficiency and scalability of the library.

CheSS is been used intensively within the BigDFT
code8,9 and is about to being coupled with the SIESTA
code10,11. Moreover it should be possible for any code
working with localized basis functions to use this library
and hence to accelerate large scale calculations.
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