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Abstract We report the results of an experimental investigation of the transition to turbu-
lence of Poiseuille flow in a long pipe. Our findings confirm that the recently
established scaling law for the finite amplitude perturbation required to cause
transition is �������. New results are presented concerning the decay of dis-
turbances injected into the flow field at values of �� where the flow is known
to be globally stable. Exponential decay and critical behaviour is observed and
these are consistent with observations in other shear flows. This new approach
has enabled us to uncover a sharp cut off at the lower limit of the stability thresh-
old.

The origins of turbulence in the flow along a circular pipe has intrigued
scientists for more than one hundred and twenty years since Reynolds’s [1]
landmark experimental investigations. Mathematically, the flow is linearly sta-
ble [2] so that laminar flow ought to be observed for all flow rates. In practice,
however, pipe flows are typically observed to be turbulent even at modest flow
rates. Hence there is a direct conflict between theory and observation. Under-
standing this enigma has been one of the outstanding challenges of hydrody-
namic stability for more than a century. Reynolds also showed that if distur-
bances at the inlet to the pipe are minimized, laminar flow can be maintained to
higher flow rates than if they are not. Kelvin [3] proposed that finite amplitude
perturbations are most likely to be responsible for triggering the transition to
turbulence. The finite amplitude nature of the transition process was confirmed
in the experiments of Pfenniger [4] who managed to obtain laminar flows up
Reynolds numbers of �� � ���� ��� by taking extraordinary care to control



external influences (�� � ��
�

where � is the peak velocity, � is the pipe radius
and � the kinematic viscosity of the fluid.)

The issue of transition to turbulence in pipe flow is not only of deep sci-
entific interest, it is also of significant engineering importance. Transitional
flows necessarily involve large pressure variations since the pressure gradient
required to drive laminar and turbulent flows may differ by an order of magni-
tude. Thus flows in oil and gas pipelines are often run inefficiently turbulent
to avoid the large pressure fluctuations found in the transitional regime. In ad-
dition, the control of turbulence is a dream of many practitioners, just as an
understanding of turbulence is the desire of many scientists.

Linear stability of the flow means that infinitesimal disturbances added to
Poiseuille flow will decay as they propagate along the pipe and laminar flow
will be recovered downstream. Available experimental evidence from Reynolds
and Pfenniger suggests that the influence of such disturbances is likely to be-
come more important as ��, increases. A mathematical statement [5] of these
facts is provided by: if � � ����� denotes the minimal amplitude of all finite
perturbations that can trigger transition, and if � scales with �� according to

� � ������ ���

as����, then what is the exponent �? A negative value of � will be consis-
tent with the observations and one substantially less than zero would indicate
that the sensitivity of the laminar flow to perturbations increases rapidly with
��. An outstanding problem is relating this theoretical concept to observation
in a quantitative manner. Now, we review some recent experimental evidence
which suggests that it is beneficial to consider the problem in this way. We will
focus on the issues associated with the stability of fully developed Poiseuille
flow. Hence we will not discuss the important practical problem of developing
or entrance flow which can feature linear instability (see da Silva and Moss [8]
for a review of this problem).

In general terms, pipe flow may be considered as a nonlinear dynamical sys-
tem 	�
	� � ���� ��� which represents the Navier Stokes equations subject
to appropriate forcing and boundary conditions. The single control parameter
�� determines the dynamical state of the system such that there is one linearly
stable fixed point, Poiseuille flow, for all �� and another attractor, turbulence,
when ��  ���. Hence when �� � ��� all initial conditions are attracted to
the laminar state which is the global attractor for the system. When ��� ���
nearly all initial conditions give rise to turbulence so that the laminar state is
now a local attractor. In practice, ��� � ���� so that all disturbances will
decay as ��� for values of �� smaller than this.

Experimental evidence [10] has shown that when �� � ����, small am-
plitude perturbations introduced into fully developed Poiseuille flow decay as



they travel downstream i.e. when �� � ���� all perturbations decay and
turbulent flow cannot be maintained. On the other hand, perturbations of suf-
ficient amplitude give rise to transition to the nontrivial state of turbulence. At
these values of �� the turbulence is localised and has the form of a turbulent
‘puff’ [6]. A finite amplitude threshold therefore exists, below which laminar
flow is maintained and above which turbulence sets in. The boundary is not
sharp but is probabilistic in nature [22]. Nevertheless, a definite demarcation
can be established between perturbations which give rise to transition and those
which do not.

A threshold curve was established by Darbyshire and Mullin [10] as a func-
tion of �� using a constant mass flux experiment with impulsive perturbations.
It was found that the the amplitude of perturbation required to cause transition
reduced when �� was increased from 1750 and became independent of �� for
�� � ����. In a more recent investigation [14] a novel type of perturbation
was used to uncover a scaling relationship for the amplitude of perturbation
required to cause transition to turbulence. The novel feature of the perturba-
tion is that it allowed for a separation of amplitude and timescales by injecting
a boxcar distribution of perturbed fluid into the main flow field. It was firmly
established that the important criterion was the length of the flow field which
was perturbed and this enabled the uncovering of a ������� scaling law for
the amplitude of perturbation required to cause transition over a wide range
of ��. Some evidence for such scaling laws has been reported previously for
boundary layers [23], pipe flows [7] and has also been found for plane Couette
flows [20].

One surprising consequence of this finding is that the absolute amplitude of
the perturbation remains relatively large with increasing ��. Therefore, theo-
ries based on local analyses of the trivial state may not provide much insight
into transition since the basin of attraction of the laminar state remains finite
even at modest ��. This appears to contradict many observations which show
that very small amplitude disturbances are required to promote turbulence at
high ��. However, most of these are concerned with the entrance or develop-
ing flow which is linearly unstable [8] whereas fully developed flow is not. In
summary, the fully developed flow always requires a finite amplitude distur-
bance to cause transition.

When drawing a connection between experimental observations and theory,
the difficult issue of what is meant by a perturbation must be addressed. In
models, the temporal and spatial form of any perturbation can be accurately
specified. On the other hand, experimentalists rely on injecting and or sub-
tracting fluid through slits or holes in an attempt to mimic the mathematical
process. The perturbation can be either periodic [7, 9] or impulsive [10] but
specifying a form which can be directly related to theory is difficult. Indeed,



identifying the part of the physical perturbation which initiates the transition
process is in itself a difficult exercise although progress is being made [9].
Moreover, the robust scaling law uncovered by Hof et al. [14] also shows that
self consistency can be found.

Modern theoretical research may be broadly split into two approaches. In
one, initially small disturbances on the laminar state grow in a transient phase
[17, 21] until they reach a sufficiently large amplitude so that nonlinear ef-
fects become important. These ideas have been explored for various low–
dimensional models [13] and applied to plane Poiseuille flow [16, 15] and scal-
ing laws for the amplitude of the perturbation as a function of �� have been
provided. An alternative point of view [5] is that the turbulent state originates
from instabilities of a finite amplitude solution which is disconnected from the
base state. The basin of attraction of the turbulent state grows with �� so that
any small perturbation will kick the laminar solution towards it. Such solutions
of the Navier Stokes equations are known to exist other flows [19, 20, 18] and
more recently they have been shown to exist in Poiseuille flows [24, 25]. Their
lower limits of existence are almost a factor two below the range of �� where
turbulence can be established but recent experimental evidence [27] suggests
that they may play a role in observed turbulent structures. The stability of these
new solutions and their role in transition are both currently open questions.

The ������� scaling law discussed above raises an interesting issue. The
perturbation amplitude is normalized by the mass flux of the mean flow and
thus is effectively scaled by ��. The dimensional perturbation amplitude
is hence independent of �� which suggests that, in principle, the flow can
be destabilized for any value of �� provided the perturbation disturbs suffi-
cient length of the flow field. It is known that the flow is globally stable for
�� � ���� and hence there is inconsistency between these new results [14]
and well established facts. Here we report the observations of a new experi-
mental investigation where we study the processes whereby injected perturba-
tions decay for �� � ���� and show that there is a surprisingly sharp cut-off
in the threshold curve.

1. Experimental details

The experimental system can be regarded as a large hypodermic syringe
where a piston pulls water at a fixed mass flux along a 15.7 metre ‘needle’. A
schematic diagram of the apparatus is shown in figure 1. The pipe consisted
of a � � �� � ���� �� diameter Perspex tube which was constructed using
150 �� long machined sections push-fitted together and butted flush so that
there was no measurable gap between each join. The sections were held on



on a steel base with a total length of 15.7 � (�	��) and were aligned using a
laser.
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Figure 1. Schematic of the constant mass flux pipe facility

A reservoir with a capacity of approximately 100 liters was connected to
the pipe entrance via a smooth trumpet shaped inlet. This device ensures a
laminar flow over the whole �� range investigated for a flow which was ini-
tially disturbance free. The maximum flow rate achievable corresponded to
�� � ��� ��� and laminar flow could be achieved with care. On the other
hand a sharp cornered inlet induced transition spontaneously at a �� � ����.

The fluid was pulled through the pipe by a cylindrical machined steel piston
of length 1.033 � and 0.260 � diameter. The expansion aspect ratio between
the piston and the pipe was 13 and a smooth trumpet joint was again used. The
piston was pulled by a lead screw and nut arrangement. This was powered by
d.c. motor which was computer controlled allowing the speed to be varied as
a function of time to within an accuracy of 1%. Hence, even if the fluid in the
pipe became turbulent, the mass flux pulled through the pipe was unaffected
so that the �� remained constant.
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Figure 2. (a) Schematic of the disturbance generator. (b) Typical trace of the perturbation.
(c) Inlet manifold of six jet disturbance



The long term temperature stability of the laboratory was set at �� � � oC
using several air-conditioning units which were located adjacent to the pipe.
The largest temperature gradient recorded from several �–type thermocouple
along the pipe was 0.3oC which corresponded to a variation in �� of ��� at
�� � ����.

Two types of experiments were performed. In the first, fully developed lami-
nar flow [12] was established over the�� range investigated and the stability of
the flow was probed using a perturbation which was applied at 285 pipe diame-
ters from the pipe entrance. When turbulent flow (in the form of puffs,slugs etc)
was observed at the end of the pipe transition was deemed to have occurred. In
the second, a well defined perturbation was injected into fully developed flow
and the evolution of the disturbance was observed as it progressed downstream.

In both sets of experiments the perturbation was provided by a single box-
car pulse of fluid which was injected tangentially into the flow via a ring of six
equally spaced 0.5 �� holes as shown in figure 2(c). The valves which con-
trol the fluid injection had switching times of approximately 1 �� are shown
schematically in figure 2(a). A typical pressure trace of the perturbation is
shown figure 2(b). The injection system enabled variation of both the duration
( � � 
� � �� �) and the amplitude (� � ���� � � ��
�) of the pertur-
bation. The displaced volume ���� from the injector is used in our definition
of the amplitude � of the perturbation. The quantities of fluid injected can be
the range 0.0001 to 0.2% of the total mass flux where the larger values were
required to cause transition at smaller ��. The duration of the injection set the
spatial extent of the disturbed flow (�� � 
� � � in pipe diameters) since it
initially travel with the mean speed � of the flow in the pipe. The relative vol-
ume flux ����
����	 is used to define the amplitude of the perturbation �. In
principle, the perturbation will affect the flow field globally but previous tests
using both injection and suction [10] showed that it is localized in practice.

The flow state was monitored using flow visualization where a small amount
of Mearlmaid Pearlessence material was added to the water. The suspended
particles were anisotropic in shape and had the form of� ����� �� platelets.
They reflected the incident light from a� ��� vertical light-sheet which was
formed all along the pipe. The light-sheet was switched on and off sequentially
to reduce heating effects. A photograph of a typical turbulent puff is given in
figure 3.

The design of the experiment was such that it ran in single shot mode. Tran-
sients at both the beginning and the end of each run were approximately 10 �
long and these were independent of ��. A typical useful experimental time
was half an hour at �� � ����. After each run of the experiment, the fluid
was pushed back through the pipe into the reservoir and allowed to settle for a
period of at least 30 minutes before the next run was started. This period was



Figure 3. A typical puff at �� � ����

chosen empirically on the basis of observations of the fluid in the tank and it
was also found to be the minimum time required to give repeatable results.

In the second set of experiments on the evolution of disturbances, it occa-
sionally proved possible to obtain results from several sequential experimental
runs. This helped improve the statistics of the measured distributions.

2. Results

Finite Amplitude Stability Curve

As discussed in the introduction, Hof et al. [14] developed an injection
system which permits the amplitude and width of the perturbation to be varied
independently. This helped uncover a scaling law which indicates that the
amplitude of perturbation required to cause transition scales as�

�
����

�
. One

interpretation of this result is that it reflects the balance between viscous and
inertia terms in the Navier Stokes equations. The amplitude of perturbation
required to cause transition was smallest when �� � �� and independent
of �� for values of �� greater than this. All of the new estimates for the
stability threshold have been obtained with �� � ��. We have added these
new estimates to the previous results and a compilation of both sets is presented
in figure 4(a). In general, there is very good agreement between both sets and
a �

�
����

�
scaling law for the amplitude of perturbation required to cause

transition has been confirmed.

The amplitude � of the perturbation in figure 4(a) is made non-dimensional
by dividing by the mass flux of the main flow. Hence it is effectively scaled
by ��. If the data is now plotted in dimensional form as in figure 4(b) it
can be seen that ���� is almost independent of �� and only departs from a
constant level for �� � ����. In fact, the departure is not as great as one
might expect. All experimental evidence suggests that the flow is globally
stable for �� � ���� so that one might anticipate that ���� � � rapidly
when �� � ����. In practice, injecting large amplitude disturbances gave rise
to wide variations in estimates of the critical points and so a new strategy was
adopted. This was based on the observation that most disturbances injected
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Figure 4. Plots of the stability threshold � versus ��. Laminar flow was found below the
line and turbulence above when perturbations of the given amplitudes were injected. (a) Log/log
plot where the slope of the fitted line is��. (b) Dimensional plot using the same data as in (a).

into the flow when �� � ���� decayed as they moved downstream. It is this
process that we will focus on in the next section.

Decay of Injected Disturbances

The investigation was carried out by injecting well defined perturbations
into fully developed Poiseuille flow (�	�� from the entrance) and observing
their development downstream. The values of �� investigated were such that
the final state far downstream was, typically, laminar flow. At a given ��, the
disturbed flow was localized and traveled along close to the mean speed of
the flow. In the first ���� the perturbation evolved in a complicated way as
discussed by Wygnanski and Champagne [6] and Darbyshire and Mullin [10].
Several light boxes suspended above the pipe provided a light sheet along the
length of the pipe and these were switched on and off sequentially to avoid
heating effects. This illumination allowed the observation of a patch of disor-
dered fluid as it traveled along and enabled an estimate to be made of position
at which the it decayed (measured in diameters � from the perturbation input).

The results presented in figure 5 are graphs of the probability of observing a
localized disturbed region of flow, plotted as a function of distance downstream
in � from the point of injection (zero on the abscissa). The downstream limit
was set by the length of the pipe at ���� but this was not a severe limitation
since not many disturbances survived to this station in practice. The initial
conditions for the perturbation were �� � �� and the amplitudes used in figure
5(a) and 5(b) were � � ���� and � � ��� respectively. Between 40 and
100 independent experimental runs were performed for each value of �� in
order to obtain good statistics. The straight lines correspond to least squares
fits of exponentials � ��� � �� �	���, where � the rate of decay of the
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Figure 5. The probability of observing a localized region of disturbed flow plotted as a func-
tion of distance downstream from the point of injection. Data was accumulated from between
40 to 100 measurements for each of ��. The lines are least squares fits of exponentials. (a) The
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disturbed state. The quality of the fits indicate that the disturbed flow decays
exponentially to a reasonable approximation. In general, the slopes increase
as �� decreases i.e. there is faster decay at smaller ��. Such behaviour has
previously been observed by Bottin and Chate [11] in experiments on plane
Couette flow.
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Figure 7. Finite amplitude threshold curve � vs �� with data from transient experiments
included. (a) Log scale (b) Linear scale.

A useful measure that can be extracted from the exponential fits is time re-
quired for half the initial states to decay which is defined as � � ��� ��
�. We
will refer to this as the ‘half-life’ of a perturbation. Plots of the inverse of half-
life ��� versus �� are shown in figure 6 for the two perturbation amplitudes
used in the present series of experiments viz. � � ���� and � � ���. It may
be seen that ��� passes through zero at �	��� �� and ����� �� respectively.
At these critical values of �� the half-life � approaches infinity and the pertur-
bation does not decay but develops into a turbulent puff which persists. Hence
this gives a method for estimating the threshold for transition to turbulence
which is more accurate than the direct method of increasing the amplitude of
perturbation until a threshold is crossed as in the results section labeled (Finite
Amplitude Stability Curve) above.
This new method was used to obtain estimates of the stability threshold for
�� � ���� by setting the amplitude of the perturbation at a prescribed value
and observing transient behaviour for a range of �� as above. The new results
for the estimate of the threshold curve are presented together with the previous
ones in Figure 7. We have again chosen to show the results on both logarith-
mic (Figure 7(a)) and linear (Figure 7(b)) scales to emphasize different aspects.
There is clear consistency between the two sets of results which indicates that
both methods are valid ways of estimating the stability boundary. The new
estimates show clearly that the stability boundary rises almost vertically for
�� � ���� i.e. there is a sharp departure from the �

�
����

�
scaling law.

Hence maintaining disordered flow below �� � ���� is not possible since
perturbations over a wide range of amplitudes decay.



3. Conclusions

We have confirmed the previous results for the�
�
����

�
scaling law for the

amplitude of the perturbation required to cause transition in circular Poiseuille
flow over a range of ��. Moreover we have extended the results using the
transient decay of perturbations towards the lower values of ��. These new
findings have uncovered a surprisingly sharp cut off in �� below which turbu-
lence cannot be maintained. It has been suggested [26] that such behaviour is
consistent with the formation of a chaotic repellor and saddle in the solution
set but much more work is required before definite conclusions in this respect
can be made.
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