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Abstract—This paper presents a vision-based fault detection
and isolation architecture for unmanned aerial vehicles. The
vehicle’s attitude is computed from visual input through a horizon
tracking algorithm, independently of any other sensor. In a
second stage, two Kalman filters are used for fault detection and
identification in two gyroscopes. The loosely coupled architecture
is suitable for real-time application. The algorithm was imple-
mented with the ROS framework and the system’s performance
is evaluated in a real-time application scenario with artificially
introduced sensor faults.

Index Terms— Vision, gyroscope fault detection and isolation,
unmanned aerial vehicles (UAVs), horizon tracking

I. INTRODUCTION

SENSOR fault detection, isolation and mitigation is essen-
tial for the safe operation of Unmanned Aerial Vehicles

(UAVs). Using vision for fault detection can be a favourable
choice if the UAV already carries vision components for
other purposes such as filming or inspection. With the camera
already mounted on the UAV, vision-based fault detection and
isolation (FDI) will induce little additional cost on the UAV in
terms of weight or complexity, while introducing additional,
independent sensory information to the FDI system in place.

This paper identifies three obstacles to be overcome for the
successful application of vision-based FDI in the following
order:

1) extract meaningful information from the vision input,
2) harmonize data representation and filter signals for con-

flicting sensory input,
3) apply a fault detection and identification algorithm.
Therefore, the proposed system combines aspects of vision

processing and FDI, as presented in the following sections. A
literature review follows in the next two paragraphs.

A. Attitude from Vision

There is an abundant body of literature on vision-based
attitude estimation [1]. The majority of recent research in
the area of attitude estimation is dedicated to multi-rotor
helicopter drones. Vision-based attitude estimation approaches
commonly depend on the input from additional sensors, such
as gyroscopes, which forbids vision-based FDI for gyroscopes.
Machine learning approaches have also emerged recently,
trying to solve the problem of visual attitude estimation [2],
but vision-based FDI is still an open problem.
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B. Kalman Filter based Fault Detection

Single Kalman filters can be used for fault detection such
as presented in [3]. A wide variety of Kalman filter variants is
available and the optimal choice of the Kalman filter variant
depends on the application at hand [4] [5]. An other popular
approach to FDI is the use of Multiple-Model Adaptive
Estimation (MMAE), which is based on banks of Kalman
filters [6].

Other approaches to FDI include statistical analysis of sig-
nals such as presented in [7]. More complex, high level sensor
fault-tolerant architectures can reconstruct the data of deficient
sensors as shown in [8] or use redundant sensor information in
combination with a majority voting algorithms to obtain more
reliable attitude information [9]. Some approaches provide
fail-safe or explicitly robust sensor fusion algorithms, where
redundant sensors are used as drop-in replacement in case of
sensor failure [4]. The work in [10] uses three redundant gyro-
scopes for attitude estimation. This allows to identify a faulty
sensor through a majority vote-like mechanism based on the
Mahalanobis distance, but requires additional preprocessing of
the signals.

To the best of the author’s knowledge, there exist little to
no research on vision-based FDI for gyroscopes [11] [12].

The contribution of this paper is to demonstrate the use of
an independent vision-based attitude estimate for the purpose
of FDI in gyroscopes. The attitude estimates are derived from
an on-board camera which is pre-installed on a UAV for
mission specific tasks. An efficient computational procedure
is derived to segment images for faster horizon tracking. The
FDI algorithm is based on Kalman filters. This approach
circumvents the need to install an additional third gyroscope
on the UAV and to implement a dedicated majority voting
system such as presented in [10]. This architecture for FDI
of roll and pitch gyroscopes can prevent fatal crashes of the
vehicle during autonomous flight.

II. FAULT DETECTION AND ISOLATION ARCHITECTURE

The architecture suggested in this paper detects and isolates
sensor faults in gyroscopes in real-time with the help of visual
queues obtained from an on-board camera. The underlying
idea can be likened to a human pilot visually validating
sensory measurements by observing the outside world.

This algorithm is limited to detecting and isolating sensory
faults only. It is not tasked to mitigate the fault or to make
high-level decision based on the fault diagnosis.
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Fig. 1. Schematic of the vision-based fault detection algorithm. The system
is provided with data from a camera and two gyroscopes (GYR1, GYR2).
The ROS message formats are notated at the edges.

A. Structure of Architecture

The FDI architecture is made from several self-contained
modules. As shown in Figure 1, the FDI system features a
horizon tracker node, two Kalman filters for detecting faults
and a fault isolation node for isolating faults in the UAV’s
gyroscopes.

The horizon tracker node estimates the roll and pitch angle
of the UAV. It can not extract information about the yaw
angle of the UAV, however this is sufficient for meaningful
fault detection. Compared to a fault in yaw-rate measurements,
faults in roll and/or pitch-rate measurements are more likely
to lead to a fatal crash during autonomous flight since they
influence the aircraft’s orientation control drastically.

Kalman filters, as presented in subsection II-C, are used to
fuse the information from the horizon tracker with the gy-
roscope measurement. Since the horizon tracker measures the
attitude and the gyroscopes measure angular velocities, or rate
of change of attitude, a Kalman filter is the ideal mechanism
to fuse those two types of signal. For each gyroscope, there
is one Kalman filter.

As shown in Figure 1 the output of each Kalman filter
is processed by a fault isolation node, which is presented in
subsection II-D. The output of the fault isolation node indicates
whether there is a fault in the horizon tracker or if one of the
two gyroscopes is faulty.

B. Horizon Tracking

To detect faults in gyroscopes, the airplane’s attitude must
be obtained from an independent source. In this work, attitude
information is extracted from a video stream by observing the
horizon line visible in the image frames without relying on ad-
ditional sensory information such as inertial measurement unit
(IMU) measurements. The horizon tracker algorithm presented
in this work does not apply to images from omnidirectional
cameras.

The frame rate of the video stream determines the update
frequency of the Kalman filters. In this paper, a video frame
rate of 10 Hz was used. If the frame rate it too low, the
vision measurements do not keep up with the pace of the
gyroscope measurements and the FDI system will interpret

Fig. 2. The Hough Transformation maps a (horizon) line to a representation
that is given as a point coordinate p = (r,Φ). The point p is the foot of the
line to the origin o at a distance r (red). The angle Φ is between the camera
horizontal line and the line segment [op] .

the discrepancy as sensor fault. The camera should feature a
big field of view (FOV) and should be mounted in a forward-
looking configuration. The horizon tracker computes current
roll and pitch angles of the airplane’s attitude relative to the
world frame.

Note that the work in [2] is an approach that performs sky
segmentation based on machine learning. It would be suitable
as drop-in replacement for the sky-segmentation method used
in this work, but the effort required to reproduce the results
and the hardware requirements for running the segmentation
algorithm are beyond the scope of this study.

1) Algorithm: In this work the algorithm used for the
horizon tracker is based on previous research [13] and was
adapted and improved upon. Most notably, the algorithm
presented here deviates from [13] in the following points:
• The algorithm of this paper uses gray-scale input instead

of a three channel RGB color image. As a consequence,
the precautions made against illconditioned images in
[13] become the default mode of operation in this paper.

• The paper [13] covers the complete search space for
every frame, without taking into account that consecutive
frames will have closely co-located horizon lines. Paper
[13] is aware of that fact but decided against using this
property because their video stream may be subject to
transmission faults before it is processed on a ground
station computer. This paper processes the video stream
on board of the UAV.

The horizon line is represented by its Hough Transform and
is specified by

p = (r,Φ)

which denotes the distance r of the point p to the origin o and
Φ as the angle of the vector v = p − o. The point p is the
point on the horizon line that is closest to the origin o. The
origin is located at the focus of expansion, which is described
in section II-B3. The horizon line segments an image into two
areas, the sky and the ground area.

The horizon tracker works on a frame-by-frame basis.
Searching for the horizon line in a video image frame is
limited to the vicinity of the previous horizon line under the
assumption that the vehicle’s angular velocities stay within
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Fig. 3. Instead of segmenting the image (represented by the frame) into two
areas representing ground and sky, the image is segmented into four areas.
The blue lines represent the limits of search space for the horizon line of this
frame. The red line within the search space limits is the currently evaluated
horizon line. Area G will be evaluated as ground for all iterations of the
search in a given frame. Area g changes during search. Areas S and s behave
likewise. Avoiding re-evaluation of areas G and S reduces computational costs
significantly, see section III-B.

predetermined limits. This assumption allows to reduce the
required computations considerably.

All horizon lines in the search space are evaluated. The
best line, according to the evaluation metric in Equation 1,
is selected as the artificial horizon. In order to evaluate the
fitness f of an image segmentation,

f =
1

vars + varg
(1)

is used, where vars denotes the variance of the gray-scale
pixels’ value that are located in the sky-area of the image and
varg denotes the variance of gray-scale pixels’ value in the
ground area. The horizon line with the maximum evaluation
value f represents the most likely image segmentations that
coincides with the real world horizon line.

In addition to limiting the search space for the horizon line,
this work adds an other improvement. The pixels outside the
horizon line search space will be considered as ground pixels
or sky pixels for every iteration of the horizon search acting
upon the same video frame. Only pixels inside the search
space (refer to Figure 3) may be categorized as sky or ground
depending on the currently evaluated horizon line. Splitting
the image into four segments

• area outside the search space considered as ground: G
• area inside the search space considered as ground: g
• area inside the search space considered as sky: s
• area outside the search space considered as sky: S

helps to reduce calculations. Details on this approach are
presented the following section.

2) Accelerating the Horizon Line Evaluation: The hori-
zon tracker evaluates horizon lines according to Equation 1.
Increasing the speed at which the variance terms can be
calculated will increase the speed of the overall horizon search
algorithm. Equation 2 below

var(x) =
1

n

n∑
i=0

x2i −

(
1

n

n∑
i=0

xi

)2

= x2 − x2 (2)

presents the formulation of the sample covariance. The sample
vector x of all frame pixels can now be split at index h into
two vectors such that

x = [xi≤h, xh<i]. (3)

In this work, such a split is used to divide the ground area
of a frame into areas G and g, and the sky area into areas s
and S, respectively. This separation enables the reuse of the
calculations for G and S for every iteration step of the search
algorithm, because G and S are outside the search space of the
horizon line. In comparison, g and s need to be re-evaluated
at every iteration step. The following equations are indexed
for a one-dimensional array but are valid for two dimensional
arrays, such as images, too:

var(x) =
1

n
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i=1

x2i −
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1

n
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i=1

xi

)2

(4)

=
1
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1

n

n∑
i=h+1

x2i

−
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1

n
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(5)

=
h
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x21≤i≤h︸ ︷︷ ︸

A

+
n− h
n

x2h+1≤i≤n︸ ︷︷ ︸
B

−

h
n
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C

+
n− h
n
· xh+1≤i≤n︸ ︷︷ ︸

D

2

(6)

We recognize that terms A and C correspond to evaluating
area G or S. They will remain unchanged for every horizon
search step in a frame. Reusing the calculated variance terms
of G and S saves valuable CPU time. A quantification of the
performance gain is given in subsection III-B.

Finally we need to find n and h in order to know all terms
of Equation 6. Since n and h represent the number of pixels
we can approximate those values by calculating the area of
the image segments.

3) Attitude from Horizon Line Estimates: Knowing the
horizon line alone does not give any direct information about
the attitude of the UAV. The position of the horizon line in
the image frames must be related to a body-fixed reference
frame.

The focus of expansion is located at the origin of all optical
flow during a straight-forward movement of the UAV with a
forward-looking camera. The focus of expansion is visualized
in Figure 4.

The distance r of the focus of expansion to the horizon line,
shown in Figure 2 indicates the aircraft’s pitch angle θ in world
reference frame. Given an undistorted image, the conversion
factor for converting r to θ can be deducted from the camera’s
angle of view α and its resolution ρ (in pixels) by r/θ = ρ/α.
The angle between the horizon line and the wing plane of the
UAV allows to intuitively deduce the roll angle φ of the UAV.
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Fig. 4. Changing the angle of the camera mount influences the field of view
and focus of expansion accordingly. The wing plane is marked red. The black
arrows indicate the direction of the optical flow.

C. Kalman Filter based Fault Detection

In order to detect faults in the gyroscopes two Kalman filters
are employed as shown in Figure 1. In this paper, angular
velocity measurements from the gyroscopes are fused with
attitude estimates from the horizon tracking module in a direct
Kalman filter, driving the high-frequency prediction and low-
frequency update steps of the Kalman filters, respectively. The
state vector of the Kalman filter is made of the airplane’s at-
titude ΦIB (as quaternion) and the gyroscope’s bias estimates
bω .

x = (ΦIB , bω),∈ R7 (7)

Angular velocity measurements (in body frame coordinates)
from the gyroscopes are represented by the vector

ω ∈ R3, (8)

while the measurements from the horizon tracker are in the
form of quaternions denoted

Ω ∈ R4 (9)

The following matrices are used for the implementation of
the Kalman filter
F ∈ R6×6: State transition matrix, see Equation 22
Q ∈ R6×6: Process noise covariance matrix, derived from

IMU datasheet
G ∈ R6×6: process noise transition matrix, see Equa-

tion 23
H ∈ R3×6: Observation model matrix
R ∈ R3×3: Observation noise covariance matrix
P ∈ R6×6: State estimate error covariance matrix
K ∈ R6×3: Kalman gain matrix
The dimension of the state vector seems inconsistent with

the dimensions of the above matrices and Equation 10. These
inconsistencies will be resolved through the operators � and
� later on. For more details on those operators refer to [14].

The discrete formulation of the Kalman filter prediction step
is:

x = x+ ω∆t (10)
P = FPFT +GQGT (11)

Update steps are performed according to:

K = PHT (HPH +R)−1 (12)
x = x+K(Ω−Hx) (13)

P = (I −KH)P (I −KH)T +KRKT (14)

Note, that the state estimate update in Equation 10 is not
based on the state transition matrix F , but on gyroscope
measurements ω instead.

Instead of a fused state estimate, the Kalman filters publish
their respective innovation terms (Ω−Hx) from Equation 13.
An increased innovation term indicates a sensor fault in either
gyroscope or horizon tracker. But it cannot determine which
sensor, IMU or horizon tracker, is faulty. This task will be
solved by the algorithm presented in subsection II-D.

A unit quaternion ΦBA ∈ SO(3) represents a relative ori-
entation of a coordinate system B w.r.t. to an other coordinate
system A. An orientation can be modified by applying a
rotation ϕ ∈ R3. Since the orientation is represented by a
four-dimensional quaternion and the rotation to be applied
is represented by a three-dimensional vector, boxplus � :
SO(3)× R3 → SO(3) is defined as follows [14] :

� : Φ, ϕ→ exp(ϕ) ◦ Φ (15)

The boxminus operator, � : SO(3) × SO(3) → R3, needs
to be introduced for calculating the difference between two
quaternions, which is a three-dimensional rotation:

� : Φ1,Φ2 → log(Φ1 ◦ Φ−12 ) (16)

Both operators represent the application of functions that
transform quaternions to rotations or vice versa and a con-
catenation function.

The concatenation ◦ : SO(3) × SO(3) → SO(3) of two
quaternions yields an other quaternion and is evaluated as
follows [14]:

Φ1 ◦ Φ2 = (q0p0 − ~qT ~p, q0~p+ p0~q + ~q × ~p) (17)

The exponential map exp : R3 → SO(3) represents the
transformation of a rotation into an orientation.

exp(ϕ) = (q0, ~q) =
(
cos(||ϕ||/2), sin(||ϕ||/2) ϕ

||ϕ||

)
(18)

exp(ϕ) ≈ (1, ϕ/2), (||ϕ|| ≈ 0) (19)

The logarithm is the inverse function of the exponential map
and transforms a relative orientation into its respective rotation
vector:

log(Φ) = 2atan2(||~q||, q0)
~q

||~q||
(20)

log(Φ) ≈ ~q, (||~q|| ≈ 0) (21)

The Kalman filter matrices for the horizon tracking subsys-
tem are calculated as:

F =

[
I −∆C(ΦIB)Γ(∆tω)
0 I

]
(22)

G =

[
−∆tC(ΦIB)Γ(∆tω) 0

0 ∆tI

]
(23)
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TABLE I
VARIOUS SCENARIOS OF FAULTS.

case vision imu1 imu2 fault isolation
1 OK OK OK
2 OK OK fault yes
3 OK fault OK yes
4 OK fault fault no
5 fault OK OK yes
6 fault OK fault no
7 fault fault OK no
8 fault fault fault no

where ∆t is the time step, Γ(ϕ) ∈ R3×3 is the derivative of
the exponential map

Γ(ϕ)

{
= I + (1−cos(||ϕ||))ϕ×

||ϕ||2 + (||ϕ||−sin(||ϕ||))ϕ×2

||ϕ||3

≈ I + 0.5ϕ×, ||ϕ|| ≈ 0
(24)

and C : R3 → R3×3 is a rotation matrix

C(ϕ)

{
= I + (1−cos(||ϕ||))ϕ×2

||ϕ||2 + sin(||ϕ||)ϕ×

||ϕ||
≈ I + ϕ×, ||ϕ|| ≈ 0

(25)

Equation 24 and Equation 25 use the skew symmetric matrix
of a vector v ∈ R3 denoted as v×. With above definitions,
the mismatch of dimension is resolved, because � allows
to add three-dimensional gyroscope measurement to four-
dimensional quaternions and � is its inverse operator.

D. Fault Isolation

In this paper two gyroscopes and a single forward-looking
camera provide the necessary inputs for fault isolation.

A fault is detected if the innovation term of a Kalman
filter exceeds a empirically determined threshold. Since both
Kalman filters share the same input from the vision system
but fuse it with measurements from two distinct gyroscopes,
the faulty sensor may be inferred. Possible fault scenarios are
presented in Table I.

case 1:
Cues from the vision system are in line with both
gyroscopes. All sensor measurements are valid.

case 2 and 3:
Exactly one Kalman filter exhibits innovation terms
above a predefined fault indication threshold. The
gyroscope connected to this Kalman filter is faulty.

case 4:
The system detects a fault in both Kalman filter. If
both gyroscopes exhibit the same fault, e.g. sensor
measurements stuck to zero, the faulty gyroscopes
will overrule the correct measurements from the
vision system. This scenario can not be differentiated
from case 5.

case 5:
The system detects faults in both Kalman filters. If
the measurements of the gyroscopes are similar, the
fault can be isolated and the vision input will be
recognized as faulty.

case 6, 7 and 8:
The architecture will detect faults but can not isolate

Fig. 5. Visual output of the horizon tracker. The interrupted vertical line
represents the wing plane of the UAV. The continuous line visualizes the
horizon estimate. The thin, red line indicates the distance of the focus of
expansion to the horizon line.

the fault(s). In all those cases, the majority of sensors
is faulty.

III. RESULTS

A. Hardware Configuration

The work was tested on data recorded by the fixed-wing
team of Autonomous Systems Lab from ETH Zürich 1. In this
section a recording system featuring one camera and 2 IMUs
was used. The data was recorded on 25.7.2014 in Switzerland.
The camera provided an image stream at 10 images per second.
IMU measurements were provided by two different gyroscopes
at 2.8 kHz and 49.5 Hz respectively.

Sensor faults did not occur during the experiments but were
introduced artificially to the recorded experimental data, which
was processed in real-time on an Intel Atom processor.

B. Attitude from Vision

The horizon tracker works under various day light condi-
tions. Figure 5 shows an example frame of the video stream
with the horizon line and the wing plane as overlay. However,
it fails in cloudy conditions as shown in Figure 7.

The performance improvement presented in subsubsec-
tion II-B2 lower the processing time for one frame by a factor
of

1
h (G+ S) + g + s

G+ S + g + s
(26)

where h denotes the video frame frequency, and G, S, g and
s denote the areas according to Figure 3.

C. Fault Detection

Figure 8 displays the innovation terms of both Kalman
filters. If the values surpass a predefined threshold value, the
system identifies the faulty gyroscope. In this experiment, the
sensor faults were introduced into the recorded gyroscope
measurements.

1http://www.asl.ethz.ch/
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Fig. 6. Pitch angle estimated by horizon tracker (red) and PX4 flight controller
(blue) for reference.

Fig. 7. Dark clouds contrasting a bright sky will mislead the horizon tracker.
The estimated horizon (continuous black-white-black line) does not coincide
with the real-world horizon (green line).

IV. CONCLUSIONS

This paper presents a vison-based approach to sensor FDI
in gyroscopes for UAVs. A horizon tracking algorithm extracts
attitude estimates from a video stream provided by a camera
mounted on a fixed-wing UAV. Two Kalman filters fuse
the attitude estimates with the measurements of two distinct
gyroscopes for fault detection. Fault isolation is achieved by
deducing the source of the fault from the innovation terms
of the Kalman filters. The reuse of the on-board camera and
Kalman filter state estimators allows to enhance the UAV’s
FDI capability without additional harware and little effort.
The effectiveness of the FDI architecture was evaluated on
real-time experimental data with artificially introduced sensor
faults.

REFERENCES

[1] A. E. R. Shabayek, C. Demonceaux, O. Morel, and D. Fofi, “Vision
based uav attitude estimation: Progress and insights,” Journal of Intel-
ligent & Robotic Systems, vol. 65, no. 1-4, pp. 295–308, 2012.

[2] A. Carrio, C. Sampedro, C. Fu, J.-F. Collumeau, and P. Campoy, “A
real-time supervised learning approach for sky segmentation onboard
unmanned aerial vehicles,” in Unmanned Aircraft Systems (ICUAS),
2016 International Conference on. IEEE, 2016, pp. 8–14.

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time[s]

In
no

va
tio

n
[r

ad
]

x1
y1
z1
w1
x2
y2
z2
w2

Fig. 8. Output of Kalman filter 1 and Kalman filter 2 superimposed.
Measurements of GYR1 were distorted around second 10. Measurements
of GYR2 were distorted around second 14. The shaded red and blue areas
indicate a detected fault in GYR1 and GYR2, respectively.

[3] K. Rudin, G. J. Ducard, and R. Y. Siegwart, “A sensor fault detection
for aircraft using a single Kalman filter and hidden Markov models,” in
2014 IEEE Conference on Control Applications (CCA). IEEE, 2014,
pp. 991–996.

[4] S. Leutenegger and R. Y. Siegwart, “A low-cost and fail-safe Inertial
Navigation System for airplanes,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, May 2012, pp. 612–618.

[5] G. J. Ducard, Fault-tolerant flight control and guidance systems: Prac-
tical methods for small unmanned aerial vehicles. Springer Science &
Business Media, 2009.

[6] G. Ducard and H. P. Geering, “Efficient nonlinear actuator fault detection
and isolation system for unmanned aerial vehicles,” Journal of Guidance,
Control, and Dynamics, vol. 31, no. 1, pp. 225–237, 2008.

[7] S. Hansen, M. Blanke, and J. Adrian, “Diagnosis of UAV pitot tube
failure using statistical change detection,” in Proceedings of the 7th IFAC
Symposium on Intelligent Autonomous Vehicles, Lecce, Italy, 2010.

[8] G. Ducard, K. Rudin, S. Omari, and R. Siegwart, “Strategies for sensor-
fault compensation on UAVs: Review, discussions & additions,” in
Control Conference (ECC), 2014 European. IEEE, 2014, pp. 1963–
1968.

[9] Y. Gu, J. N. Gross, M. B. Rhudy, and K. Lassak, “A Fault-Tolerant
Multiple Sensor Fusion Approach Applied to UAV Attitude Estimation,”
International Journal of Aerospace Engineering, vol. 2016, 2016.
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