109 Ag– 107 Ag fractionation in fluids with applications to ore deposits, archeometry, and cosmochemistry
Toshiyuki Fujii, Francis Albarède

To cite this version:
Toshiyuki Fujii, Francis Albarède. 109 Ag– 107 Ag fractionation in fluids with applications to ore deposits, archeometry, and cosmochemistry. Geochimica et Cosmochimica Acta, 2018, 234, pp.37-49. 10.1016/j.gca.2018.05.013 . hal-02142980

HAL Id: hal-02142980
https://hal.science/hal-02142980
Submitted on 29 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evidence of 109Ag/107Ag variability in ancient silver coins led us to calculate the reduced partition functions for 107Ag and 109Ag in various dissolved Ag species by ab initio methods in order to evaluate the extent of Ag fractionation in fluids and the potential of Ag isotopes to discriminate between different metal sources. We used a hybrid density functional implemented by the Gaussian 09 code and consisting of Bickley’s three-parameter non-local hybrid exchange potential with Lee-Yang-Parr non-local functionals. The ratios $\ln b$ of reduced partition functions were for the free Ag$^+$ ion with various degrees of hydration, hydrates, chloride complexes, sulfides, sulfates, Sb-As sulfosalts, and Ag-ammines. At 0 °C, the magnitude of the nuclear field shift effect between metal and dissolved sulfide is $\sim1 \times 10^{-4}$. Using literature stability fields at different temperatures, we conclude that only weak Ag isotope fractionation is expected in the Ag-Cl-S system regardless of the pH of hydrothermal solutions at 300 °C. Stronger effects are predicted when Sb and As are added to the solutions. Bonding with SbS$_3$ and AsS$_3$ reduces $\ln b$ values by $\sim2 \times 10^{-2}$. Under the more oxic conditions of the subsurface and at the temperatures of groundwater, Ag should be present as Ag$^+$ and, at higher chlorinity, as AgCl$^+$. The latter component is isotopically heavier than Ag$^+$. In groundwater underneath forests and grasslands, ammonia resulting from nitrogen fixation produces the particularly strong complex known as di-ammine silver Ag(NH$_3$)$_2$$^+$ (Tollen’s reagent). Upon reduction by aldehydes and melanin, Ag(NH$_3$)$_2$$^+$ precipitates metallic Ag(0). Biological oxidation of NH$_3$ to NO$_2$ and NO$_3$ (nitrification) also is expected to destroy Ag(NH$_3$)$_2$$^+$ and precipitate metallic Ag(0). Both chlorargyrite (AgCl) and native Ag are found among the weathering products (gossan) of bedrock ore deposits. The high end of the 109Ag/107Ag histogram of silver coinage from around the Mediterranean and from Spanish Americas, particularly well-represented in Mexican silver ore, therefore attests to the presence of gossan silver, while the variability at the low end is more likely to represent temperature effects and variable abundances of S, Sb, and As in hydrothermal fluids. Should the yield of Ag during separation chemistry be less than 100%, or samples be altered by metamorphism, low-temperature Ag isotope fractionation becomes an issue seriously affecting (i) so-far published 109Ag/107Ag data on chondrites, (ii) ages derived from the extinct 107Pd-107Ag chronometer ($T_{1/2} = 6.5$ Ma), and (iii) inferences about the volatile content of the Earth. It is argued that the NIST SRM 978a value should be retained to represent the Bulk Silicate Earth and not the literature values on basalts, which clearly have been affected by incomplete Ag separation.

1. INTRODUCTION

For over 2700 years, silver and money have been so intimately related that in some languages they are designated
by the same word. Silver, which permeates societies much more pervasively than gold and is still considered precious compared to copper, propelled states such as Persia, Athens, Carthage, and Rome to the status of empires by boosting trade and allowing mercenary armies to be hired. The value of silver was first recognized by the early cultures of Mesopotamia but was used largely for plates, cutlery, statues, and religious objects. It was not until the introduction of coinage in Asia Minor during the 7th century BC that long-distance trade and war tributes were born, which represented one of the turning points in human history.

In the Mediterranean world, the rise and fall of empires coincide with the discovery and demise of major silver ore deposits. The Laurion mines established Athens as the leading city-state in the 5th century BC Greece, with the famous owl coin assuming the same global role as the modern dollar. The silver mines from Southern Iberia brought immense power to Carthage and, from the mid-3rd century BC onwards, to Rome, allowing a flourishing trade between the Roman Empire and peoples around the Indian Ocean (McLaughlin, 2014) and established the denarius as the major currency for almost two millennia. It is remarkable how faithfully the number of shipwrecks in the Mediterranean tracks lead contamination associated with the mining of argentiferous galena (Parker, 1992; Hong et al., 1994; Kylander et al., 2005; Scheidel, 2009). Silver from Peru (Potosi) and Mexico (Zacatecas) changed the pattern of war in Europe in the 16th and 17th c. AD (Garner, 1988) and, by fueling long-distance trade, financed China’s monetization and economic expansion (Flynn and Giraldez, 1996; von Glahn, 2003; Spate, 2013). Establishing the origins of silver coins and artifacts therefore is key to understanding how past empires rose and fell through the millennia. A very brief description of some historically significant Ag ore deposits (Boyle, 1968) is given in the Appendix.

The most common hydrothermal silver-bearing mineral is galena (PbS) which can hold up to 0.4 mol percent Ag (Van Hook, 1960) mostly substituted by miargyrite-proustite Ag(Sb,As)S2 (Chutas et al., 2008; Renock and Becker, 2011; George et al., 2015), argentite/acanthite (Ag2S), and pyrargyrite (Ag5SbS4), or in substitution for Cu in sulfosalts from the tennantite-tetrahedrite Cu12(As, Sb)S3(S3)4S series. Silver chloride AgCl (chlorargyrite) and native Ag form at low temperatures in gossan produced by weathering of underlying ore deposits, and more generally in soils (Boyle, 1968).

The relative abundances of Pb isotopes have been used for decades to trace the provenance of artifacts (Brill and Shields, 1972; Gentner et al., 1978; Stos-Gale and Gale, 2009). Most studies do not go beyond a simple comparison of Pb isotopic ratios between a particular artifact and ores that may have been the potential sources of its metal. If relative abundances of Pb isotopes in rocks vary, it is an expression of the ore environment, typically the tectonic age of the province hosting the ore deposits, and the long-term U/Pb and Th/U ratios of their sources (Blichert-Toft et al., 2016). Using Pb isotopes to trace the origin of Ag has, however, been criticized on the basis that Pb and Ag held in a particular silver coin may derive from different sources (Budd et al., 1996). This is unlikely in the case of Ag extracted from argentiferous galena: local ores are such an obvious source of local Pb used for Ag cupellation (purification) that import is unnecessary. Extraneity of Pb and Ag is much more likely to be the case for silver extracted from sulfosalt ores, which in general contain little lead: cupellation is therefore carried out using Pb from a different provenance. It may also be a result of reminting under duress, like at the climax of the second Punic War (Albàrède et al., 2016).

The isotopic abundances of other metals involved in coinage, Au, Cu, and Ag, have so far been given relatively little attention. Gold has only one stable isotope which excludes this element from isotopic analysis, while 65Cu/63Cu shows a broad range of variation (Klein et al., 2010) due to variable speciation of Cu in fluids and variable deposition temperatures. Copper is not even systematically associated with Ag ores (Boyle, 1968) but small amounts of Cu often were added to silver coinage to improve its mechanical properties and for the purpose of debasement. In this case the risk was that adding Cu beyond eutectic proportions (28.1 wt%) (Baker and Okamoto, 1992) would render the retrieving of Ag for reminting very costly.

The relative abundances of the 109Ag and 109Ag isotopes are particularly appealing because silver carries all the coinage value. Athenian owls, the drachmas of Alexander and his successors, the denarii of the Roman Republic, and the 16th century pieces-of-eight (the ancestor of the dollar) are noticeable for their Ag fineness. The variability of Ag isotopic abundances in ancient coins was established by Desaulty and Albare`de (2013), Desaulty et al. (2011) and Albàrède et al., 2016 (Fig. 1). As expected from the heavy masses of these isotopes, their compositional range is fairly narrow: defining ε109Ag as the deviation of the 109Ag/107Ag ratio measured in a given sample from that of the NIST SRM 978a standard in parts per 10,000, most silver coins fall between −1 and +2. The analytical precision of 5–10 ppm is sufficient to reveal statistically significant differences between historically and geographically different sets of coins. In contrast, native silver ores analyzed by Hauri et al. (2000), Chugaev and Chernyshev (2009), and Mathur et al. (2018) show a range in ε109Ag from −5.3 to +1.9, which is much broader than that of silver coinage from around the Mediterranean and from Spanish Americas analyzed by Desaulty and Albare`de (2013), Desaulty et al. (2011) and Albàrède et al., 2016, arguing against native ores being used as a major source of metal. Given the growing interest in silver isotopes, understanding the causes of Ag isotopic variability therefore is a timely undertaking and what the present work aims to achieve is to provide a first compendium of ab initio calculations of Ag isotope fractionation between species coexisting in fluids between 0 and 300 °C. We will compute stable structures, interatomic distances, and ln β values, where β stands for reduced partition function ratios of isotopologues, and, using the work by Akinfiev and Zotov (2001) on Ag speciation in hydrothermal fluids, discuss isotope fractionation between the different ore minerals that host silver. We will show that isotope fractionation among coexisting species sheds light on the origin of isotopic variability among different Ag sources.
The contribution of nuclear field shift or ‘nuclear volume’ (Fujii et al., 2009b; Schauble, 2007) to isotopic fractionation also needs to be estimated. These terms refer to what is actually the zeroth (mean radius) and second order terms (shape) of the tensor of nuclear charge distribution, both identified by nuclear spectroscopy in the ‘30s. The topic has been covered multiple times, notably by Brix and Kopfermann (1958), Breit (1958), and King (1984). The nuclear field-shift (NFS) effect on stable isotope abundances received a theoretical treatment by Bigeleisen (1996). It was suggested by, respectively, (Fujii et al., 2006a, 2006b) and (Schauble, 2007) that NFS could alter the apparent amplitude of nucleosynthetic anomalies in meteorites and the natural isotopic abundances of heavy elements. For silver, which has only two stable isotopes, NFS is difficult to observe analytically and its theoretical prediction by ab initio techniques is therefore particularly useful.

Finally, we use our results to address one of the long-standing challenges posed by the extinct 109Pd-107Ag chronometer in meteorites ($T_{1/2} = 6.5$ Ma), which is to understand the rather large scatter of data on chondrites with little radiogenic 107Ag. We conclude that isotope fractionation by low-temperature alteration makes this chronometer inadequate to handle the issues of element volatility in the early Solar System.

2. METHODS

Orbital geometries and vibrational frequencies of Ag species were computed using the density functional theory (DFT) implemented by the Gaussian09 code (Dennington et al., 2009; Frisch et al., 2009). The DFT method employed here is a hybrid density functional consisting of Becke’s three-parameter non-local hybrid exchange potential (B3) (Becke, 1993) with Lee-Yang-and Parr (LYP) (Lee et al., 1988) non-local functionals. The 6-311+G(d,p) basis set, which is an all-electron basis set, was used for H, C, N, O, Na, S, Cl, and As. For Ag and Sb, aug-cc-pVTZ basis set (Figgjo et al., 2005; Peterson and Puzzarini, 2005), which is an effective core potential (ECP) basis set, was used. Molecules were modeled without any forced symmetry. An ultrafine numerical integration grid was used and the SCF (self-consistent field) convergence criterion was set to 10^{-8}. Calculations were performed for single cluster model molecules. Short-range properties of ions and compounds with the solution are often evaluated by assuming that they are surrounded by a fixed frame of water molecules arranged to form a second solvation shell (large clusters) (Fujii et al., 2010; Rustad et al., 2010). This topic was recently reviewed by Blanchard et al. (2017). The large cluster model, however, needs experimental evidence of molecular arrangement in the second coordination sphere (Fujii et al., 2014) and also raises some difficulties for the choice of the basis set (Rustad et al., 2010). In addition, water exchange with the solution is so fast, at least in the case of solutions of silver chlorides, that the hydration shells cannot be considered as regular or stable (Liu et al., 2012). For the calculation of long range interactions, it may be assumed that the whole complex immersed in a continuum with dielectric properties approximating those of the solvent (Tomasi et al., 2005; Ginovska et al., 2008). The effect of a polarizable continuum is, however, smaller than that of a second coordination sphere (Fujii et al., 2014). For this preliminary work, we therefore restricted our calculations to a single-coordination shell (small clusters, typically Ag(H$_2$O)$_6$) with no additional water shell.

The isotope enrichment factor was evaluated from the reduced partition function ratio (RPFR) ($s/s'f$ (Bigeleisen and Mayer, 1947; Urey, 1947), also noted β, such as

$$\ln \frac{s}{s'} = \sum \left[\ln b(u'_i) - \ln b(u_i) \right]$$ \hspace{1cm} (1)

where

$$\ln b(u_i) = -\ln u_i + \frac{u_i}{2} + \ln(1 - e^{-u_i})$$ \hspace{1cm} (2)

and

$$u_i = \frac{h v_i}{kT}$$ \hspace{1cm} (3)

In the latter expression, v stands for vibrational frequency, s for the symmetry number of the considered compound, k for the Plank constant, k for the Boltzmann constant, and T for the absolute temperature. The subscript i denotes the i-th normal mode of molecular vibration, and primed variables refer to the light isotopologue. The isotope enrichment factor due to molecular vibrations can be eval-

Fig. 1. Literature data reported as ε^{109}Ag (the deviation of 109Ag/107Ag of a given sample from 109Ag/107Ag of the NIST SRM 978a standard in parts per 10,000). The data upwards from the Antique East Mediterranean to Mexico represent analyses of 132 silver coins (Albarède et al., 2016; Desaulty and Albarède, 2013; Desaulty et al., 2011). Typical 2-sigma errors are 0.05–0.08 ‰. Typical 2-sigma errors are 0.2–0.4 ‰. The data from the Medieval East Mediterranean (blue: Chugaev and Chernyshev (2009); open symbols: Mathur et al. (2013; Desaulty et al., 2011)). Typical 2-sigma errors are 0.05–0.08 ‰.

Note: The figure legend, the reader is referred to the web version of this article.
uated from the frequencies v_i, summed over all the different normal modes. In order to represent true isotope fractionation factors, the $\ln \beta$ values should be corrected with different terms accounting for inharmonic vibrations, for the Born-Oppenheimer approximation, for the nuclear spin effect, and for the nuclear field shift effect. Of all these corrections, only the last term is deemed significant (Bigeleisen, 1996; Fujii et al., 2009a).

The hydration number of Ag$^+$ ions had been thought to be two (Maeda et al., 1979). Then the tetracoordination was suggested with a 2.4 Å bonding distance of Ag–O (Sandstrom et al., 1985; Magini, 2018). In an X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS) study, a combination of two shorter Ag–O and two longer Ag–O distances was discussed (Persson and Nilsson, 2006). The data are reported in Table 1. In a molecular dynamics (MD) study (Blauth et al., 2010) and an EXAFS study (Fulton et al., 2009), pentacoordination and hexacoordination (a distorted octahedral) structures of hydrated Ag$^+$ were presented as well as the tetracoordination. In this study, the bonding distances calculated for the tetracoordination showed a mixture of short and long Ag–O distances. Calculation of the hexacoordination resulted in a distorted octahedral structure with two Ag–O axial and four Ag–O equatorial, but the variation of the Ag–O bonding distance was only 0.05 Å. The $\ln \beta$ values of the hydrated Ag$^+$ ions are shown in Table 2. As shown in Table 2, $\ln \beta$ decreased with the hydration number. Hence, the accurate structure of hydrated Ag$^+$ ions should be experimentally clarified.

The ligands, which possess π bonding character, form strong complexes with Ag(I) and tend to form linear structures, where H$_2$O and OH$^-$ are poor examples of the twofold coordination of Ag(I) (Baes and Mesmer, 1976). As for the twofold linear coordination complexes, Ag(I) hydroxide, chloride, sulfate, and sulfide, were computed. The $\ln \beta$ values obtained are shown in Table 2. Since SO_4^{2-} is a strong divalent anion, an initial structure of linear H$_2$O-Ag-SO$_4$ turned to bend and H$_2$O and SO$_4^{2-}$ was contacted.

This may have resulted in a small $\ln \beta$ for AgSO$_4$(H$_2$O) The order of $\ln \beta$ for the complexation between Ag(H$_2$O)$^+$ and L (L: H$_2$O, OH$^-$, Cl$^-$, HS$^-$, HSO$_4^-$) was found to be OH$^- > Cl^- > HSO_4^- > HS^-> H_2O$. Deprotonation of hydrated Ag$^+$ may create a large isotope fractionation. Besides

Table 1

Values of ratios of reduced partition functions, in the form of 1000 $\ln \beta$, for the isotopomers of different Ag compounds at temperatures between 273 and 573 K.

<table>
<thead>
<tr>
<th>Temp K</th>
<th>273</th>
<th>298</th>
<th>323</th>
<th>373</th>
<th>473</th>
<th>573</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag(0)</td>
<td>0.399</td>
<td>0.335</td>
<td>0.285</td>
<td>0.214</td>
<td>0.133</td>
<td>0.091</td>
</tr>
<tr>
<td>Hydroxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag(H$_2$O)$_2$$^+$</td>
<td>0.778</td>
<td>0.659</td>
<td>0.565</td>
<td>0.428</td>
<td>0.269</td>
<td>0.185</td>
</tr>
<tr>
<td>Ag(H$_2$O)$_4$$^+$</td>
<td>0.556</td>
<td>0.469</td>
<td>0.401</td>
<td>0.303</td>
<td>0.190</td>
<td>0.130</td>
</tr>
<tr>
<td>AgOH(H$_2$O)$_6$</td>
<td>0.424</td>
<td>0.358</td>
<td>0.307</td>
<td>0.233</td>
<td>0.145</td>
<td>0.099</td>
</tr>
<tr>
<td>Carbonates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AgHCO$_3$(H$_2$O)$_6$</td>
<td>0.989</td>
<td>0.838</td>
<td>0.719</td>
<td>0.545</td>
<td>0.343</td>
<td>0.236</td>
</tr>
<tr>
<td>AgHCO$_3$(OH)$^-</td>
<td>1.384</td>
<td>1.176</td>
<td>1.011</td>
<td>0.769</td>
<td>0.487</td>
<td>0.335</td>
</tr>
<tr>
<td>Ag$_2$CO$_3$(H$_2$O)$_2$</td>
<td>0.980</td>
<td>0.830</td>
<td>0.712</td>
<td>0.539</td>
<td>0.340</td>
<td>0.233</td>
</tr>
<tr>
<td>Chloride compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AgCl(H$_2$O)$_0$</td>
<td>0.945</td>
<td>0.800</td>
<td>0.685</td>
<td>0.518</td>
<td>0.326</td>
<td>0.223</td>
</tr>
<tr>
<td>AgCl(H$_2$O)$_3$</td>
<td>0.933</td>
<td>0.789</td>
<td>0.676</td>
<td>0.512</td>
<td>0.322</td>
<td>0.220</td>
</tr>
<tr>
<td>AgCl(H$_2$O)$_5$</td>
<td>0.991</td>
<td>0.838</td>
<td>0.718</td>
<td>0.544</td>
<td>0.342</td>
<td>0.234</td>
</tr>
<tr>
<td>AgCl$^-$</td>
<td>0.852</td>
<td>0.720</td>
<td>0.616</td>
<td>0.465</td>
<td>0.292</td>
<td>0.200</td>
</tr>
<tr>
<td>AgCl2</td>
<td>0.308</td>
<td>0.259</td>
<td>0.220</td>
<td>0.165</td>
<td>0.103</td>
<td>0.070</td>
</tr>
<tr>
<td>NaAg_2Cl$_2$(H$_2$O)$_6$</td>
<td>0.711</td>
<td>0.600</td>
<td>0.513</td>
<td>0.387</td>
<td>0.242</td>
<td>0.166</td>
</tr>
<tr>
<td>Sulfide compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AgSO$_4$(H$_2$O)$_1$</td>
<td>0.676</td>
<td>0.571</td>
<td>0.489</td>
<td>0.370</td>
<td>0.233</td>
<td>0.160</td>
</tr>
<tr>
<td>AgHSO$_4$(H$_2$O)$_3$</td>
<td>0.932</td>
<td>0.789</td>
<td>0.677</td>
<td>0.513</td>
<td>0.323</td>
<td>0.221</td>
</tr>
<tr>
<td>Ag$_2$SO$_4$(H$_2$O)$_5$</td>
<td>0.936</td>
<td>0.792</td>
<td>0.679</td>
<td>0.514</td>
<td>0.324</td>
<td>0.222</td>
</tr>
<tr>
<td>AgHS(H$_2$O)$_1$</td>
<td>0.905</td>
<td>0.765</td>
<td>0.656</td>
<td>0.496</td>
<td>0.312</td>
<td>0.214</td>
</tr>
<tr>
<td>Ag$_2$HS(H$_2$O)$_3$</td>
<td>0.838</td>
<td>0.708</td>
<td>0.606</td>
<td>0.459</td>
<td>0.288</td>
<td>0.197</td>
</tr>
<tr>
<td>Ag$_2$Sb$_2$S$_6$(H$_2$O)$_5$</td>
<td>0.864</td>
<td>0.731</td>
<td>0.625</td>
<td>0.473</td>
<td>0.297</td>
<td>0.203</td>
</tr>
<tr>
<td>Ag$_2$Sb$_2$S$_6$(H$_2$O)$_7$</td>
<td>0.505</td>
<td>0.425</td>
<td>0.363</td>
<td>0.273</td>
<td>0.170</td>
<td>0.116</td>
</tr>
<tr>
<td>AgAs$_2$S$_6$(H$_2$O)$_9$</td>
<td>0.563</td>
<td>0.475</td>
<td>0.406</td>
<td>0.306</td>
<td>0.191</td>
<td>0.131</td>
</tr>
<tr>
<td>AgN$_3$(H$_2$O)$_7$</td>
<td>0.622</td>
<td>0.525</td>
<td>0.449</td>
<td>0.338</td>
<td>0.212</td>
<td>0.145</td>
</tr>
<tr>
<td>Ammonium compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AgNH$_3$(H$_2$O)$^+$</td>
<td>0.957</td>
<td>0.812</td>
<td>0.698</td>
<td>0.530</td>
<td>0.335</td>
<td>0.230</td>
</tr>
<tr>
<td>Ag(NH$_3$)$_2$</td>
<td>1.131</td>
<td>0.961</td>
<td>0.826</td>
<td>0.629</td>
<td>0.398</td>
<td>0.274</td>
</tr>
</tbody>
</table>
hydroxide, complexation of Ag\(^+\) with Cl\(^-\) may be a key of the isotope fractionation of Ag.

We further investigated ln \(\beta\) of Ag chlorides. The higher order complexation of Ag\(^+\) with Cl\(^-\) forms AgCl\(_2\). Though a threefold complexation of AgCl\(_2\)(H\(_2\)O)\(^-\) was reported in an MD study (Liu et al., 2012), in our DFT study, the calculation was converged to be a simple linear AgCl\(_2\). This complex showed smaller ln \(\beta\) compared with that of AgCl(H\(_2\)O). In an S free high-temperature/high-pressure fluid, NaAgCl\(_2\) is thought to be a dominant Ag species (Yin and Zajacz, 2017). NaAgCl\(_2\) may form via the association of hydrated Ag\(^+\) and AgCl\(_2\). A complexation of Na\(^+\) and AgCl\(_2\) with \(n\) water molecules was computed. As shown in Table 2, NaAgCl\(_2\)(H\(_2\)O)\(_n\) showed smaller ln \(\beta\) compared with that of AgCl\(_2\). The magnitude of ln \(\beta\) for the Ag chlorides was on the order of AgCl(H\(_2\)O) > AgCl\(_2\) > NaAgCl\(_2\)(H\(_2\)O)\(_n\).

The nuclear field shift (NFS) effect (see Schauble (2007) and Fujii et al. (2009a) and references therein) was implemented in the DIRAC 13 (Visscher, 2013) program. The triple-zeta Dyall basis sets dyall.ev3z (Dyall, 2007) were used for the relativistic calculation of molecular electronic structures. The electronic structures of Ag\(^0\) and Ag\(^+\) were calculated as those of ([Kr]4d\(^{10}\)5s\(^1\)) and ([Kr]4d\(^{10}\)), respectively. The NFS effect was only estimated for \(^{109}\)Ag/\(^{107}\)Ag fractionation between Ag metal and dissolved sulfide AgSH(H\(_2\)O).

3. RESULTS

The structures obtained upon convergence are shown in Fig. 2. The ln \(\beta\) values are tabulated in Table 1 and displayed in Fig. 3 for temperatures of 298 K (25 °C) and 300 °C. Bond lengths are listed in Table 2. In general, chlorides, sulfates, and sulfide with coordination numbers of 1 or 2 fractionate Ag isotopes to the same extent. As expected, compounds with large coordination numbers such as AgCl\(_2\)(H\(_2\)O)\(^-\) and AgCl\(_2\)(H\(_2\)O)\(^0\) tend to have smaller ln \(\beta\) values than those with small coordination numbers and close to those of metallic Ag. The larger the number of H\(_2\)O or Cl\(^-\) around Ag\(^+\), the smaller the ln \(\beta\). The value of ln \(\beta\) correlates negatively with bond length in two distinct groups (Fig. 4). The largest of these groups consists of Ag\(^+\) hexahydrate, chlorides, sulfides, sulfo-antimonides, and sulfo-arsenides, while the smaller group consists of Ag\(^+\) di- and tetra-hydrate, Ag(OH) mono-hydrate, and hydrated sulfates. As a rule, N and O donor ligand systems show shorter bond lengths and larger ln \(\beta\) values. Sulfur donor ligand systems show longer bond lengths and smaller ln \(\beta\) values. Although the bond lengths of Cl systems are similar to those of the group of S donor systems, their ln \(\beta\) falls in between the values of the O-N group and those of the S group. This trend is similar to those observed for the isotopes of Fe, Ni, Cu, and Zn (Fujii et al., 2014) and seems to correlate negatively with the electronegativity of the bonding ion from O (3.44), N (3.04), Cl (3.16), and S (2.58) (Allred, 1961) and positively with the group electronegativity (Huheey, 1965) (see Table 7 in Fujii et al. (2014)).

To the best of our knowledge, for hydrated Ag\(^+\) ion in aqueous solutions, the molecular vibration between Ag and O of water molecules has not been clarified by IR and Raman spectrometry. According to a study of H\(_2\)O adsorption on Ag surface (Stuve et al., 1981), it is suggested...
that Ag—OH₂ stretching frequency may be 200–300 cm⁻¹. Besides the hydrated Ag⁺ ion, there are several reports on the vibrational frequencies of Ag(I) complexes. These are shown in Table 3. Our computational results are in good agreement with the literature values.

For the Ag(0)-Ag(I) equilibrium, the NFS effect becomes prominent (>1 × 10⁻⁴) at ambient temperature and below (Table 4), but is still on the order of 0.5 epsilon units at 300–500 °C.

4. DISCUSSION

At 25 °C, Ag speciation is critically dependent on Cl concentrations (Fritz, 1985). At the high temperatures of hydrothermal solutions (~300 °C), and in the absence of Sb and As, the predominant species in fluids are AgCl₂⁻ and AgHS⁻ (Akinfiev and Zotov, 2001). It must be noted that the speciation adopted by the authors and reproduced in Fig. 5 does not exactly match the species listed in Table 1. The ¹⁰⁹Ag/¹⁰⁷Ag fractionation of these two species is on the order of 10⁻⁴ at most. Hydroxide AgOH should be found only in S- and Cl-poor fluids and, therefore, can be neglected. Assuming that solid Ag₂S precipitates from the isochemical dissolved species, isotope fractionation between solid Ag₂S and the dissolved Ag₂S(H₂O)₁² species should be small; not much isotopic fractionation (0.05 epsilon units) is expected in the Ag-Cl-S system regardless of the pH.
At those temperatures, stronger effects are, however, expected in Sb- and As-rich solutions. Bonding with SbS₃ clearly reduces the 1000 ln \(\beta \) value by \(2.85 \times 10^{-4} \) (two epsilon units). Low \(^{109}\text{Ag} / ^{107}\text{Ag} \) values are expected in tennantite-tetrahedrite (Ag(Sb,As)S₂) free or substituted in galena, and also in tennantite-tetrahedrite (Ag(Sb,As)S₃) precipitated from S-, Cl-, and Pb-rich hydrothermal fluids. Isotstructural Sb sulfosalts seem to be isotopically lighter than their As counterparts.

Under the more oxic conditions of the subsurface and at the temperatures of groundwater (<100°C), silicates are less soluble, alkalinity is lower, Cl is less preponderant, and S should be in the sulfate form. Silver should be present as \(\text{Ag}^+ \) and, at higher chlorinity, as \(\text{AgCl}_0 \) (Akinfiev and Zotov, 2001). At 100°C, the \(^{109}\text{Ag} / ^{107}\text{Ag} \) ratio should be higher for \(\text{AgCl}_0 \) than for \(\text{Ag}^+ \), which, as an aside to be discussed further below, immediately raises serious concerns when the yield of \(\text{Ag} \) during separation chemistry is not complete (i.e., less than 100%). It is expected from the results that insoluble chlorargyrite (AgCl) should be isotopically heavy.

In groundwater and soils underneath forests and grasslands, ammonia (\(\text{NH}_4^+ \)) should be abundant as a result of nitrogen fixation by diazotrophs, either symbiotically with plants (\textit{rhizobia}) or free-living (\textit{clostridium}), which all work with a family of MoFe or Fe enzymes known as nitrogenases (Bothe et al., 2006). Such enzymes are also particularly abundant in lateritic soils. Silver complexation with \(\text{NH}_4^+ \) produces a particularly strong complex known as di-ammine silver \(\text{Ag(NH}_3)_2^+ \) (Tollen’s reagent). Upon reduction by a number of organic components associated with plants, most commonly aldehydes and catechol melanin, the Tollen’s reagent precipitates metallic silver according to the reaction:

\[
2\text{Ag(NH}_3)_2^+(\text{aq}) + \text{R-CHO(}\text{aq}) + \text{H}_2\text{O} \rightarrow 2\text{Ag(s)}
\]

\[
+ \text{R-COOH(}\text{aq}) + 4\text{NH}_4^+ + 2\text{H}^+
\]

Nitrification, e.g., biological oxidation of \(\text{NH}_3 \) to \(\text{NO}_2^- \) and \(\text{NO}_3^- \), is expected to also destroy di-ammine \(\text{Ag} \) and precipitate metallic \(\text{Ag} \) (together with \(\text{Au} \) and \(\text{Cu} \)). Metallic \(\text{Ag} \) nanoparticles (AgNP) are known to precipitate \(\text{Ag(0)} \) from \(\text{AgNO}_3 \) solutions through the action of bacteria.
Lactobacillus, Pseudomonas, yeast (MKY3) and fungi (Mandal et al., 2006; Sharma et al., 2009). A silver-resistant strain of Pseudomonas stutzeri isolated by Haefeli et al. (1984) from the soils of a silver mine, intracellularly accumulate AgNPs (Slawson et al., 1992). Native Ag, pure or alloyed with Au, is found in soils, in particular in the weathering products of sulfide seams (gossan). If Ag is distributed among Ag⁺, Ag(H₂O)₅⁺, AgCl₂⁻, and Ag(NH₃)₂⁺, precipitation of native Ag from di-ammine Ag should favor ¹⁰⁹Ag/¹⁰⁷Ag ratios higher by up to 10 epsilon

Table 3
Vibrational frequencies of Ag(I) species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Stretch</th>
<th>This study (cm⁻¹)</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag(H₂O)₂⁺</td>
<td>Ag—O</td>
<td>285 (v₁)</td>
<td>200–300</td>
</tr>
<tr>
<td>Ag(H₂O)₃⁺</td>
<td>O—Ag—O</td>
<td>281 (Ag—OH₂)</td>
<td>280,554</td>
</tr>
<tr>
<td>Ag(OH)(H₂O)</td>
<td>O—Ag—O</td>
<td>524 (Ag—OH)</td>
<td></td>
</tr>
<tr>
<td>AgCl(H₂O)</td>
<td>O—Ag—Cl</td>
<td>261</td>
<td>227,240</td>
</tr>
<tr>
<td>AgCl₂⁻</td>
<td>Cl—Ag—Cl</td>
<td>247 (v₁)</td>
<td>238,268</td>
</tr>
<tr>
<td>AgNH₃(H₂O)+</td>
<td>O—Ag—N</td>
<td>308</td>
<td>296</td>
</tr>
<tr>
<td>Ag(NH₃)₂⁺</td>
<td>N—Ag—N</td>
<td>423 (v₁)</td>
<td>430 (v₁)</td>
</tr>
</tbody>
</table>

References:

Table 4
Nuclear Field Shift (NFS) vs mass-dependent (MS) isotope effect for the reduction reaction Ag(I) → Ag(0) for ¹⁰⁹Ag-¹⁰⁷Ag fractionation between Ag metal and dissolved sulfide AgSH (H₂O). Values of 1000 ln b₀Ag(0) - 1000 ln b₀Ag(I) broken down into MS and NFS effects.

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>MS</th>
<th>NFS</th>
<th>MS + NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.5059</td>
<td>0.1025</td>
<td>-0.4034</td>
</tr>
<tr>
<td>25</td>
<td>-0.4304</td>
<td>0.0939</td>
<td>-0.3365</td>
</tr>
<tr>
<td>50</td>
<td>-0.3703</td>
<td>0.0866</td>
<td>-0.2837</td>
</tr>
<tr>
<td>100</td>
<td>-0.2821</td>
<td>0.0750</td>
<td>-0.2071</td>
</tr>
<tr>
<td>200</td>
<td>-0.1786</td>
<td>0.0592</td>
<td>-0.1195</td>
</tr>
<tr>
<td>300</td>
<td>-0.1229</td>
<td>0.0488</td>
<td>-0.0741</td>
</tr>
<tr>
<td>500</td>
<td>-0.0682</td>
<td>0.0362</td>
<td>-0.0320</td>
</tr>
<tr>
<td>700</td>
<td>-0.0432</td>
<td>0.0288</td>
<td>-0.0145</td>
</tr>
<tr>
<td>900</td>
<td>-0.0298</td>
<td>0.0239</td>
<td>-0.0060</td>
</tr>
<tr>
<td>1100</td>
<td>-0.0279</td>
<td>0.0204</td>
<td>-0.0075</td>
</tr>
</tbody>
</table>

Fig. 5. Stability fields of Ag compounds at 100 and 300 °C and pressures of 1–2000 bars in the Ag-Cl-S-H₂O system (Akinfiev and Zotov, 2001). Numbers in red are ¹⁰⁹Ag/¹⁰⁷Ag fractionation of Ag species relative to Ag⁺ in epsilon units.

Fig. 6. Histogram of ε¹⁰⁹Ag in the 132 silver coins analyzed by Desaulty and Albarede (2013), Desaulty et al. (2011) and Albarede et al. (2016). Typical analytical errors are <0.1 ε units. Note that most values cluster around 0 and are consistent with hydrothermal ores, while a secondary peak at ~+0.8 may signal low-temperature ores (gossan), including native silver biologically formed by the breakdown of di-ammine Ag.

(Lactobacillus, Pseudomonas, yeast (MKY3) and fungi (Mandal et al., 2006; Sharma et al., 2009). A silver-resistant strain of Pseudomonas stutzeri isolated by Haefeli et al. (1984) from the soils of a silver mine, intracellularly accumulate AgNPs (Slawson et al., 1992). Native Ag, pure or alloyed with Au, is found in soils, in particular in the weathering products of sulfide seams (gossan). If Ag is distributed among Ag⁺, Ag(H₂O)₅⁺, AgCl₂⁻, and Ag(NH₃)₂⁺, precipitation of native Ag from di-ammine Ag should favor ¹⁰⁹Ag/¹⁰⁷Ag ratios higher by up to 10 epsilon.
Variable $^{109}\text{Ag}/^{107}\text{Ag}$ values have been observed in native Ag and in Ag dissolved in native Au by Chugaev and Chernyshev (2009) and Mathur et al. (2018), which suggests that native metals may indeed form in soils by the action of nitrogen fixation and nitrification. Precipitation of high-$^{109}\text{Ag}/^{107}\text{Ag}$ metal should leave Ag chelates, notably chlorides, in the residual fluid extremely depleted in ^{109}Ag. At low-temperature, the nuclear field-shift effect associated with redox processes may contribute up to 1 epsilon unit to the scatter of $^{109}\text{Ag}/^{107}\text{Ag}$, and probably more if finite-reservoir (Rayleigh distillation) conditions prevail.

Planetary reservoir silver contents as compiled by Palme and O’Neill (2003) are 197 ppb in CI chondrites, 4 ppb in the terrestrial mantle, and 80 ppb in average continental crust. We propose that silver coins offer the best representative mean value of $^{109}\text{Ag}/^{107}\text{Ag}$ in the continental crust simply because of the metal having been mined for 2000 years from ores distributed throughout unrelated orogens spreading over more than thousands of kilometers. The most obvious cause of Ag isotopic variability observed in Fig. 1 is the relative proportions of hydrothermal (galena, sulfosalts) and low-temperature ores (epigenetic, gossan). A histogram of $\epsilon^{109}\text{Ag}$ in all silver coins measured so far (Fig. 6) shows a well-defined peak at 0 (relative to NIST SRM 978a) and a smaller peak at $+0.8$. The statistical distances between the groups of data from different provinces (Peru, Mexico, Europe, E. Mediterranean, etc.) and different periods (Antiquity, Middle Age, Modern, etc) are a useful guideline. Table 5 shows the mean and standard deviation for each province, the matrix of binary parametric (Student’s) t-tests, and the matrix of binary non-parametric (Mann-Whitney-Wilcoxon rank sum) t-tests. The elements of the matrix measure the probability p that two groups (row/column) are samples from two normal (Student) or non-necessarily normal (Mann-Whitney-Wilcoxon) populations with the same mean. Large p values (>0.7) raise the possibility that silver coins from Medieval Europe, Medieval Spain, and the Antique Eastern Mediterranean shared common Ag sources and therefore that the same ore deposits were mined. This is also the case for coins struck in Peru and for coins struck in Modern (post-Columbus) Spain and in Mexico. Coins from Modern Spain and Mexico are statistically more distant. Additional tracers such as Cu and Pb isotope compositions can help refine the assignment of a particular mint to a particular source (Desaulty et al., 2011; Desaulty and Albarede, 2013).

In contrast, Modern and Medieval Spain are statistically different ($p = 0.00$), which has been ascribed by Desaulty et al. (2011) and Albarede et al. (2012) to two different events. (1) With the conquest of the Granada Emirate in 1492, the silver mines of the Betics, Southern Spain, fell into the hands of the Catholic Kings. (2) After the second half of
the 16th century, Peru and Mexico became the nearly exclusive silver providers of the Spanish crown. The silver mines of Potosí, Peru, and Zacatecas, Mexico, produced enormous amounts of silver, thanks in part to the ‘patio’ amalgamation process invented by “Bartolomé de Medina” (Probert, 1969; Brading and Cross, 1972). Although the temperatures in excess of 960 °C required by the much older cupellation process are not expected to produce observable isotope fractionation, it is not clear whether an incomplete ‘patio’ amalgamation process could have introduced some isotopic bias. The narrow range of $\varepsilon_{109}\text{Ag}$ in silver coins, however, strongly suggests that metallurgy was not the main cause of isotope fractionation.

5. IMPLICATIONS FOR $^{107}\text{PD-}^{107}\text{Ag}$ CHRONOMETRY AND THE $^{109}\text{Ag}/^{107}\text{Ag}$ OF THE BULK SILICATE EARTH

An important cosmochemical implication of the present work is related to the extinct $^{107}\text{Pd-}^{107}\text{Ag}$ chronometer ($T_{1/2} = 6.5$ Ma), which produces positive deviations of a few $\varepsilon_{109}\text{Ag}$ units in chondrites. Isotopic variability induced by the low-temperature alteration well known to have affected most meteorites, in particular chondrites, has been noted by Woodland et al. (2005), Schönbachler et al. (2008, 2010), and Theis et al. (2013). Note that ^{109}Ag being the radiogenic isotope, cosmochemists use $\varepsilon_{107}\text{Ag} (= -\varepsilon_{109}\text{Ag})$ while we here uphold the stable isotope convention of using heavy/light ratios. The $\varepsilon_{107}\text{Ag}$ values of the carbonaceous chondrites analyzed by Schönbachler et al. (2008) (−2.1 to +0.8) are similar to the Bulk Silicate Earth (BSE) (−2.2 ± 0.7) proposed by Schönbachler et al. (2010). The validity of this BSE value, which was derived from a set of basalt data with Ag chemistry yields as low as 60 percent, is questionable. The difference of 0.9 $\varepsilon_{107}\text{Ag}$ units between two series of measurements of Allende (CV3 chondrite) and the difference of 15 $\varepsilon_{107}\text{Ag}$ units between two series of measurements of the same Hawaiian lava sample KOO49 analyzed by Schönbachler et al. (2008) and Theis et al. (2013) are significantly larger than the reproducibility of the measurements. Although the authors attribute these differences to sample heterogeneity, the present work suggests that incomplete Ag yields during anion-exchange separation in chloride-bearing media (Schönbachler et al., 2007) may also be the cause of the observed analytical biases.

In contrast, the average $\varepsilon_{107}\text{Ag}$ in the metal of 132 silver coins, which together represent a massive amount of geographically widespread terrestrial metal minted over 2000 years and dominated by hydrothermal deposits, is −0.10 ± 0.10 (2-sigma standard error). This value is strikingly similar to the NIST SRM 978a value ($\varepsilon_{107}\text{Ag} = \varepsilon_{109}\text{Ag} \equiv 0$), especially if the gossan-type, ^{109}Ag-rich silver component of the second peak on the histogram of Fig. 6 is taken into account. This value also is similar to Theis et al.’s (2013) data on a Coddy Shale sample. Although reliable isotopic data on terrestrial rocks and ores are scarce, petrological evidence suggests that Ag is quantitatively transferred to the liquid phase during mantle melting, and that Ag is quantitatively partitioned into sulfide melt during magma ascent and cooling (Li and Audéat, 2012; Kiseeva and Wood, 2015). With all these processes taking place at high temperatures, which is consistent with the remarkably narrow $\varepsilon_{109}\text{Ag}$ range of silver coinage, it is expected that Ag isotope fractionation between the crust and the mantle is minor. We therefore suggest that the NIST SRM 978a value should be retained to represent the Bulk Silicate Earth. Since addition of chondritic material should have little or no impact on the $^{109}\text{Ag}/^{107}\text{Ag}$ of a chondritic Earth, the more radiogenic character of Ag in the BSE relative to chondrites is consistent with the accretion of a small veneer of iron meteorites, which may be a component of the Late Veneer recognized by Chou (1978).

In contrast, and as suggested by Schönbachler et al. (2008), the pronounced scatter of ordinary chondrite data, however, most likely reflects open system metamorphism on the parent body. The fractionation factors at ambient temperatures derived from the present study are of a magnitude consistent with such a difference.

6. CONCLUSIONS

We calculated by DFT the ratios of $^{109}\text{Ag}/^{107}\text{Ag}$ reduced partition function ratios $\ln \beta$ for the free Ag$^+$ ion with various degrees of hydration, for hydrates, chloride complexes, sulfides, sulfates, SbAs sulfosalts, carbonates, and Ag-ammines. At 0 °C, the magnitude of the Nuclear Field Shift effect on isotope ratios is -1×10^{-4}. Only weak Ag isotope fractionation is expected at 300 °C in the Ag-Cl-S system regardless of the pH of hydrothermal solutions. Bonding with SbS$_3$ and AsS$_3$ reduces $\ln \beta$ values in a temperature-dependent way.

At low temperatures, chlorides and native silver should be fractionated relative to the hydrated Ag$^+$ ion. In groundwater underneath forests and grasslands, Ag$^+$ forms diammine silver with ammonia resulting from nitrogen fixation and, upon biologically-mediated reduction, precipitates metallic Ag(0).

It is suggested that incomplete Ag yields during anion-exchange separation is an issue that may have affected published $^{109}\text{Ag}/^{107}\text{Ag}$ data on chondrites and terrestrial silicate rocks.

Analytical issues raise some questions about the reliability of literature values on silicate rocks and meteorites: we propose that the NIST SRM 978a value ($\varepsilon_{107}\text{Ag} = \varepsilon_{109}\text{Ag} \equiv 0$) should be adopted as the new BSE reference.

ACKNOWLEDGMENTS

We acknowledge support from the European Research Council grant 741454-SILVER-ERC-2016-ADG. TF thanks Minori Abe for her valuable comments on the NFS calculation. Janne Blichert-Toft did a great job editing the English and polishing the text. We gratefully acknowledge insightful comments by three anonymous referees.

APPENDIX

Mineralogy of some ore deposits of historical importance (Boyle, 1968).
Potosi (quartz-porphyry), Peru: Ag sulfides and sulfosalts: tetrahedrite Cu₁₂(As,Sb)₃S₄, andorite (PbAgSb₃S₆), pyargyrite (Ag₂SbS₃), matildite (AgBiS₂). Oxidation to >300 m: native silver, chlorargyrite, Ag₂S, pyargyrite.

Zacatecas (stockwork in sediments), Mexico: tetrahedrite, argentiferous galena, argentite, pyargyrite. Secondary minerals: native silver, argentite, chlorargyrite.

Laurion (replacement of carbonates and calcareous schists), Greece: The chief high-temperature Ag ore is argentiferous galena, argentite, pyragyrite. Secondarily: native silver, argentite, chlorargyrite.

Jáchymov (Joachimsthal), Czech Republic: silver is present in various sulfosalts and argentite.

REFERENCES

Associate editor: Shichun Huang