

Open Archive Toulouse Archive Ouverte

This is an author's version published in: http://oatao.univ-toulouse.fr/21342

To cite this version:

Petit, Sandrine and Deconchat, Marc and Delaby, Luc and Lescourret, Françoise La biodiversité, un atout pour l'agriculture: rétrospective sur une évolution progressive. (2018) In: L'Inra et le défi des relations agriculture-environnement, 22 November 2018 (Paris, France). (Unpublished)

L'Inra et le défi des relations agriculture-environnement

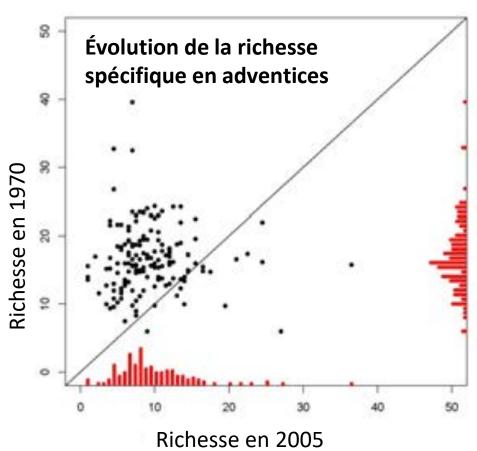
La biodiversité, un atout pour l'agriculture: rétrospective sur une évolution progressive

La Biodiversité dans les recherches de l'INRA: une évolution importante ces 20 dernières années

- Biodiversité sauvage = conservation: pas une question centrale à l'INRA, traitée à l'extérieur... quelques recherches sur la biodiversité des milieux semi-naturels des paysages agricoles ...
- Les espaces de production ont aussi une biodiversité sauvage; Renforcement en écologie des communautés, fonctionnelle, écologie du paysage; Expertise collective Agriculture et Biodiversité
- L'agroécologie

Plan de l'exposé

Un focus sur trois temps marquant l'évolution de la prise en compte de la biodiversité dans les recherches à l'INRA


- ☐ La Biodiversité sauvage des espaces de production en déclin
- -> Constat, causes et conséquences
- ☐ La Biodiversité porte des fonctions utiles en agriculture
- -> Caractérisation de la biodiversité et de ses fonctions
- ☐ La Biodiversité pilotée pour des services écosystémiques
- -> Intensification écologique, ingénierie agro-écologique

1. Causes et conséquences du déclin de la biodiversité des milieux cultivés

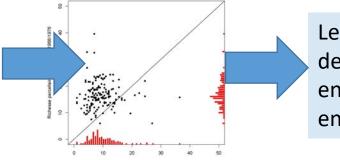
La Biodiversité des milieux cultivés devient une question de recherche

Le déclin de la flore adventice entre 1970 et 2005 en Bourgogne

158 parcelles

Richesse spécifique: - 42%

Abondance: - 67%


1. Causes et conséquences du déclin de la biodiversité des milieux cultivés

La Biodiversité des milieux cultivés devient une question de recherche

Le déclin de la flore adventice entre 1970 et 2005 en Bourgogne

Causes

Les changements de communautés reflètent l'évolution des pratiques agricoles

Conséquences

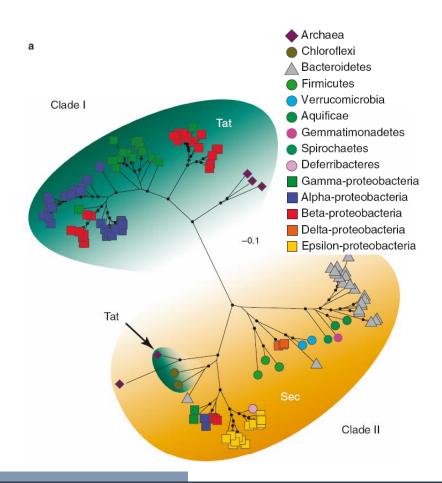
Les communautés deviennent de plus en plus homogènes entre elles

- Herbicides
- Rotation de cultures
- Régime de travail du sol

Perte de biodiversité fonctionnelle

2. Caractériser la biodiversité et ses fonctions en agriculture

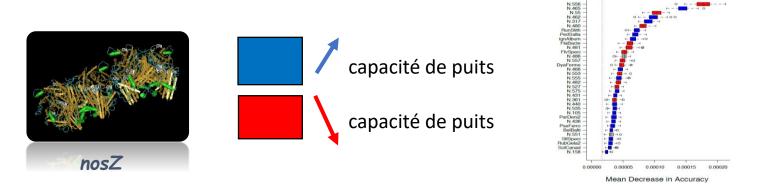
L'INRA s'investit dans la caractérisation de la biodiversité à la base de fonctions attendues en agriculture


- La biodiversité pour des fonctions clés en agriculture
- De la fonction aux bouquets de services

2. Des avancées dans la caractérisation de la Biodiversité

Investir dans la caractérisation de la biodiversité 'cachée'

Phylogénie des communautés bactériennes nosZ: clades NosZI et NosZII



2. Des avancées dans la caractérisation de la Biodiversité et de ses fonctions

Faire le lien entre biodiversité et fonction

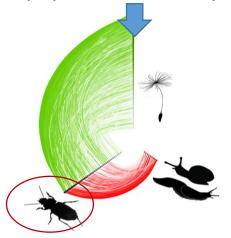
Phylogénie des bactéries et capacité de puits à N2O des sols

 Des unités taxonomiques reliées positivement ou négativement à la capacité de puits des sols pour N₂0

 Une capacité du sol à réduire le N₂O selon la diversité et l'abondance du niveau clade nosZII et de la proportion entre les différents types bactéries produisant du N₂O

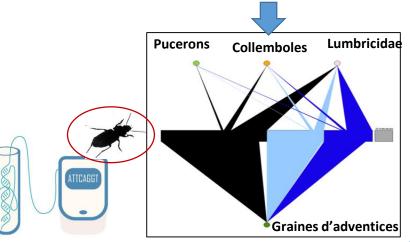
2. Des avancées dans la caractérisation des interactions biotiques

Les réseaux trophiques et la régulation biologique des bio-agresseurs La question des prédateurs généralistes ...



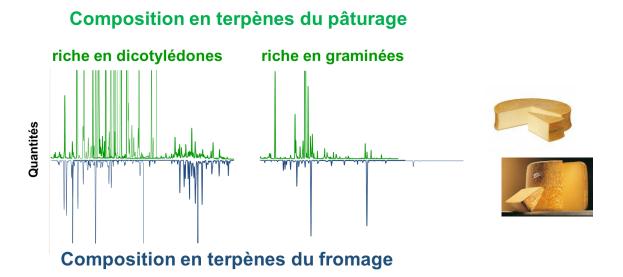
-> Adventices, Pucerons, Limaces, autres organismes non bio-agresseurs?

Larges dispositifs d'observation


Analyse de co-occurrence + règles sur 'qui peut consommer quoi'

Outils moléculaires

de contenu stomacal du prédateur



2. Caractériser la Biodiversité et ses fonctions en agriculture

Biodiversité végétale des prairies permanentes et qualité des fromages

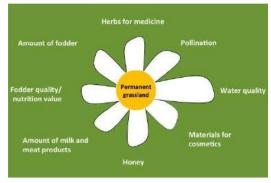
Une signature aromatique des prairies dans les fromages

- Augmentation des teneurs en oméga 3
- Transfert de métabolites secondaires des plantes au fromage...
- ... associé à un affinage lent et une grande richesse aromatique

2. Caractériser la Biodiversité et ses fonctions en agriculture

La prairie biodiverse fournit des bouquets de services

Quantité et qualité des fourrages Quantité et qualité des produits d'élevage Santé animale (diversité de métabolites)


> Pollinisation Habitat/refuge biodiversité

Régulation débit d'eau Qualité de l'eau Stockage carbone

Esthétique Randonnée ...

3. L'intensification écologique

- La biodiversité comme facteur de production
- Agronomie & Ecologie pour Agroécologie
- Mettre en œuvre des systèmes agroécologiques

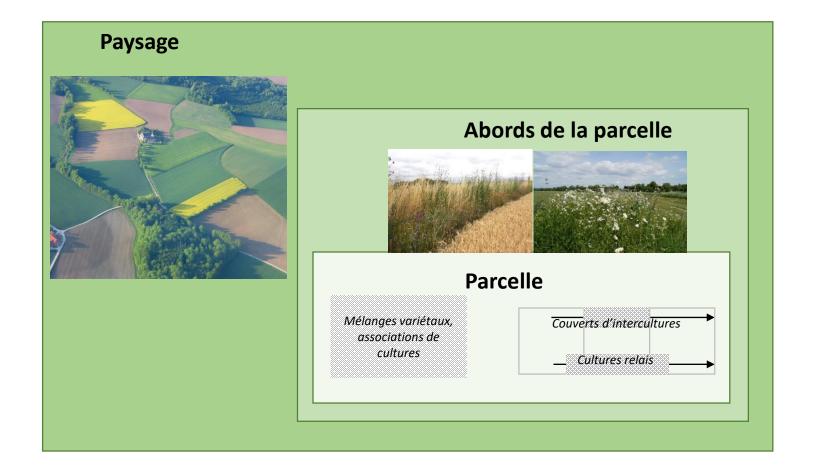
3. L'Intensification écologique

Les **mécanismes écologiques** sont vus comme des facteurs de production pour faire face aux besoins en termes de quantité et qualité de la production agricole, de la production d'autres services écosystémiques

Biodiversité faible

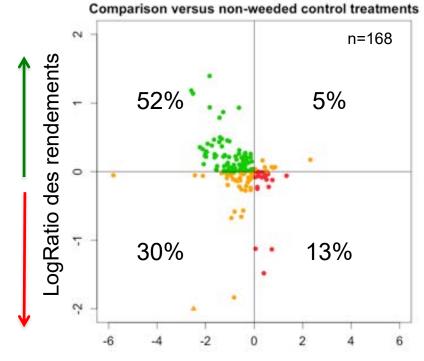
Gestion basée sur les intrants Externalités négatives

Gestion de la biodiversité planifiée (et indirectement de la biodiversité associée) Services écosystémiques (production, environnementaux)


Biodiversité élevée

3. Intensification écologique: leviers à de multiples échelles

Gérer la biodiversité planifiée (et ainsi favoriser la biodiversité associée)


3. Ingénierie agro-écologique: biodiversité planifiée dans la parcelle

Contrôle des adventices et production: les associations végétales

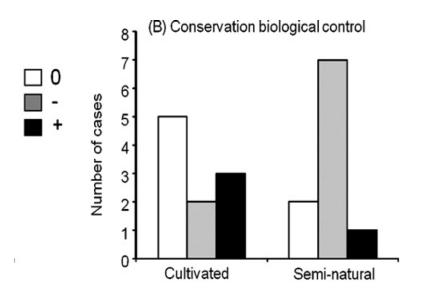
Gain de rendement dans l'association

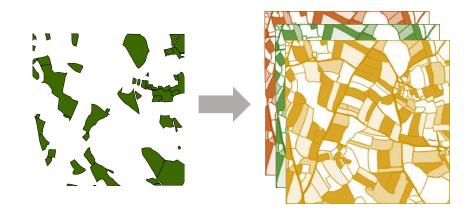
Perte de rendement dans l'association

LogRatio des biomasses d'adventices

Moins d'adventices dans l'association

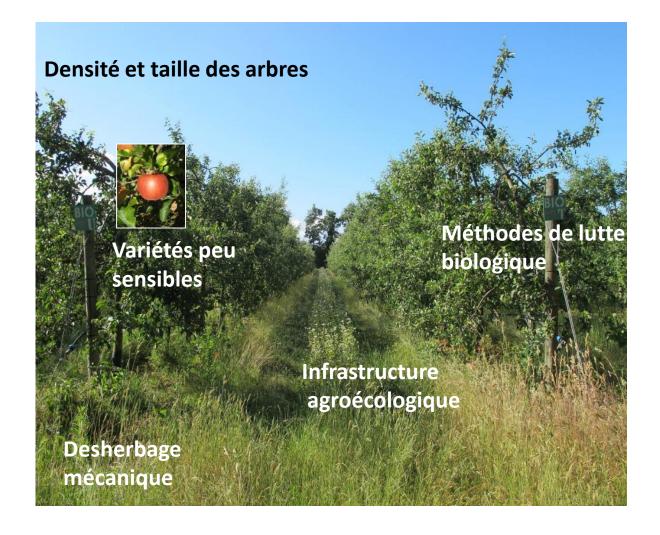
Plus d'adventices dans l'association




3. Intensification écologique: l'échelle du paysage

Contrôle biologique des ravageurs: effets des propriétés du paysage

Grande variabilité de réponses


Vers une description fonctionnelle des mosaïques agricoles

3. Ingénierie agro-écologique: mettre en œuvre une combinaison de leviers

Protection Intégrée en vergers

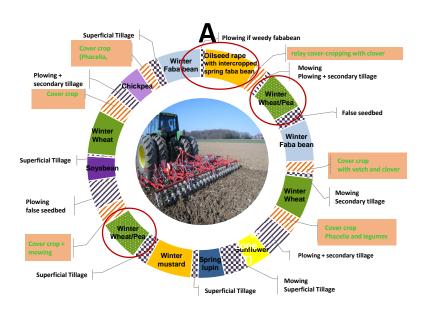
3. Ingénierie agro-écologique: combinaisons de leviers à l'échelle d'une exploitation

Mettre en œuvre des systèmes agroécologiques

Evaluer leur **performance et** étudier leur **fonctionnement agroécologique**: connaissances incomplètes, multitude d'interactions possibles -> fronts de science

Exemple: Plateforme CA-SYS co-designed agroecological system experiment

- Dispositif de 120 ha, approche systémique et expérimentations analytiques
- Systèmes en rupture, sans pesticides avec diversification spatiale et temporelle de la biodiversité planifiée à différentes échelles
- Ateliers de co-conception



3. Ingénierie agro-écologique: combinaisons de leviers à l'échelle d'une exploitation

Leviers: diversification de la biodiversité planifiée à différentes échelles

La parcelle

Nb couverts dans une rotation longue Association de cultures

Ex: Rotation de 12 ans sans apport d'azote

L'exploitation

Installation de biodiversité en bordure Agencement spatial des parcelles

Conclusion: contribution de l'INRA sur la biodiversité

- La biodiversité en lien avec la performance de systèmes agricoles
- Caractérisation de biodiversité y compris la biodiversité 'non emblématique', la caractérisation des interactions
- Cadre d'étude et approches intégrant agronomie et écologie à de multiples échelles
- La mise en œuvre de systèmes basés sur la biodiversité comme défi scientifique

Merci pour votre attention

Remerciements

David Bohan et collègues,
Stéphane Cordeau, Violaine Deytieux et collègues
Michel Duru et collègues,
Guillaume Fried et collègues;
Servane Lemauviel-Lavenant et collègues
Bruno Martin et collègues
Laurent Philippot et collègues
Ghislaine Simon et collègues
Andrea Veres, Claire Lavigne, Cyrille Conord

