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ABSTRACT. In this paper, we consider a simple search market extended from H. Varian’s 

(Amer. Econ. Rev., 1980) classical model and ask whether less informed sellers are able to 

learn such sophisticated price strategies in this framework. We therefore compare the choices 

made by adaptive sellers (reinforcement learning) to those made by Nash sellers. We confront 

the results of two types of learning models: individual learning (where sellers only observe 

their own price performance) and social learning (where sellers observe the pricing 

experiments of other sellers). In the case of individual learning, we show that although sellers 

are not able to learn the Nash price distribution, they are able to qualitatively mimic Nash 

predictions when buyers’ search information varies. In the case of social learning, first 

results suggest that the process is highly path dependent. Again, the choices made by adaptive 

sellers do not converge to the Nash equilibrium. In addition, some (but not all) qualitative 

properties are no longer preserved. 

KEYWORDS: imperfect information, Nash equilibrium, mixed strategies, reinforcement 

learning, individual and social learning 
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1. Introduction

Starting from (Stigler, 1969), an abundant literature has analyzed the 
consequences of imperfect and costly information on the structure and performance 
of decentralized markets. Recently, this approach has been applied to the debate on 
electronic markets (see e.g. (Brynjolfsson et al., 2000)) by questioning whether 
increasing information transparency in markets would necessarily improve market 
competition. More generally, two types of consumers (“informed” and 
“uninformed”) are usually distinguished according to the magnitude of their search 
costs. To compute the Nash equilibrium for the market game, one needs to assume 
common knowledge about the structure of the game and in particular about buyers’ 
search characteristics. From this knowledge, sellers can deduce their optimal pricing 
strategies. Assuming in addition common knowledge of rationality, they may deduce 
a Nash equilibrium. However, without the two previous assumptions, one should 
express worries about how a Nash equilibrium distribution can be computed or 
learned.1  

This paper tackles this issue and asks whether adaptive sellers learn to play a 
mixed Nash equilibrium. In this paper, we deliberately focus on sellers’ learning. 
That is, we consider that buyers’ behaviors are ruled by a simple and exogenously 
given rule which is fixed sample size search (cf. (Varian, 1980))2. In this context, the 
Nash equilibrium in mixed strategies is compared to the outcomes derived from 
Reinforcement Learning. We consider two types of learning: Individual Learning 
and Social Learning. Concerning Individual Learning, we briefly recall some results 
obtained under Individual Learning (Waldeck et al., 2006).3 This analysis reveals 
that sellers do not learn to play the Nash equilibrium in a strict sense. Rather, the key 
point is that when buyers’ search characteristics vary, the qualitative predictions of 
Nash equilibrium are remarkably preserved. This shows that two types of rather 
extreme rationality models may lead to the same predictions and that the Nash 
equilibrium concept, which is one of the core concept of economic theory in the last 
decades, still performs well to depict choices made by less rational sellers. 

Given these results, we consider in greater details the case with Social Learning. 
An extensive theoretical literature has considered the choices made by agents under 
social learning or social influences. In most of these models with pure informational 
externalities, agents need to make a choice based on the value of a state of nature. 
Hence, learning is about an unknown state of an event. Agents get a private signal 
about this state and try to infer from other agents’ choices/actions (public 
information) the true state of the nature in order to make an optimal choice (cf. e.g.

1 One should note that instrumental rationality can also be soften by considering Quantal 
Response Equilibria.
2 In a richer framework, buyers’ search behavior should be endogenous and limited rationality 
should also prevail on the buyer side (Kirman et al., 2001). But since the focus of the paper is 
the comparison between Nash and a learning model in a search market game, we take one of 
the earliest model treated in the literature (Varian, 1980) as a starting point.  
3 We develop here two specific cases and recall some earlier results in order to compare them 
to those obtained with social learning.
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the seminal paper of (Bikhchandani et al., 1992)). This literature examines under 
what conditions informational cascades may appear when agents are learning from 
each other (Gale, 1996). In pure models of informational externalities, agents 
influence each other when forming their beliefs but the actions taken by some agents 
do not directly influence the payoff of others. However, in our game theoretical 
framework, the actions taken by some agents directly affect the payoffs of other 
agents. In addition if agents can observe the price set by other players and the 
resulting profits, they could learn something from it. For these reasons, we 
considered an implementation of social learning closer to (Vriend, 2000). Using a 
Genetic Algorithm to compare Individual to Social Learning, (Vriend, 2000) shows 
how observing the strategies and payoffs of other players changes the market 
outcome in a standard Cournot game. The same issue has also been considered 
experimentally. In the same type of game (Cournot competition with or without 
product differentiation, extended to Bertrand competition with product 
differentiation), (Altavilla et al., forth.) reports how different information conditions 
in a market game may influence the behaviors of sellers and the final market 
outcome. The key finding is that providing full information to sellers about the 
profits and choices made by other sellers leads to a situation closer to the 
competitive equilibrium.   

Using a computational approach, our paper considers this issue on a search 
market and compares the qualitative and quantitative properties of Social Learning 
to those of Individual Learning and Nash. It highlights that under Social Learning, 
Nash qualitative properties are only preserved for some ranges of parameters. For 
other ranges, especially when the proportion of informed buyers is large, social 
learning generates path dependency and uniqueness of posted prices (no price 
dispersion). 

Section 2 presents briefly the model. Section 3 sums up the propositions deduced 
at Nash equilibrium. Section 4 tests whether these hypotheses still hold with 
adaptive sellers using individual learning. Section 5 tests the same hypotheses in the 
context of social learning. Section 6 discusses and concludes. 

2. The model4

The characteristics of the model inherit those of (Varian, 1980); we consider a 
posted price market on which S  sellers and B  buyers are operating. Each buyer 
wishes to buy a unit good at a maximum price of 0v > . With no loss of generality, 
let us assume that 100v = . A fraction a ( )0 1a< <  of these consumers is
informed. According to (Varian, 1980), these consumers visit the whole set of 
sellers (or equivalently know the lowest-price seller). We consider an extension of 

4 Due to lack of space, it is not possible to reproduce the description of the reinforcement 
learning process. This description is available at the URL http://e.darmon.free.fr/ffsmarket/. 
Results are obtained through numerical simulations. The program and the source code are 
available on request and are also available at the above address
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this model, where informed buyers sample randomly k ( )1 k S< ≤  sellers. The
remaining population (uninformed consumers) randomly selects one seller. 

Every seller produces at the same cost that will be normalized to 0. The choice of 
the reservation price and of the production cost has no impact and only alters the 
magnitude of agents’ payoffs. There is no capacity constraint. 

One simulation is a succession of T  market rounds5. Each round can be divided 
into three steps: 1) sellers set prices simultaneously; 2) buyers visit sellers and 
transact; 3) sellers compute their profit for the current round and reward the 
corresponding pricing strategy. 

From step 1 onward, prices ( )t
p are posted and set according to a reinforcement

learning process6. The working of this process can be simply expressed: each seller 
is endowed with a finite set of pricing strategies ranging from 0c =  to 100v = .7

Prices are discrete and chosen from the set { }0,1, 2,...,100  and a reward ( ),
i

t sF  is
assigned to each strategy i by seller s ( )1,...,s S= in period t. At each period, sellers
test a pricing strategy, and record the payoff generated by that strategy. During the 
subsequent round, the larger the reward of a pricing strategy, the larger its selection 
probability. However, this choice always exhibits some randomness in order for 
sellers to explore the whole set of possible strategies. Otherwise, sellers could be 
locked-in to some specific pricing strategies, which would artificially inhibit 
learning. The initialization and selection rules are described respectively by 
Equations (1) and (2). 

( ) ] ]( )0, 0, , , 0,1   i

t s s
F F Bv i sδ δ= ∀ ∀ ∈= =   (1) 

{ }
,

,
 s 100

0

select Strategy i  with >0
i

t s

j
t s

F

seller F

j

e
prob

e

τ

τ
τ

=

= (2) 

Equation (1) defines the initial rewards associated with each pricing strategy at 
the first round. These are initialized in reference to the maximal profit ( )Bv  that
sellers can generate on this market. Parameter δ  reflects the initial degree of 
optimism of sellers. When equal to 1, sellers expect that each rule will generate the 
maximum payoff. On the contrary, when equal to 0, they expect each rule to yield a 
zero profit.  

5 We are here motivated by the stationary positions of the system and not on the whole price 
dynamics. Consequently, T  has been set so as to ensure that the system has converged and 
that the observed data (price distribution, average and standard deviation) no longer evolve 
over a long period of time. These data are computed from the last 100 rounds. If not specified, 
the default number of rounds is 1000.
6 Cf. (Sutton, 1991) for a general presentation of these processes and of their properties; Cf. 
(Kirman et al., 2001) for an application to market dynamics.
7 Thus sellers know consumers’ maximal willingness to pay 100v = . Otherwise, since prices 
above v  generate zero profit, those prices would rapidly disappear during the learning 
process. 
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Equation (2) depicts how a seller selects one pricing strategy among the set of all 
available strategies. This stochastic rule respects the general principle of learning: 
strategies that are endowed with a larger reward have a larger probability of being 
selected8. Those that generated lower profits, will still be regularly evaluated (i.e. 
played with a small but non zero probability). Parameter τ  sets the exploration-
exploitation trade-off of a seller: when this parameter decreases, sellers restrict the 
set of best strategies effectively used and as a corollary explore alternative pricing 
strategies less frequently.  

At the end of the period, the reward of the pricing strategy currently played is 
revised. There are two types of learning, either individual or social learning. 

2.1. Individual learning 

Individual learning (further IL) means that a seller (say s) can only learn from his 
own experience and not from the experiences of other sellers. In that case, he only 
considers the performance generated by the pricing strategy he has chosen during 
the round (hence its profit ,t s

π ) and reinforces the reward attached to that rule, 
Assuming that s played strategy i at time t, this rewarding mode is described by 
Equation (3a) : 

( ) ] ]1, , , ,  with 0,1i i i i

t s t s t s t s
F F Fα π α+ = + − ∈     (3a) 

This specification ensures that rewards converge to some weighted average of 
the profits generated by that strategy. Coefficient α  measures the weight an agent 
assigns to his last experience compared to its previous experiences. As α  increases, 
his past experiences are skipped more rapidly. 

2.2. Social learning 

Beside his own experience, a seller can also learn from the experiences of other 
sellers by observing their prices and profits. That is what is meant here by Social 
Learning (further SL). To keep things simple, we suppose that sellers can perfectly 

                              
8 To implement the selection process, we consider rewards that are normalized on the unit 
interval: i Min

i t t
t Max Min

t t

F F
F

F F

−
=

−

 where ,
Max

t sF  (resp. ,
Min

t sF ) is the maximum (resp.minimum) 

fitness observed by the seller s in period t. Such a transformation maintains the rank of the 
payoffs and makes the choice of the exploration-exploitation parameter independent of the 
absolute magnitude of the reward which facilitates inter-simulation comparisons. 
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observe the profits of other sellers9. In the most general formulation, it is common to 
suppose that a seller may not necessarily attribute the same credibility to his own 
experiences as to those of other sellers. For that reason, we will suppose that sellers 
may voluntarily discount the experiences of other sellers. This effect is captured by 
Parameter λ . Assuming that a seller s’ played strategy j ( )j i≠  at time t, social
learning by seller s is depicted by Equation (3b). 

( ) [ ],1, , ,,
 with 0,1j j j j

t s t s t st s
F F Fαλ π λ+ = + − ∈      (3b) 

This process is repeated for all the other sellers 's ( )'s s≠ . If a price strategy
has been played by two sellers other than s , we consider the average of the profit 
generated by that rule and update the corresponding pricing rule once, using (3b). 
Finally, if a price strategy has been played by seller s  and by at least one other 
seller, we suppose that s  gives more importance to his own experiences, and 
therefore skips the experience of other sellers10. λ  is the discount rate that a seller 
applies to the experiences of other sellers. If λ =0, the seller completely discards 
other sellers’ experiences (individual learning). On the contrary, if λ =1, the seller 
rewards other experiences’ with the same weight as his own experiences. 

3. Nash predictions

Varian (1980) established the Nash distribution of posted prices at mixed 
equilibrium when informed consumers visit the whole set of sellers. (Waldeck, 
forth.) extended this model by allowing informed buyers to sample only a fraction k

of the set of sellers and by studying the effect of information on prices and price 
dispersion. These results in (Waldeck, forth.)11 can be summarized as follows: 

Proposition 1. The cumulative distribution of posted prices is equal to 

( )( )
1

11 - -
( ; , )  1 -

ka v p
F p a k

kap

−

= on the support ( )[ ], ,b a k v with

( ) ( ) ( )( ), 1 1 1b a k a v k a= − − + . 

9 A further extension would be to consider the case of noisy or incomplete observation of 
these profits.
10 Another less radical approach would have been to suppose that the seller considers an 
average of the two profits weighted in favour of his profit. However, we suspect that such a 
refinement would not provide a substantial value, but would add a new parameter.
11 Proposition 1 is shown by Varian. The effect of a on posted market prices are included in 

(Stahl, 1989) paper on sequential search and a weak converge theorem is shown when 
k S= →∞ . 
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Proposition 2. The average posted price decreases with the fraction of informed 
consumers ( )a  and  increases with k   . 

Proposition 3. The mean price paid by informed consumers decreases with the 
fraction of informed consumers ( )a  and with k . 

Proposition 4. The dispersion of posted prices is a left skewed inverse U-shaped 
function of the fraction of informed consumers. As the number of firms is higher 
than 8, the peak of the dispersion is reached for a  close to 1 ( )0.99a ≈   

Keeping a  constant, the standard deviation of the NSE is a right skewed inverse U-
shaped function of k . Whenever 8k < , the variance increases in k . The decrease 
is usually at a low pace and the variance remains significant for large k 12. 

The first proposition establishes the existence of a unique symmetric equilibrium 
in mixed strategy. This distribution is bimodal, which reflects the presence of two 
types of consumers. Any time a seller posts a high price (close to the monopoly 
price), he targets the population of non informed buyers (and captures their whole 
surplus). Conversely, anytime he sets a low price, his probability of selling to the 
whole market increases. Such a seller then targets with a large probability the 
population of informed consumers that actively look for competitive prices. 
Propositions 2 to 4 show that improving market transparency (by increasing the 
fraction of informed buyers) has a double effect: as expected, it lowers the average 
price paid by both informed and non informed buyers. However, one unexpected 
effect is that price dispersion increases 13 (see the proof in (Waldeck, forth.)).   

4. Nash versus Adaptive Sellers: Individual Learning

We compare the choice made by adaptive sellers to that made by Nash sellers 
according to four criteria: i) distribution of posted prices (Proposition 1); ii) average 
of posted prices; iii) average of prices accepted by informed buyers (Propositions 2 
and 3); iv) dispersion of posted prices (Proposition 4). To better understand the 
results, let us first highlight two cases à la Varian ( )k S= . We considered here the 
cases 0.2a =  ( “low” fraction of informed buyers) and 0.8a =  (“high” fraction of 
informed buyers). We have chosen these two polar values so as to better identify the 
effects of the change in a . However, the observations made will be generalized to 
the whole range of parameters a  and k  . 

                              
12 This result (variations with respect to k ) is not proven analytically but only stands as a 
numerical result.
13 The assertion that price dispersion increases in a  is nevertheless dependent on the number 
of firms sampled by informed consumers). For example, with only two firms, price dispersion 
would decrease at a = 70%, for 3 firms at around 80% and for more than 3 firms at levels 
above 90%.
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4.1. Two representative cases 

4.1.1. Case 0.2a =

Let us assume that 20S =  and 1000B = . In the first case, the fraction of 
informed buyers is relatively low ( )0.2a = . The density of the stationary
distribution (resp. the cumulative distribution) of posted prices is displayed in Figure 
1a (resp. 1b): 

RL distribution of posted prices
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Figure 1a and 1b. Posted price distribution played by RL agents (left); 

Nash and RL posted price cumulative distribution (right); The RL distribution has 

been computed using the last 100 rounds; simulations performed with the following 

parameter set { }0.2; 0.05; 0.2; 0.8; 1000a Tτ δ α= = = = =

Figure 1b compares the theoretical Nash distribution to that played by adaptive 
sellers. It shows that these two distributions do not coincide. Put differently, with 

0.2a = , choices made by adaptive sellers do not converge to those depicted by the 
Nash equilibrium in mixed strategies. Kolmogorov-Smirnoff adequacy tests confirm 
this intuition statistically14. In addition, the average and the standard deviation of the 
distribution differ from the theoretical ones.  

The literature of learning in games shows that the NSE is in general unstable 
under a variety of learning rules including reinforcement or best response learning 
((Hopkins et al., 2002), (Benaïm et al., 2005)15. In addition, previous works 
compared Nash and RL- predictions to actual human behaviors drawn from 
laboratory experiences (cf. (Erev et al., 1998)). In doing so, they showed that RL-
driven outcomes do efficiently describe actual human behaviors with sufficient 
accuracy and that their predictive (ex ante) and descriptive (ex post) powers are 
better than those of equilibrium predictions. If the same ranking applied to the 

14 Adequacy tests measure the distance between the two distributions and test whether this 
distance is statistically different from 0.
15 However, we should point out that these authors consider some kind of positive definite 
adaptive dynamics which is not the case here.  
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search market analyzed in that paper, we could infer from our observations that the 
Nash equilibrium would not reproduce the choices made by actual sellers. However, 
there are three limiting points before concluding in this way. First, one should note 
that (Erev et al., 1998)  used a different formulation of RL for both the probabilistic 
selection rule and the fitness updating rule16. Second, even bypassing the previous 
remark, one should reproduce Erev et Roth’s experiment in the specific search 
market considered here, and examine whether Erev et Roth’s results can be extended 
to that setting. Third, an appropriate fit of data does not necessarily mean that 
subjects actually behave as reinforcement learners but only that everything happens 
as if they do.  

4.1.2. Case 0.8a =

Let us then consider a second situation where the fraction of informed sellers 
increases to 0.8a =  (Figures 2a. and 2b.). Comparing again the RL- to the Nash- 
distribution with individual learning, one can make two observations. First, the two 
distributions are, as previously, not identical (Figure 2b). This is confirmed by 
adequacy tests. Second, the RL distribution when 0.8a =  has a bimodal shape 
(Figure 2a). A first peak is located at p v= , while a second peak is located close to 
the Bertrand pricing strategy17. Such a conclusion did not appear in the previous case 
( )0.2a =  but is consistent with the phenomena explaining a lower average price 
together with higher price dispersion for the RL distribution. In other words, when 
the fraction of informed buyers increases, extreme prices will become equally 
attractive: when he posts a low price, a seller may capture the whole market. But, 
posting a high price insures a high profit margin while selling only to uninformed 
consumers. With a small market share of informed consumers ( )0.2a = , low prices 
are not attractive, so that the distribution is more likely to be mono-modal. As a

increases, “low price” strategies are more attractive since informed buyers are more 
numerous. Sellers will learn it and, as in the Nash equilibrium, price dispersion will 
increase with a .  

                              
16 They are two differences between our learning rule and the one used by (Erev et al., 1998). 
First, the updating rule of the fitness described by equation [2] considers an average of the 
past fitness with the current profit, whereas profits cumulate to fitness in Erev and Roth’s 
paper. Second, their probabilistic choice rule [3] is a simple proportional rule of current 
fitness. We choose to keep to the logit model because of its axiomatic foundations coming 
from the psychological literature (e.g. (De Palma et al., 1989) for a review).
17 If all buyers are informed, competition by price undercutting will lead prices to 1p =  in the 
case of a discrete price grid. A firm increasing its price from 1p =  will make no sale whereas 
a firm decreasing its price to 0p =  will make zero profit. This is Bertrand competitive 
equilibrium. In the case of a continuous distribution, the symmetric Bertrand equilibrium is 

0p = .
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Figure 2a and 2b. Posted price distribution played by RL agents (left); Nash and 

RL posted price cumulative distribution (right); the RL distribution has been 

computed using the last 100 rounds; simulations performed with the following 

parameter set { }0.8; 0.05; 0.2; 0.8a τ δ α= = = =

Table 1 reports the mean and standard deviation statistics in the case of both 
adaptive (individual learning) and Nash sellers for the two previous cases: 

Mean posted prices Mean prices accepted 
by informed buyers 

Standard deviation 
of posted prices 

Nash RL IL Nash RL IL Nash RL IL 
0.2a = 91.3 78.7 34.9 18.0 20.1 23.9 
0.8a = 79.7 77.0 5.0 6.6 34.7 24.6 

Table 1. (Individual Learning) Comparison of average posted price and price 

dispersion for 0.2a = and 0.8a =  (data computed from the last 100 periods of the 

two previous simulations18; simulations performed with the following parameter set 

{ }0.05; 0.2; 0.8, 1000Tτ δ α= = = = ) 

Comparing the price dataset obtained when 0.2a =  to that obtained when 
0.8a = , reveals that as the proportion of informed buyers increases, i) the mean 

price accepted by uninformed buyers decreases (mean posted price, cf. Proposition 
2); ii) the mean price accepted by informed buyers also decreases (cf. Proposition 3); 
and iii) price dispersion increases. This last conclusion is in agreement with 
analytical findings. Indeed, Proposition 4 establishes that price dispersion increases 
as long as 0.99a < . However, Nash variations are more pronounced than RL 
variations both for average prices and for price dispersion. 

From these simple observations, we conclude that for our two examples although 
sellers characterized by individual learning do not learn to play the Nash equilibrium 
in a strict sense, their behaviors mimic the characteristics of the Nash outcomes for 

18 We simply considered the two previous simulations here, since a multishot analysis reveals 
that inter-simulations variations are very small (cf. Figure 3 hereafter).
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the first and second order statistics. This conclusion may reinforce the validity of 
Nash equilibrium for comparative static in economic analysis. In some sense, our 
result may be restated in the following way: the drivers of prices and price 
dispersion which is profit maximization will be learned by adaptive sellers although 
in a imperfect way. Thus for example, the Nash price dispersion depends on the 
number of visits made by informed buyers ( )k . An increase in k  leads to a linear
increase in the market size gained by the lowest priced firm but to an exponential 
decrease in the probability of being the lowest price. At Nash equilibrium, firms’ 
optimal reaction will lead to a shift in the distribution of posted price with more 
weight given to the extreme bounds of the support of the price distribution, thereby 
increasing price dispersion for low k  but increasing the average posted price for all 

1k > . However for large k , low pricing will become concentrated at the marginal 
cost so that low pricing will be discouraged in favor of pricing near the monopole 
price. Price dispersion decreases for k  large enough. But, low pricing is still a 
profitable strategy which may be heavily reinforced if none of the other firms adopt 
it. Since the preceding arguments hold for Nash but also for RL, the shift in the 
distribution for RL is similar to that for Nash, albeit not in the same proportions. 

4.2. Generalization 

Previous observations only hold in the case of the two specific simulations 
presented above. More precisely, they are dependent on the specific values of 
coefficients a  and k  and on the specific set of learning parameters ( ), ,δ τ α . To
assess the robustness of this result, we need to consider a larger set of parameters a

and k  and to generalize the previous analysis to a wider spectrum of learning 
parameters. 

To explore the first point, let us consider first Varian’s model ( )k S=  and make
a sensitivity analysis on parameter a independently. For that, we considered discrete 
values { }0.1, 0.2,..., 0.9a =  inside the range of definitions of parameter a . We
randomly chose this parameter and made 400 simulations of the process. First, we 
implemented an adequacy test for each iteration. Even when considering large 
acceptance levels, these tests systematically reject the equality assumption between 
the Nash (described by Proposition 1) and the RL distributions. Second, we analyzed 
the evolution of the average posted price, of the average price accepted by informed 
buyers, and of the price dispersion with respect to a .  

Figure 3 corroborates graphically the observations made in the previous section. 
In accordance with Propositions 2 and 3, the two averages (posted prices and prices 
accepted by informed buyers) decrease as a  increases. In addition, in accordance 
with Proposition 4, price dispersion increases with a . 
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dispersion; 400 simulations with random a  and { }0.1; 1; 0.8τ δ α= = =

We checked these propositions statistically19. With respect to a  and k , we ran 
100 simulations for each parameter’s configuration ( ),a k . For each simulation, we
computed the aggregate mean and variance of the price distribution over the last 100 
periods. We thus come to the following results on averages over the 100 simulations 
(Waldeck and Darmon, 2006): 

Result 1. (Price distribution, Individual Learning) The RL posted price 
distribution never converges to the Nash posted price distribution. 

Result 2. (Average posted price, Individual Learning) The RL mean price is a 
decreasing function of the proportion of informed consumers in the market.  

Result 3. (Standard deviation for RL, Individual Learning) RL Standard 
deviation conforms to the Nash prediction with respect to a change in a except when 
k=2. A one-sided Wilcoxon ranked test (at 5%) shows that 83% of figures reported a 
variation in agreement with the NSE prediction whereas only 3% showed an 
opposite variation to NSE. 

In (Waldeck and Darmon, 2006), we evaluated the robustness of Results 1 to 3. 
For that, we needed to consider weaker hypotheses. For instance, we showed that the 
statistically robust result is that the RL mean price is “non increasing in a ” while 
the Nash prediction is that the mean price is strictly increasing in a . One key reason 
for doing this is that RL-outcomes inherently generate some statistical randomness. 
This is caused by the persistence of explorative behaviors which introduce some 
noise into the observations derived from the simulations (unlike Nash predictions). 

19 (Waldeck and Darmon, 2006) details the whole procedure and reports sensitivity tests 
with respect to learning parameters.
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5. Social Learning 

Let us now consider Social Learning. For all the experiments reported here, we 
supposed that 1λ = . Although we need to consider less extreme values for this 
parameter in the future, this situation is qualitatively interesting as it measures the 
effect of social learning when fully introduced. As previously, let us first consider 
the two previous cases ( 0.2a =  and 0.8a = , k S= ) à la Varian (1980). This will 
suggest some general intuitions that will be generalized afterwards by a multi-shot 
analysis (5.2). We then discuss the results and highlight some factors that could 
account for the differences observed between individual and social learning (5.3).   

5.1. Two single cases 

5.1.1. Case 0.2a =

Figure 4 reports the distribution of posted prices as 0.2a = when SL is introduced. 
This has to be compared to Figure 1 that presents the same case under IL. 
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Figure 4a and 4b. Posted price distribution played by RL agents (left) under SL; 

Nash and RL posted price cumulative distribution under IL and SL(right); the RL 

distributions have been computed using the last 100 rounds; simulations performed 

with the following parameter set { }0.8; 0.05; 0.2; 0.8a τ δ α= = = = (Il and SL) and with 

{ }1λ =  for (SL)

From Figure 4a, we observe that the market price distribution is still dispersed. 
Compared to Figure 2a (IL case), we notice that this distribution has a less regular 
shape. Using Figure 4b, we can now compare three elements (Nash, Individual 
Learning and Social Learning). Figure 4b plots the cumulative price distributions in 
these three cases. Graphically, we can see here that these distributions do not 
coincide. That is, the choices made by adaptive sellers characterized by Social 
Learning converge neither to those made by Nash sellers, nor to those made by 
adaptive sellers characterized by Individual Learning only. 

13



5.1.2. Case 0.8a =

We now consider the second case when 0.8a = . Figure 5 reports the price 
distribution of two simulations using the same set of parameters. 
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Figure 5a and 5b Posted price distribution played by RL agents under SL; two 

different simulations; the RL distributions have been computed using the last 100 

rounds; simulations performed with the following parameter set 

{ }0.8; 0.05; 0.2; 0.8; 1a τ δ α λ= = = = =  (SL)

Unlike previous cases, these two figures highlight two points. First, we note that 
when 0.8a = , the process is highly path dependent. That is, the same set of 
parameters (especially with the same exploration-exploitation trade off parameter 
τ ) leads to different price structures. Second, we observe that the market price 
distribution is no longer dispersed. Instead, the effect of Social Learning in this 
configuration is to make the prices posted by each seller converge to a unique price. 
Path dependency and no price dispersion appear as a combination of i) Social 
Learning and ii) a particular market structure ( )0.8a = .

The following table reports two different cases for the same parameter 
configuration { }0.05; 1; 0.8, 1000Tτ δ α= = = = :   

Mean Posted Prices Mean prices accepted 
by informed buyers 

Standard deviation 
of posted prices 

Nash RL SL Nash RL SL Nash RL SL 
0.2a = 91.3 72.0 34.9 20.1 20.1 20.8 
0.8a =   

(simulation #1) 79.7 90.0 5.0 90.0 34.7 0 

0.8a =   
(simulation #2) 79.7 63.3 5.0 63.3 34.7 0 

Table 2. Comparison of average posted price and of price dispersion for 0.2a =

and 0.8a =  (data computed from the last 100 periods of the two previous 
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simulations; simulations performed with the following parameter set 

{ }0.05; 1; 0.8, 1000Tτ δ α= = = = ); Social Learning 

From this table, we can already see that variations of average posted prices with 
respect to a  may have an ambiguous impact. When comparing the average price 
reached when 0.2a = to that reached when 0.8a =  (simulation #1), we obtain two 
opposite variations: using simulation #1, we may conclude that the average price 
increases (72.0<90.0), while using simulation #2, we may conclude inversely 
(72.0>63.3). Concerning price dispersion, this indeterminacy associated with this 
path dependency vanishes since the posted price distribution reduces to a single 
price when 0.8a = , whatever the simulation considered. These three examples 
show that the qualitative predictions of Nash with respect to a variation of a i) do 
not always hold with Social Learning when considering the average posted price and 
ii) are violated when dealing with price dispersion. These are striking differences 
from the IL case. As previously, we need to confirm these preliminary observations 
by a multi-shot analysis. 

5.2. Generalization 

To assess the robustness of the above observations, we built a dataset that 
contains 25 repeated simulations for each ( ),a k  combination20. Using this dataset, 
we checked if the results obtained under Individual Learning extend to Social 
Learning. Consequently, we tested first the convergence of RL price distributions 
under SL to the Nash distribution. Then, we evaluated if the qualitative predictions 
of Nash (with respect to a variation in the market structure i.e. a  and k ) still hold 
under SL. 

To test the convergence to Nash, we performed a Kolmogorov-Smirnov test 
(with a 95% confidence level) on each individual simulation. This test rejected the 
null hypothesis (equality between the Nash and the Social Learning distributions) 
for each of the 25 simulations of each configuration ( ),a k . Similar to Result 1 
obtained under IL, we deduce Result 4. 

Result 4 (Price distribution, Social Learning). The price distribution under Social 
Learning does not converge to the Nash distribution whatever the ( ),a k

parameters. 

Turning to the properties of first-order statistics, the first observation is that the 
average posted price is a decreasing function of a  only for values of a  lower than 
0.5, as evidenced by Figure 6. Even when averaging over 25 simulations, we no 
                              
20 All other parameters { }0.8; 0.05; 0.2; 1; 1000Tα τ δ λ= = = = =  are constant. The tests and 
charts presented in this section are all deduced from this dataset. 
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longer observe a decrease in average price when the proportion of informed 
consumers increases. 

Figure 6. Average posted price for different (a;k) configurations   
NOTE. – Each point represents an average of the 25 simulations for each ( ),a k

configuration.

In addition, Figure 7 below plots the average posted price for 10k =  as a 
function of a  (25 simulations for each value of parameter a ) for both individual 
and social learning. The IL curve has a regular decreasing shape. Moreover, the 
figures are quite close together. This shows that each of the 25 simulations 
converged to approximately the same average price. The SL curve shows that there 
is a large dispersion of average prices across two simulations, as a  is larger than 
0.5. Such inter-simulation heterogeneity confirms that, when SL is considered, the 
process is path dependent for some values of parameter a . For example, average 
prices may converge to a large corridor of values ranging from 40 to 100 for 0.8a =

depending on this path. For 1a = , all consumers are informed. The Nash prediction 
is a Bertrand equilibrium (equal to 1 in the case of 1a = ).Yet, average posted prices 
with SL are different from those observed at Nash equilibrium. Again, such 
difference shows the emergence of apparently collusive behaviors caused by price 
imitations.  The imitation of highly successful strategies such as capturing a large 
share of informed consumers will lead to a unique price. However, which price is 
chosen becomes a matter of chance.   

Average posted price as a function of the proportion of 
informed consumers 
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Figure 7.  Average posted price; comparison between IL and SL for different values 

of a, k=10. (25 simulations for each parameter a and learning type)    

In addition, by performing a one-sided Wilcoxon ranked test (with a precision 
level set to 5%), 98 % of the values reported a variation in line with Nash under IL21

whereas this score was only 64% under SL. Moreover, none of the figures reported a 
significant increase under IL whereas 13.5% did so under SL. 

Concerning price dispersion, Figure 8 compares IL to SL. Whereas IL data were 
in line with Nash predictions for standard deviation, this is no longer the case for 
SL, where price dispersion is now decreasing. Moreover, low dispersion is present 
for values of a  larger than 0.6. This indicates that prices become are more 
concentrated around the average posted price for larger values of a  and that in some 
cases, we may observe a convergence to a unique price. Moreover, for 1a = , price 
dispersion is equal to zero in 22 simulations over 25 with SL22. This means that with 
SL, firms learn to fix a unique price but above the Bertrand equilibrium. 

                              
21 This means that 98% of the values exhibited a significant decrease in average price when a
increases from a to a+0.1 (for 1a ≠ ).
22 The other 3 simulations show almost no dispersion of prices.  
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Figure 8. Posted Price dispersion; comparison between IL and SL for different 

values of a, k=10.(25 simulations for each parameter a and learning type)   

The above qualitative conclusions have been statistically generalized to other 
values of k , hence Result 5. 

Result 5. (Variations of mean posted price and price dispersion with respect to 
a , Social Learning) Social learning is different from Nash and Individual Learning 
with respect to a variation in a . This is true both for the average posted price and 
price dispersion. Price dispersion reduces with larger values of a  and prices 
converge to a unique price in some cases. 

Let us now examine if the qualitative predictions of Nash equilibrium still stand 
when considering variations in parameter k . Table 3 shows the average posted price 
for Social Learning as compared to Nash. 

a  k 2 3 4 5 8 10 15

0 100 81.2 100 81.3 100 81.3 100 81.2 100 81.1 100 81.3 100 81.3
0.1 90 77.1 91 77.1 91 77.2 91 77.6 92 78.3 93 78.8 94 79.0
0.2 81 73.1 82 72.8 84 73.0 85 73.3 87 73.9 88 73.7 90 73.0
0.3 72 68.3 75 68.6 77 68.2 79 68.0 82 67.3 84 67.0 87 66.3
0.4 64 64.3 68 63.3 71 62.9 73 62.4 79 62.1 81 60.3 85 59.8
0.5 55 59.8 60 57.8 65 58.1 68 58.9 75 57.0 78 56.8 83 57.5
0.6 46 54.6 53 60.0 59 59.6 63 58.0 71 66.3 75 69.6 80 75.0
0.7 37 51.7 46 64.5 52 71.9 57 73.4 67 80.0 71 81.3 78 86.3
0.8 27 55.4 37 71.3 45 73.5 51 79.0 63 77.7 67 80.4 75 84.7
0.9 16 59.0 27 56.0 35 59.2 42 58.7 56 61.5 62 53.6 71 66.1
1.0 1 56.6 1 32.1 1 23.7 1 28.7 1 19.9 1 17.9 1 19.2

Table 3. Average posted price under Nash (shaded cells) and RL-Social Learning 

for different values of a and k 
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NOTE. – The dark cells are the theoretical prediction of Nash. The light cells are for social 
learning. Each number represents an average of the 25 simulations simulation for a specific 
( ),a k  configuration. Bold numbers indicate that the mean price of social learning is larger 
than the Nash mean price. One should recall that this statistics (average of posted prices) 
exhibits important inter-simulations differences (path dependency), for high values of the 
coefficient a.

We also plotted the average posted price and the price dispersion for different values 
of parameter k  (cf. Figure 9).   

Figure 9. Average price and price dispersion; comparison between IL and SL for 

different values of k, a=0.4. (25 simulations for each parameter a and learning type)   

For SL, average prices seem relatively stable with respect to variations of k . This 
is confirmed by performing a Wilcoxon ranked test (at 5%). This test evidences that 
only 6.2 % of the simulations are significantly increasing with k  (vs 81% for IL) 
and 5% are significantly decreasing with k  (vs 5.6% for IL). With SL, price 
dispersion is decreasing with k . Again, Nash predictions are clearly rejected in this 
case. As evidenced by Figure 10, considering higher values of a ( )0.9a = does not 
change this result much. 

Figure 10. Average price and price dispersion; comparison between IL and SL for 

different values of k, a=0.9. (25 simulations for each parameter k and learning type)   
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Again, this figure reflects the path dependency of the process for high values of 
a . This path dependency is a striking difference compared with IL for which any 
price dependency was totally absent, and a given ( ),a k configuration leads
approximately to the same outcome across simulations. Result 6 groups these 
different observations. 

Result 6. (Variations of the mean posted price and of price dispersion with 
respect to k, Social Learning). Social learning is different from Nash and 
individual learning with respect to a variation in k  both for average posted price and 
price dispersion. Price dispersion reduces with larger values of a  converging to a 
unique price for large values of k . Moreover, the resulting average prices are path 
dependent in this range of values of ( ),a k .

5.3. Discussion 

In this section, we examine some factors on which the previous lock-in effect 
could be sensitive. More precisely, we need to explain why we observe path 
dependency for large values of a  and no such path dependency for smaller values. 
First, we shall highlight the effects of the type of competition faced by sellers in 
these two cases. Second, we shall analyze the effects of the learning parameters on 
the result. 

5.3.1. Effects of the type of competition  

First of all, let us note that for low a  (less than 0.5), some diversity in the pricing 
rules played by sellers remained. This can be explained by the type of competition 
faced by sellers. When most consumers are uninformed, the best-price seller gets 
both his share of uninformed consumers 23 and share of informed consumers. On the 
contrary, a high price seller gets his fraction of uninformed sellers only. However, 
the competitive advantage of posting the lowest price is not very large in this case. 
Indeed, the gain of low pricing obtained on informed consumers may not be offset 
by the additional gain of high pricing when targeting uninformed consumers only. 
Hence, some diversity in the price posted by sellers remains. 

For a larger proportion of informed consumers, the gap between the performance 
of a high pricing strategy (thus getting only a smaller mass of uninformed 
consumers) and a low pricing strategy (thus getting additionally an increased mass 
of informed consumers) increases. Since sellers observe the payoff of other sellers 
with SL, they will instantaneously observe which price leads to the highest profit. 
Depending on what this price is at a given moment of time, the process gets rapidly 

23 Uninformed consumers sample randomly one seller at each period. However, since we 
consider a large number of buyers, on average, each seller gets a mass of ( )1B a S−  of 
uninformed consumers.
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locked into this price. Yet, since sellers never completely stop exploring alternative 
strategies ( )0.05τ = , some jumps to a new price may occur at different moments in 
time. Now, a unique seller exploring by chance a new price will be imitated only if 
the change is to a lower price. A new lock-in will appear at this new price. However 
if price margins become too small, eventually a jump to a higher price may appear 
much in the spirit of Edgeworth cycles. The existence of these jumps is corroborated 
by looking at price dynamics. Figure 11 reports the evolution of the average posted 
price over 5000 market periods. 
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Figure 11.  Evolution of the average price, T= 5000, (a,k)=(0.9;19)

As one can see, firms experience many price strategies during the first rounds (up 
to period 100). As an effect of learning, these experiments stop and then all firms are 
fixed at the same price. However, after 3700 periods, new experiments take place, 
and firms’ posted prices stabilize to a new level. 

5.3.2. Effects of the learning parameters  

Since our main objective was to test whether the Nash equilibrium was robust to 
adaptive learning, we need now to check that the lock-in observed with SL and high 
values of Parameter a  was not an artifact of a particular parameter set ruling the 
behavior of the reinforcement learning process. This process is characterized by 
three parameters: δ (initial fitness), τ (exploration-exploitation parameter), and α
(reward updating parameter). We analyze the effect of these parameters for the case 
( ) ( ), 0.9,19a k =  for which lock-in was manifest. 

To evaluate the effect of the magnitude of initial fitness (ruled by parameter δ ), 
we report 100 simulations form randomly drawn initial fitness.  We observe the 
same kind of path dependency and  convergence to a unique price (Figure 12).   
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Hence, the magnitude of initial fitness does not affect the general result of  
convergence to a unique price. 24

Figure 12. Average posted price and standard deviation as a function of initial 

strength; 100 runs simulations for  (a,k)= (0.9;19) with random draw of δ .  

Increasing the exploration-exploitation parameter (τ , called ‘temperature’ in 
the RL literature) will lead to more numerous experiments and to more frequent 
switches. As expected, Figure 13 shows that the lock-in effect is dependent on 
this parameter. Increasing the temperature coefficient decreases the path 
dependency and generates higher levels of price dispersion. That is, with a higher 
temperature, firms learn to set different prices more frequently25. In general, the 
bifurcation point is around 0.07τ = . 

Figure 13. Average price and price dispersion, for 0.8α = , 9 simulations for each 

parameter configuration (temperature τ , reward updating parameter α )  

24 However, by increasing the initial expectation on profits, we should expect a higher price 
than for less optimistic expectations, on average computed over several simulations. We have 
not yet tested whether this expectation was confirmed.
25 This qualitative observation is true for different values of α  (reward updating coefficient).
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Although firms learn to set different prices when firms experience more 
strategies, one has to note that these prices generate an identical performance level 
(i.e. profit) which indeed is consistent with SL26.  

The last learning parameter is the coefficient used to update the fitness of the 
rule used ( )α . The lower this parameter, the longer the memory of the sellers about 
the performance of past prices i.e. the slower a seller ‘records’ new profits into his 
fitness. We should expect that the magnitude of this parameter does not affect the 
general result (path dependency, convergence to a unique price) mainly because i)
this parameter affects both individual learning (Eq. 3a) and Social Learning (Eq. 3b) 
in the same way and ii) all sellers are endowed with the same coefficient 
(‘synchronous’ learning).  This is effectively the case as shown by Fig. 14:  

Fig. 14.  Average price and standard deviation  for τ =0.05 and α ranging from 0 to 

1. (9 simulations for each parameter configuration (temperature τ , reward 

updating parameter α )) 

However in some cases, price dispersion remains (for ( )0.1α =  3 simulations 

out of 9 and for ( )0.2α =  two out of 9). One explanation is the following: 
exploration may appear at a randomly chosen period of time. Since statistics are 
computed over 100 periods of time, it may be that by chance dispersion appeared. 
From these observations, we can infer that the only determining learning parameter 
is the exploration-exploitation parameter τ . This is confirmed by Figure 15. There 
is a bifurcation point at 0.07τ =  where the uniqueness of posted prices happens in 
less than 28% of the cases. As expected, such path dependency is weakened when 
sellers choose to experiment new strategies more often. For lower values of 

0.05τ ≤  with a majority of cases with a unique price, the reward updating 
coefficient seem not to impact on the probability of convergence to a unique price.   

                              
26 We performed a Fisher-Snedecor test of mean equality on our dataset. Tests report that for a 
low temperature coefficient, this convergence is achieved by fixing a unique price whereas for 
a higher temperature, price dispersion may still persist. 

Average posted price as a function of RUP

0
10
20
30
40
50
60
70
80
90

100

0 0.2 0.4 0.6 0.8 1
RUP

Standard deviation  as a function of RUP

0
2
4
6
8

10
12

0 0.2 0.4 0.6 0.8 1
RUP

23



 Fig. 15.  Proportion of cases exhibiting a convergence to a unique price as a 

function of the temperature and the reward updating parameter in the case (a,k)= 

(0.9;19) (25 simulations for each parameter configuration  (temperature τ , reward 

updating parameter α )) 

6. Conclusion

The aim of this paper was to compare Nash to two extreme forms of adaptive 
(reinforcement) learning: individual learning and social learning. We used an 
extension of the simple stylized market of Varian (1980). In that context, Individual 
Learning and Nash lead to the same qualitative conclusions with respect to a change 
in the consumers’ information technology (proportion of informed consumers, 
number of visits made by informed consumers), despite the fact that the two 
distributions do not converge in a quantitative sense. On the contrary, for identical 
learning parameters, social learning leads to more contrasted results. Again, the 
price distributions do not coincide. Further, some of the qualitative predictions of the 
Nash equilibrium no longer hold, especially when the fraction of informed sellers is 
large. In that case, Social Learning generates both path dependency and uniqueness 
of posted prices. We provide some explanations to account for these differences. 
Some may be due to the changing nature of the competition process between 
adaptive sellers. Others are due to the lack of enough experimentations in sellers’ 
behaviors. Increasing sellers’ explorative behavior may then contribute to decreasing 
the lock-in describing sellers’ price selection strategy. However, everything being 
equal i.e. with the same parameter set (exploration-exploitation parameter in 
particular), such a kind of path dependency did not appear with Individual Learning 
only. 

Although the Nash equilibrium concept is highly demanding (concerning its 
requirements on rationality and information), its predictive capacity is well 
confirmed as far as Individual Learning is concerned. This may not be the case 
when considering Social Learning since conclusions are more dependent on some 
parameters values. These relate either to buyers’ behaviors (that shape the type of 
competition on the market, and the sellers’ rewards structure) or to sellers’ behaviors 
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(exploration-exploitation trade-off in particular).Yet in another context (search 
market game, price competition), we here retrieve some results of (Vriend, 2000) 
that pointed out some differences between individual and social learning in a 
Cournot-game. While we did not attribute the explanation for the difference between 
the two types of learning to some “spite effect”, our paper reinforces Vriend’s by 
illustrating how two forms of learning models may lead to different market 
outcomes. There are several possible extensions to this work. An immediate one is 
to analyze more precisely the effect of varying “degrees” of social learning (i.e. 
various λ  parameters) and further to consider heterogeneous coefficients among 
sellers, making some sellers more “receptive” to social influences than others. 
Another direction is to consider a less perfect type of social learning. Despite the 
fact that prices played by other sellers can always be perfectly observed, profits 
cannot. Hence, one could consider noisy observations of profits levels instead of 
perfect observations. Finally, as already pointed in the literature, the choice between 
Individual and Social Learning in this kind of game remains necessarily ad hoc. In 
that sense, we still lack some experimental evidence about how players decide in a 
market game. Hence, the appropriate learning assumption is still an open debate 
which of course may be highly dependent on the context or structure of the market 
game.  

This work was launched during the ELICCIR project (CNRS support “Systèmes 
Complexes en SHS”). We would like to thank Olivier Bruno, and two anonymous 
referees for their detailed and careful comments on a previous version of this article. 
The usual caveat applies. 
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