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Abstract. Computer networks are ubiquitous and growing exponen-
tially, with a predicted 50 billion devices connected by 2050. This tremen-
dous growth dramatically increases the attack surface of both private and
public networks. These attacks often influence the behaviour of the sys-
tem, leading to the detection of the attack. In this manuscript we model
the path of an attack through the network by graphs. The model devel-
oped aims to better integer attackers intentions. Using the data produced
by 5 honeypots, we apply our model. The preliminary results show that
the approach is useful to rapidly detect anomalies in the experiment
dataset.

1 Introduction

Computer networks are ubiquitous and play a pivotal role in the way users and
machines interact with each other. The advent of the Internet of Things (IoT)
has significantly increased the number of devices connected to the Internet, with
an estimation of 50 billion devices connected by 2020, hence increasing both the
network complexity and attack surfaces on both networks and devices.

In the field of telecommunications, a perfect network is a set of interconnected
nodes. On the Internet, however, a system newly connected to the Internet is
likely to be contacted by thousands of malicious nodes, mostly bots, from all
around the World in less than 24 hours, with the main purpose of probing the
newly connected system.

In order to protect networks, it is thus necessary to understand the motiva-
tions of the attackers, the methods applied, but most importantly, its identity.
This can be achieved through profiling the attacks, hence being able to both
understand and learn about the actions of an attacker. This can be achieved by
modelling the attack flow path within a network.

Network modelling is complex due to the number of paths network packets
can follow. In this paper a model based on graph theory is developed. This model
aims at representing network activities and to categorize network users as either
the author or the victim of a cyber-attack.



To the best knowledge of the authors the majority of models disregards the
users, then this model tends to include the user has a central piece of the model.

The main contribution of this paper is the introduction of a new model
centred around the user. The model helps refine malicious users and attack
characteristics.
Furthermore, numerous graphs derived from the model highlights peculiarities
in the network traffic, with the ability to identify patterns that can be used to
understand the intentions of a malicious user as well as detect misconfigurations
and services failure.

The remainder of this paper is organized as follows. Section 2 presents the
state-of-the-art in modelling cyber-attacks and cyber-security visualization. Sec-
tion 3 introduces the main model as well as different applications that generate
new representations of network communications. Section 4 presents a case study
realized on five different honeypots scattered around the world, validating our
approach, finally, Section 5 concludes this paper.

2 Related Works

Network activity models have different goals, one of them is to improve under-
standing of cyber-attacks as well as increase the detection rate and speed. This
method allows improving the cyber-defence and provide better tools to monitor
networks and systems [1]. Generally, humans are particularly good at recogniz-
ing visual patterns, therefore, transforming data and numbers into figures (e.g.
plots, graphs, etc.) and images can substantially improve cyber-attack detection
and understanding through visualization of important information. The domain
of security visualization, has recently been expanded into Human Computer In-
teraction (HCI) [2–4]. Security visualization can be classified into three types
according to [5]: geographic visualizations, abstract topological representations
and plot-based representations. Each type is based on different models in order
to define the core elements used to produce visual results.

Different approaches and techniques have been used such as graph theory or
Petri Nets [6–8] to model networks. Graph theory is one of the favourite models
used to represent activities in space and time. Such modelling approach is often
used in GIS for example to model urban spaces [9, 10]. However, NetFlow models
are one of the most used methods to deal with network information [11, 12].
NetFlow is the aggregation of packets based on information such as the source
and destination IP address, IP protocol, source and destination ports as well as
the type of service. This method is used to help monitor networks rapidly but it
is often not powerful enough to detect anomalies or outliers.

Each model is based on a formal representation in order to use the abstraction
level and the operators offered by the theory chosen. When identifying cyber-
attacks, attack trees and attack forests are often preferred [13, 14]. In an attack
tree the root node represents the final goal of the attacker while the sub-nodes
are the steps leading towards the goal. This structure is also used to build cyber-
defence trees or countermeasures [15]. Depending on the model chosen, different



patterns can emerge. These patterns can then be used for the attribution of
cyber-attacks, find the identity and/or the location of an attacker [16–20] and are
generally used for cyber-threat intelligence. Note, however, that the attribution
of cyber-attacks is a very challenging problem as numerous tools and software
enable hackers to remain anonymous.

To hide their identity, attackers can use Virtual Private Networks (VPN),
proxy servers or the TOR network. These techniques were primarily developed
to avoid censorship in non-democratic countries and are now primarily used for
criminal activities [21]. The principle behind all these methods remains the same:
it enables a connection to a server (centralized or decentralized) that hides the
true identity of a user. However, if knowing the real identity of the attackers is
often impossible, anonymous servers are known (i.e. blacklist) and alerts can be
triggered when their use is detected.

Another way to become anonymous on the Internet is to use compromised
computers through a botnet. The compromised computers called bots, zombies
or ghost computers, are controlled remotely and are used to attack other com-
puters or servers. Botnets have the ability to launch large scale attacks such as
Distributed Denial of Service (DDoS) against major services providers, where
the chance of success of the attack is strongly correlated with the number of
computers attacking. Botnet detection is a very dynamic research field, where
the objective is to detect abnormal network communications in order to identify
whether a computer is compromised or not. Several methods have been designed
to detect bots either by analysing network behaviour [22], or through clustering
techniques [23]. Criminal activities heavily rely on the anonymity factor to per-
petrate infractions. However, anonymity is only one component as highlighted in
criminology [24], other factors play an important role when perpetrating crime.

Numerous crime prevention frameworks have been proposed in criminology
and sociology, focusing on different aspect of the crimes committed, in order to
provide an insight on crime trends. These models often consider the offender
as the main factor, leaving out important components such as the guardian, or
a suitable target, hence for the purpose of this manuscript the use of Routine
Activity Theory (RAT) has been privileged [25–27].

RAT assesses the conditions needed from crime to take place in order to
explain Direct Contact Predatory Crime (DCPC), by including spatial and tem-
poral patterns alongside situational awareness. RAT is described by the three
following components.

– Absence of Capable Guardian

– Suitable Target

– Motivated Offender

RAT implies that crime occurs due the lack of a capable guardian (i.e. Network
Firewall, Access Control Lists, Antivirus, etc.), the presence of a suitable target
(i.e. a weak host on a network, a user vulnerable to social engineering attacks,
etc.) and the presence of a motivated offender (i.e. a malicious user, a script
kiddie, . . . ).



Human actions are at the center of the modelling approach presented. Placing
the human in the attack process allows to map the intentions, desires of the user
as well as include and analyse all the components provided by the RAT principle.

3 Modelling approach

This section describes the elements of our model and their interconnections.
First, we present the main principles of the model, based on graph theory, then
we introduce node fusion rules to analyse network activities and understand
what is going on during the attack.

3.1 Main Principles

The objective is to model the network activity produced by a complex system
composed of many sub-systems. This model can then further be used for the
analysis of the activity qualifying normal and abnormal behaviours by identifying
intention and desires.

An attacker (hatk) who wants to compromise a target system, (htrg), per-
forms an action to reach his objective. According to the theory of action, these
actions are related to intentions and desires [28]. Therefore, the attacker and
the victim are connected by the attacker intention through their own systems as
shown in Figure 1.

strg satk

htrg hatk

Message

Intention

Fig. 1. Network model with intention

However, numerous systems can co-exist between the attacker and the victim.
It is nearly impossible to know the exact path of a message on a network. To
this end, a black box is adopted to represent unknown systems used to transmit
packets. Figure 2 highlights the different components of a network including the
attacker and the victim. Note that, the number of systems included in the black
box is unknown.

Let S be the set of systems and M the set of network messages. The path
between the victim system (strg) and the attacker system (satk) can be formally
defined using graph theory. As shown in Equation 1, Gatk(t) = (S,M) represents
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Fig. 2. Network Model with humans

the path composed by the systems ∈ S used by the attacker (hatk) to transmit
a message ∈M to the victim htrg at a time t.

Gtrg,atk(t) = strg,m0(t), s0, BB[t0, tn−1],mn(tn), satk (1)

Where m(t) ∈ M represent messages between systems, s0 ∈ S the system
is directly connected to the victim’s system strg ∈ S. BB, and where the black
box, is a set of systems and unknown messages.

A black box can be defined by Equation 2 :

BBtrg,atk(t) = [s1,m1(t), ..., snmn(tn)] (2)

For a period of time (t0, tn), Gtrg,atk(t0, tn) represent the graph composed of
all the paths between an attacker (∈ A, the set of attackers) and a victim (trg),
as shown in Equation 3.

Gtrg,atk(t0, tn) =
∏
A

Gtrg,atkA
(ti) |t ∈ [t0, tn] (3)

For a period of time (t0, tn), the black box is defined by:

BBtrg,atk[t0, tn−1] = [s1,m1(t1), ..., snmn(tn)] (4)

As the black box and the system of the attacker are unknown, for the rest of
the paper we define Gtrg,atk(t) by Equation 5.

Gtrg,atk(t) = strg,m0(t), satk0 (5)

Nodes are defined by the IP address and edges are messages i.e. network
packets. Using the IP address of the nodes, we can obtain several information
about a system, such as its geolocation. From messages between systems we can
extract the original intention of the attacker.

We define the functions ipv4, country(s), city(s), coord(s), s24(s), s16(s)
returning, the IP address, the country, the city, the coordinate, the /24 subnet
and the /16 subnet of a system s ∈ S respectively. The function blacklisted(s)
returns ’true’ if an IP address is included in a known lists of IP addresses that
are considered suspicious, and ’false’ otherwise. The function intent(m) returns
the intention of the attacker using the content of the message m ∈M .



The model presented allows for an analysis of network traffic and intentions
that can be used for anomaly detection. Furthermore, by applying fusion rules
using node information, it is possible to merge nodes and create clusters from
nodes and edges information.

3.2 Graph Simplification

The different paths of the aforementioned model are composed of numerous
nodes and edges over a period of time. In order to highlight patterns contained
in these paths, a simplification process is applied. This process can be seen as flow
aggregation similar to C-flow, introduced by [23]. C-flow is a packet aggregator
over a period of time. In order to be aggregated, packets must share a protocol
(e.g. TCP or UDP), a source IP, a destination IP and port numbers.

In our approach the simplification is built by the aggregation of packets over
a period of time, however, our model takes the intention of the attackers into
account.The Nodes and edges information can be used to merge system nodes,
ultimately, producing new graphs.

The different functions used for the aggregation were defined previously in
Section 3, i.e. (ipv4(s), country(s), city(s), coord(s), s24(s), s16(s)). According
to Rule 1, nodes must share IP addresses and be connected to the victim by
messages carrying the same intention in order to be merged together.

Equation 6 and Equation 7 represent an attack against a single victim, by
two attackers. Let atk1 = Gtrg,a1

(t0, tn) and atk2 = Gtrg,a2
(t0, tn) be two graphs

representing all the paths between a victim (trg) and two attackers (a1 and a2).

Gtrg,a1(t0, tn) = [strg,m
a1
0 (t), sa1

0 ] | t ∈ t0, tn (6)

Gtrg,a2
(t0, tn) = [strg,m

a2
0 (t), sa2

0 ] | t ∈ [t0, tn] (7)

The similarity between the two systems sa1
0 , s

a2
0 is identified by applying the

similarity rule defined by Rule 1.

Rule 1 (Nodes Similarity)
∀ti, tj ∈ [t0, tn] | tj = ti +∆t∧

s
a1
0 ∈Gtrg,a1

(t0,tn),s
a2
0 ∈Gtrg,a2

(t0,tn)

∧
∃ma1

0 ,m
a2
0 | (strg,m

a1
0 (t),s

a1
0 ),(strg,m

a2
0 (t),s

a2
0 ) ipv4(sa1

0 ) = ipv4(sa2
0 )

∧
intention(ma1

0 ) = intention(ma2
0 )

 ⇒ Similar(sa1
0 , s

a2
0 )


Where ∆t represent the period of time considered building the aggregation of
messages.

For example, let’s consider the graph Gx[T ] composed by all messages re-
ceived by x from a set of attackers over a period of time T . The simplification
process using Rule 1 with ∆t = 10 minutes returns a new graph Gfusion

x [T ]. This
graph is composed of all the nodes included in the original graph Gx[T ] sharing
the same IP address as well as all the messages with the same intention.



4 Case Study

In order to validate the model presented, a large dataset of network traffic is
necessary. The number of publicly available dataset is scarce, due to the lack of
metadata, and information related to the generation of the dataset. To this end,
and for the purpose of this manuscript we generated a dataset using honeypots.

A honeypot is a security tool that can be analysed, probed, attacked and
compromised without risk for a network infrastructure [29]. Honeypots are often
used to deceive attackers, study attacking methods as well as obtain new and
current malware samples [30–32].

Various types of honeypots exist, each dedicated to a specific use. Honeypots
can be classified into three categories: low interaction honeypots, medium in-
teraction honeypots and high interaction honeypots. Low interaction honeypots
have limited interactions between the system and the attackers. The honeypot
only emulate services. This type of honeypot presents a low level of risk due to
the low interaction. Medium interaction honeypots are between low level interac-
tion honeypots and high interaction honeypots. While the honeypot is deprived
of an operating system, it emulates complex services enabling interaction with
malicious users. Finally, high interaction honeypots are the most complex type
of honeypots. These run a full operating system including services and a complex
configuration. The main advantage of high interaction honeypots is that services
are not emulated, hence, attackers are interacting with a real target while the
owners can track the attackers by capturing all their interactions.

4.1 Experiment

For the purpose of this research a high interaction honeynet was set up, gathering
detailed information on a controlled infrastructure. In order to correlate data
from multiple sources, 5 virtual private servers were purchased in 5 different
locations (Fremont, Newark, London, Tokyo and Singapore). Figure 3 shows the
five location across the world.

Each honeypot was deployed with the same configuration. All of them run-
ning Ubuntu 16.04 LTS with an SSH server (openSSH), an FTP server (Pure-
ftpd) and a web server (Apache2). The web server hosted an authentication page
with a PHP script to track login attempts. All network messages captured were
stored in a daily PCAP file using the TCPDUMP command. 10 Gb of raw data
was generated within a month.

Applying the RAT theory principles, a capable guardian was omitted, i.e. no
firewall was configured and the services running on servers are the ones which
are often the most targeted by attackers.

4.2 Data analysis

In this section the data gathered over a period of one month by the honeynet is
analysed.
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Fig. 3. Honeypots Places

For this experiment we classified network messages into 7 different inten-
tions, divided into 2 main categories: Information gathering and attacks. In the
information gathering category, 4 classes are defined, indicating the main char-
acteristics of the targeted network: Network infrastructure, DNS (Domain Name
Server), ICS (Industrial Control Systems) and Web. The attack category con-
cerns the secure remote access attempts and unsecured remote access attempts.

Table 1 defines how the protocols have been used to classify intentions. The
four intentions defined by the information gathering category are related to the
first phase of the cyberkill chain, the reconnaissance phase, while the intentions
defined by the attack category, refers to post-reconnaissance. The intention clas-
sification is related to the objectives of the analysis and the case study. It is
important to note that the intentions used in this work may not be suited to
another case study, for example, for a local area network legitimate intentions
or pre-approved intentions might be considered.

The characteristics of the honeypots and their location in the world are pro-
vided in Table 2. The first row represents the number of distinct IP addresses
that established a connexion with the honeypots. The second row represents the
number of network packets exchanged between the honeypot and the attackers.
The third and fourth rows indicate the number of protocols used against each
honeypot respectively. The last row of Table 2 indicates the number of countries
the attackers operated from, by geolocating IP addresses. Wireshark does not
offer the ability to directly assign a geolocation to an IP address using the GeoIP
API. This API is based on a free database, GeoLite3.

3 https://dev.maxmind.com/geoip/legacy/geolite



Table 1. Protocol attribution for intention

Intention Protocols
In

fo
rm

a
ti

o
n

g
a
th

er
in

g
Network Infrastructure ICMP ; SIP ; SNMP ; SSDP

DNS DNS ; LLMNR ; MDNS ; NBNS

ICS BACnet ; DNP3.0 ; IPMI ; XDMCP ; XTACACS

Web HTTP

A
tt

a
ck

s Control SSH ; SSHv2

File Sharing FTP ; TFTP

As IP addresses are mostly dynamic, the same IP address doesn’t always
belong to the same owner. In the study, we consider that a source is associated
with an IP address for 24 hours. At the end of this arbitrary tenure, we consider
that the IP address is linked to a new source.

Table 2. Honeypots statistics

HP1 HP2 HP3 HP4 HP5

IP addresses 13.677 23.061 25.458 32.229 23.861

Sources 17.644 31.740 22.938 43.887 33.640

Packets 2.847.243 9.678.783 9.434.139 10.299.219 10.706.896

Protocols 41 47 59 48 44

Countries 245 246 241 281 243

Table 2 shows that the honeypot geolocation has no impact on the cyber
attacks they faced. In fact, for all honeypots except HP4, the number of packets
and the number sources are similar. This phenomena is true for all protocols.The
number of different protocols is almost invariant for all honeypots. After analysis,
the most prevalent intention is control.

In Figure 3 the locations of honeypots are specified as well as the proportion
of intentions by the attackers. As shown, all honeypots follow the same pattern
with a similar proportion of malicious intentions.

Figure 4.2 represents the number of messages sent by the 100 most present
sources and received by each honeypot. As previously mentioned, the honeypot



location has no impact on the data gathered. However, we observe that the
intentions of HP1 are significantly below the others.The results obtained for
HP1 can be explained by the fact that the server stopped working after 10 days.
This was discovered by analysing the PCAP files saved on the server.

Figure 4.2 represents the number of messages by intention received by each
honeypot. As shown, the data obtained for HP3 is also dissimilar to HP2, HP4
and HP5. By analysing the intentions of the attacker using the model presented
it was also possible to detect an anomaly in the services of HP3 during the
acquisition period. Numerous systems and system administrators are unable to
consider all the logs due to tremendous amounts generated, moreover, it takes an
average of 206 days to detect a cyber-attack on a system [33]. However, through
the model presented, and by considering the attacker’s intention, it is possible
to tremendously reduce the detection of an anomaly in both the services, and
the network.
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Fig. 4. Number of messages for the 100 most communicating sources

Rule 1 is to reduce the number of elements analysed in the experiment. To
this end, different values for the aggregation over time were used: 1 minute,
10 minutes, 1 hour and 1 day.

Table 3 shows the differences between the original data and the simplified
graph. The simplification process produces a graph with 20 times less messages
using 1 minute for time aggregation. This result shows that the graph produced
by taking into account intentions reduces the amount of data to analyse while
using a small period of time for the aggregation.
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Table 3. Simplification process

Original data ∆t = 1D ∆t = 1H ∆t = 10M ∆t = 1M

# messages 13 990 758 19 869 51 433 114 365 596 669

5 Conclusion

The exponential amount of data being transmitted over the networks and the
increasingly large number of connected devices make it difficult to detect abnor-
mal behaviour. Current research is oriented to the modelling of network flows
and detecting anomalies. However, these models and methods often forget hu-
man factors and the intention of the attacker. The model presented in this article
aims to improve human integration by profiling the human interaction during
and after an attack.

This paper also introduces an experiment validation using a set of honeypots
spread around the world collected a large amount of raw network data in order
to create a dataset for the validation of the graph model presented.

The results showed that the model allows for quick anomaly detection, such
as the unavailable services by analysing the attackers intention. Using current
tools, it takes an average of 206 days to detect a network breach. The model
presented allows to reduce this dramatically by analysing the intention of the
attacker. The model can also help identify misconfigurations and service failures
as presented in the case study for Honeypot 3.

A simplification process is applied to the model showing that the data to
analyse can be reduced by 20 % without losing in accuracy. Furthermore, we plan
to study and design new representations based on the model in order to show



more hidden patterns. Finally, all the data collected will be freely available online
to benefit the scientific community. The method will also be tested on additional
datasets extracted from industrial networks and Cyber Physical Systems.
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