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y b0 � b1x1 � b2x2 � b12x1x2 � b11x
2
1 � b22x

2
2 �1�

where y, predicted yield; b0, intercept; b1, b2, linear coef®cients;
b11, b22, quadratic coef®cients.

Evaluation of this surface indicates where optimum condi
tions exist within the experimental area covered, or in what
direction further experiments are necessary to achieve better
results.

STATGRAPHIC, version 4.0, was used for the regression analysis
of the experimental data obtained. The signi®cance of the re
gression coef®cients was tested by a Student t test. This test,
based on the hypothesis that the true parameter is zero, was
employed in the multiple regression to elucidate the signi®cance
of the factors. If the t value is greater than t1)a, k for a signi®cant
level a, with k degree of freedom, the term contributes a signi
®cant effect to the response.

The levels of signi®cance were given as � � � P < 0:01,
�� P < 0:05, and � P < 0:10. The quality of the ®t of the
polynomial model equation was expressed by the coef®cient of
determination R2 and its statistical signi®cance was determined
by a Fisher F test. Differentiation calculation was then employed
for predicting the optimum point.

Results and Discussion

The ®rst step in the process of seeking optimum condi-

tions is to identify the input variables that have the

greatest in¯uence on the response. From preliminary

experiments (data not shown) made in order to examine

the effects of different medium components on the xy-

lanase production, we chose the three factors which

played the most important role in the xylanase synthesis.

These were the concentrations of oat spelt xylan, casein

hydrolysate and NH4Cl.

In another study, a series of experiments to determine

the ranges of concentrations of the three nutrients was

conducted by using the `one factor at a time' method. The

results shown in Figure 1 indicate that the optimum for

xylanase synthesis should be near the following con-

centrations (g/l): oat spelt xylan 5; casein 1.5; NH4Cl 0.8.

Xylanase activities were determined after 30, 48 and 72 h

of incubation.

Phase 1 23 FFD Experiment

The application of the Box Wilson method with three

factors at two levels involves eight combinations. Xyla-

nase yields were determined after 30 h, 48 h and 72 h of

incubation. Because the results obtained after 48 h and

72 h did not markedly differ from 30 h, they are not

presented here. Table 1 shows the values of variables at

different levels of the FFD.

The experimental design and the results of the FFD

are illustrated in Table 2.

The values of the regression coef®cients were calcu-

lated and an equation of the ®rst order (equation 2) can

be written:

CaCl2á2H2O 0.1, ZnCl2 0.1, CuCl2á2H2O 0.025, H3BO3 0.01,
Na2MoO4á2H2O 0.024, NaCl 1.0, NiCl2á6H2O 0.12, Na2SeO3á
5H2O 0.026; the vitamin solution contained (in mg l)1) biotin 2,
folic acid 2.0, pyridoxine HCl 10.0, thiamine HCl 5.0, ribo¯avin
5.0, nicotinic acid 5.0, DL calcium panthotenate 5.0, vitamin B12

0.1, p aminobenzoic acid 5.0, lipoic acid 5.0. All experiments
were repeated in triplicate. The pH of the medium was adjusted
to 7.3 with 1M NaOH prior to autoclaving (121 °C, 15 min). In
ocula were grown for 18 h at 50 °C, 250 rev/min on the same
medium as in shake ¯ask cultures except for xylan, casein and
NH4Cl concentrations which were 5, 1.5 and 0.8 g/l, respec
tively. Aliquots of 50 ml of enzyme production medium were
placed in 250 ml conical ¯asks and seeded with inoculum to an
initial concentration of about 3 ´ 106 bacteria/ml. The experi
ments were carried out in a water bath with a magnetic agitator
at 50 °C and 250 rev/min.

Analytical Methods
Growth was monitored by measuring the optical density of the
culture at 660 nm in a glass chamber 2 mm thick using an
Hitachi U 2000 Spectrophotometer. A `Petit SalumbeÂni' haemo
cytometer was used for direct cell counting. The number of cells
per grid square was counted using a microscope ( ́  400 mag
ni®cation). The cultures were centrifuged at 14,000 rev/min for
15 min at 17 °C and the supernatant ¯uids were stored at 18 °C
until assay. Reducing sugars were determined according to the
DNS method (Miller 1959).

Enzyme Assay
In this study, `xylanase' refers to the total enzymatic activity
present in the culture ®ltrate that contributes to the release of
reducing sugars from puri®ed birchwood xylan. b Xylanase was
assayed as described by the method of Bailey et al. (1992) using
1% birchwood xylan (Sigma, lot 113H0900) as substrate. The
enzyme activities were determined at 60 °C and pH 5.8 using
Britton Robinson universal buffer. Xylanase was expressed in
nkatal (1 nkat is the amount of enzyme that can catalyse the
release of 1 nmol of product in 1 s under speci®ed conditions).
Overall cellulolytic activity was assayed as Filter Paper Units
(FPase) and endocellulase activity was assayed as carboxy
methylcellulase (CMCase) according to the IUPAC standard
instruction (Ghose et al. 1987) using ®lter paper (Whatman No. 1)
and carboxymethylcellulose.

Experimental Design
Full Factorial Design (FFD). In the ®rst phase, a FFD was used to
approach the optimal region. It is known that the FFD method
estimates the main effects of factors and their interactions si
multaneously (Khuri & Cornell 1987). In addition, FFD is ef®
cient in determining the path of steepest ascent to approach the
neighborhood of the optimum response. It is therefore particu
larly adapted to the initial stages. For a 23 FFD with three factors
at two levels, eight experimental runs are required.

Central Composite Design (CCD). The CCD for investigating a
number (k) of factors consists of two parts: (1) a basic two level
(2k) factorial design from which linear and interaction effects can
be determined; (2) an interposed secondary arrangement of a
centre with 2k extended points provides the necessary infor
mation for estimating curvilinear effects.

Upon completion of the experiments, a second order equa
tion is then ®tted to the data by a standard multiple regression
procedure. This results in an empirical model which relates the
response measured to the independent factors of the experi
ment. For a two factor system the model is (equation 1):



y � 941:34ÿ 829:54x1 � 186:21x2 � 43:21x3

ÿ 88:11x1x2 ÿ 60:91x1x3 � 4:73x2x3 �2�
Analysis of variance (ANOVAANOVA) in Table 3 showed that

xylan and casein hydrolysate proved to be the two most

important components of the medium for xylanase for-

mation. Although the coef®cient b3 for NH4Cl was not

signi®cantly different from zero (a� 0.05), it was not

omitted from this model in order to avoid overlooking a

factor that could be important. The factors xylan and

casein hydrolysate were found to be signi®cant at the

probability level of a� 0.05. Increasing or decreasing the

concentrations of the respective factors, according to the

signs of its main effects, should have a positive conse-

quence for the formation of xylanase by Bacillus sp. I-

1018. The coef®cient of determination R2 of the model

was calculated to be 0.99. This indicates that the model

explains 99% of the variability in the data. The statistical

signi®cance of the model equation was also con®rmed by

an F-test, which was 129.02. The model was found to be

adequate to the data at a probability level of a� 0.05.

Phase 2 the Path of Steepest Ascent

Based on the ®rst-order model equation obtained, the

path of steepest ascent was determined to ®nd the proper

direction of changing variables: decreasing the concen-

tration of xylan and increasing the concentration of

Figure 1. The effect of different concentrations of three medium

components on xylanase production.

Table 1. Concentration of variables at different levels of the FFD.

Factors (g/l) Xylan (x1) Casein (x2) NH4Cl (x3)

Lower level ( 1) 2.5 1 0.3

Base level (0) 5 1.5 0.8

Upper level (+1) 7.5 2 1.3

Table 2. Experimental design and results of the FFD.

Trial Code level XA (nkat/ml)

x1 x2 x3 Observed Predicted

1 1 1 1 1428 1397.2

2 1 1 1 5.3 36.1

3 1 1 1 1905.5 1936.34

4 1 1 1 253.7 222.86

5 1 1 1 1565.1 1595.94

6 1 1 1 22.1 8.73

7 1 1 1 2184.9 2154.1

8 1 1 1 166.1 196.9

9 0 0 0 925.4 941.3

10 0 0 0 942.6 941.3

11 0 0 0 938.4 941.3

Table 3. Results of the regression analysis of the FFD.

Term Coef®cient t value Signi®cance level

Intercept 947.33 30.52 0.0208**

x1 829.54 26.9 0.0237**

x2 186.21 6.04 0.1045*

x3 43.21 1.40 0.3946

x1x2 88.11 2.85 0.2143

x1x3 60.91 1.97 0.2983

x2x3 4.73 0.15 0.9030

R2 = 0.9987; R2 (adj. for d.f) = 0.9910; F ratio = 129.024.



casein to improve xylanase yield. The concentration of

NH4Cl was ®xed at 0.8 g/l. Table 4 illustrates how the

new variables should be oriented.

The design of the experiment of ascent illustrated in

Table 4 showed that xylan was decreased serially by 0.5

g/l, casein increased by 0.1 g/l. It is clearly seen that the

yield plateau has been reached at medium 5. This med-

ium was chosen for the experiments described below.

Phase 3 Central Composite Design Experiment

As seen above, by determining the path of steepest as-

cent, the neighbourhood of the optimum response seems

to be approached. The optimal concentration of media

components was determined using a CCD with the two

variable carbon and nitrogen sources. The levels of the

two variable factors and experimental results are pre-

sented in Table 5. The ®tted equation for estimation of

xylanase yield had the following form:

y � 2388:04� 133:67x1 � 114:7x2 � 4:23x1x2

ÿ 206:39x2
1 ÿ 143:55x2

2 �3�

From equation (3), it was shown that the signs of b11 and

b22 were both negative, so the parabola would be open

downward (and suggested to have a maximum point).

The coef®cient b12 was found not to be signi®cantly dif-

ferent from zero at a signi®cance level of a� 0.05

(Table 6); nevertheless, this coef®cient was not dismissed

as unnecessary in the regression equation, since there

was no reason for making the hypothesis b12� 0.

We then had to determine the model adequacy. First,

the statistical signi®cance of the models was determined

by the F-test. The test was made by the comparison of

two variances: the pure error variance s2
p and the lack of

®t variance s2
lf. After calculation of these values, we ob-

tained for the ratio F � s2
p=s2

lf the value F � 24:97. Since

this value was more than the critical value of F at the

level of 0.05, F0:05�5,7� � 3:97, the obtained model was

adequate.

The results of the regression analysis are shown in

Table 6.

Second, the goodness of ®t of the polynomial model

was given by the coef®cient of determination R2 (ad-

justed for df), which was calculated to be 0.91, indicating

that 91% of the variability in the response could be ex-

plained by the model. This indicates that equation (3)

provided a suitable model for the response surface of the

experiment of enzyme production. Figure 2 shows a

three-dimensional diagram of the calculated response

surface. It is recon®rmed that the ®tted surface has a true

maximum. This can also be seen in Figure 3, where the

model equation is shown as a surface plot. The contour

plot of the same equation shows a rather broad plateau

region in which the activities change relatively little

when the nutrient concentrations are varied. This indi-

cated that the optimal solution can accommodate small

errors or variability in the experimental factors.

From equations derived by differentiation of equation

(3), we can obtain the maximum point of the model,

which was 3.16 g of xylan/l; 1.94 g of casein/l. The

model predicted a maximum response of 2.433.1 nkat/ml

for this point. To con®rm the results, experimental re-

checking was done by shake ¯ask experiments using a

medium representing this maximum point and a value of

2.401.2 � 146.2 nkat/ml)1 (N � 3) was obtained. The

good correlation between these two results veri®es the

Table 4. Design of experiments to obtain the ascent and

corresponding xylanase yields.

Maximum

number

x1 x2 XA

(nkat/ml)

1 5 1.5 1004

2 4.5 1.6 1254

3 4 1.7 1570

4 3.5 1.8 2103

5 3 1.9 2380

6 2.5 2.0 1992

7 2 2.1 99

Table 5. Second-order central composite design and experi-

mental results.

Run No. Xylan

(g/l (x1))

Casein

(g/l (x2))

XA (nkat/ml)

Observed Predicted

1 2.5 ( 1) 1.8 ( 1) 1756.5 1793.9

2 3.5 (+1) 1.8 ( 1) 2061.8 2052.8

3 2.5 ( 1) 2.0 (+1) 1992.5 2014.9

4 3.5 (+1) 2.0 (+1) 2314.7 2290.7

5 2.3 ( 1.414) 1.9 (0) 1825.9 1786.4

6 3.7 (+1.414) 1.9 (0) 2138.3 2164.4

7 3 (0) 1.75 ( 1.414) 1956.2 1938.8

8 3 (0) 2.05 (+1.414) 2259.3 2263.2

9 3 (0) 1.9 (0) 2441 2388.0

10 3 (0) 1.9 (0) 2325 2388.0

11 3 (0) 1.9 (0) 2517 2388.0

12 3 (0) 1.9 (0) 2341 2388.0

13 3 (0) 1.9 (0) 2315 2388.0

Table 6. Analysis of variance for the full regression of CCD.

Term Coef®cient t value Signi®cance level

Intercept 2388.04 74.55 0.0000***

x1 133.67 5.27 0.0012***

x2 114.70 4.53 0.0027***

x1x2 4.23 0.12 0.91

x2
1 206.39 7.59 0.0001***

x2
2 143.55 5.28 0.0011***



validity of the response model and the existence of an

optimal point. The crude xylanase in the culture ®ltrate

produced on xylan was analysed for xylanolytic and

other enzyme activities and soluble protein (Table 7).

No cellulase activity was detectable which makes this

organism desirable for application in biobleaching.

In the conventional medium proposed by the Pasteur

Institute, the carbon source was oat spelt xylan, the

nitrogen sources were yeast extract and NH4Cl. In a

preliminary study we searched for the best carbon and

nitrogen sources, which appeared to be, respectively, oat

spelt xylan and casein hydrolysate; NH4Cl was found to

be necessary. Statistical methods for medium optimiza-

tion proved to be a powerful and useful tool for bio-

technology. Xylanase production by Bacillus sp. I-1018

could be increased by 135% when the strain was grown

on the medium that was developed by means of sta-

tistical design compared with conventional medium

composition obtained from the common `one-factor-at-a-

time' method. Indeed, for the medium we proposed the

Figure 2. Surface plot of the central composite

design experiment.

Figure 3. Contour plot of the calculated response surface.



concentration of the important components were opti-

mized: they were all decreased especially the xylan

concentration reduced from 5 to 3.16 g/l. This is inter-

esting from an economic point of view when considering

the price of this substrate.

Since bacilli are aerobic organisms, the next step for

enhancing xylanase production should be the study of

aeration conditions in bioreactors with the proposed

medium.
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Table 7. Properties and other enzyme activities of xylanase

produced by Bacillus sp. I-1018 on xylan.

b Xylanase 2,300 2,500 nkat/ml

CMC ase Not detectable

FPase Not detectable

Soluble protein 127.2 mg/l

Reducing sugars 0.04 g/l

Speci®c xylanase activity Approximately

18867 nkat/mg protein




