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ABSTRACT: In this paper, a comparative perspective is provided on the efficiency and drawback of hy-
brid techniques to produce broad-band (BB) seismic time-histories, based on physics-based numerical
simulations. The recently developed ANN2BB technique (Paolucci et al., 2018) is put under focus: it ex-
ploits Artificial Neural Networks (ANN) to predict short-period response spectra, feeding the algorithm
with the low frequency outcome numerical simulations and producing hybrid broad-band (0-30 Hz) time-
histories. The robustness of the methodology is argued by inputting correlated (from observations) and
uncorrelated long-period spectral ordinates into the ANN predictive tool to draw an uncertainty map of
possible predictions and test its sensitivity in relationship with the a priori accuracy numerical simula-
tions.

1. INTRODUCTION

In the last decades, the impressive technological
development in high-performance parallel super-
computing endowed the engineering-seismological
community with powerful computational tools
to deterministically reproduce 3-D regional scale
earthquake scenarios and render complex seis-
mic wave-fields (Ichimura et al., 2016; Fu et al.,
2017). Those tools incarnate the evergreen dream
of controlling the whole multi-scale earthquake
phenomenon in a deluxe virtual laboratory which
includes the active faults, the complex buried and
surface topography, the non-linear heterogeneous
rheology of the Earth’s crust and of the soil de-
posits, the structural components (Gatti et al., 2017,
2018a,c,b; Chabot et al., 2018). However, except
very few examples, high-fidelity forward physics-
based simulations of the source-to-site seismic
wave-propagation are still limited, at present, to
rather long wave-lengths, below 10 Hz. This im-
possibility of shattering this ceiling and produce re-

liable broad-band (0-30 Hz) earthquake scenarios
is not solely inherited from its actual technologi-
cal infeasibility (computational burden is still prac-
tically hard to treat, although promising advance-
ments have started in this sense, exploiting hex-
aflop architectures) but resides mostly in the lack
of data to constraint deterministic models at high
frequency. As a matter of fact, Physics-Based Sim-
ulations (PBSs) embody a rigorous seismic-wave
propagation model (i.e., including source, path,
and site effects), which is however reliable only
in the long-period range (typically above 0.20-0.25
s), owing to the limitations posed both by com-
putational constraints and by insufficient knowl-
edge of the medium at short wavelengths. That
being the case, alternatives strategies to represent
the high-frequency part of the observed earthquake
ground shaking have been crafted. One of the most
promising ones, based on hybridization technique
firstly proposed by Graves and Pitarka (2004),
was recently proposed by Paolucci et al. (2018).
The authors proposed a novel approach, called
ANN2BB, to generate broad-band (BB) ground
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motions, which couples the results of PBS for a
specific earthquake ground-motion scenario with
the predictions of an Artificial Neural Network
(ANN), overcoming some of the main issues of
hybrid modeling. The basic steps of the proce-
dure can be summarized as follows: (1) the ANN
is trained on a strong-motion dataset, to correlate
short-period (T ≤ T ∗) spectral ordinates with the
long-period ones (T ≥ T ∗), being T ∗ the thresh-
old period beyond which the results of the PBS
are supposed to be accurate; (2) the trained ANN
is used to obtain the short-period spectral ordi-
nates of the physics-based earthquake ground mo-
tion for periods below T ∗ (Figure ??); and (3)
the PBS long-period time histories are enriched at
high frequencies with an iterative spectral match-
ing approach, until the response spectrum matches
the short-period part obtained by the ANN. Re-
cently Gatti et al. (2018b) exploited high-fidelity
numerical simulations and ANN2BB to reproduce
the seismic response of a nuclear reactor build-
ing at the Japanese nuclear site of Kashiwazaki-
Kariwa. They employed the synthetics wave-forms
generated by a high-fidelity numerical simulations
to feed the ANN2BB workchain and produce BB
synthetics to be used as input for the Soil-Structure
Interaction analysis at the reactor building scale.

In this paper, a deeper investigation on the
ANN2BB procedure is performed, aiming at ex-
plaining its predictive power and highlight eventual
drawbacks. This analysis is carried out by means of
standard sensitivity analysis, such as the Sobol in-
dices, whose response puts ANN2BB into critical
perspective, so to improve it in future works.

2. ANN2BB OUTLINE

2.1. Methodology
Owing to the limitations posed both by computa-
tional constraints and by insufficient knowledge of
the medium at short wavelengths (i.e. the mesh
size and the poor description of the fault mech-
anism and geology) physics-based simulations of
the earthquake mechanism are regarded as reliable
in the long-period (LP) range (typically for natu-
ral periods T > T ?=0.75-1 s). Figure 1a shows
a typical pseudo-acceleration response spectra Sa
for PBS (blue line), with evident numerical disper-

sion at SP, compared to the stochastic/empirical Sa
prediction (STO/EMP, red line, obtained by several
alternative approaches, as for instance Sabetta and
Pugliese (1996)).

Hybrid broad-band wave-form (black-dashed
Sa spectrum), obtained for instance with the
method proposed by Graves and Pitarka (2004),
are directly exploitable as spectrum-compatible
input motions for seismic design of aboveground
structures. Although realistic at the single station,
the STO/EMP prediction fails in rendering the
spatial distribution of the High Frequency (HF)
Intensity Measures (IMs, i.e. PGA). To cope with
these limitation, Paolucci et al. (2018) proposed to
make use of ANN, trained on a set of strong motion
records, to predict the response spectral ordinates
at short periods (SP), using as input the LP ones
obtained by the PBS (blue Sa spectrum in Fig-
ure 1a), and, then, to enrich the PBS time-histories
by scaling iteratively their Fourier spectrum the
ANN target spectrum (in small axes in Figure 1b).
Further technical details on this so called ANN2BB
procedure are outlined in Paolucci et al. (2018).
Compared to a standard hybrid approach,
ANN2BB yields realistic waveforms, both in
time and frequency domains, as well as it ren-
ders maps of short-period peak values of ground
motion which reproduce more closely the cou-
pling of source-related and site-related features
of earthquake ground motion. The approach is
suitable to portray in a realistic way the spatial
correlation features of the peak values of ground
motion although it is not suitable yet to obtain
sets of waveforms with realistic spatial coherency
features at high frequency. Another issue to be
deemed is the choice of the training dataset to be
fairly representative of the earthquake process at
hand (Paolucci et al., 2018).

In this study, the teaching dataset is represented
by the SIMBAD database (Smerzini et al., 2014),
consisting of Ndb=501 three components high-
quality accelerograms recorded world-wide, span-
ning a range of MW from 5 to 7.4 and epicentral dis-
tances less than 40 km. Two ANNs were iteratively
trained upon this training set (refer to Paolucci et al.
(2018) for details on the training process and gen-
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Figure 1: (a) Sa response spectra obtained by wave-propagation simulation (PBS, blue), by stochastic/empirical
predictive methods (STO/EMP, orange) and by classical hybridization methods of the two (HYB, black dashed)
(see Graves and Pitarka (2004); Smerzini and Villani (2012)). (b) Sa spectral matching iterative procedure: the

red target spectrum is obtained by ANN prediction upon PBS LP values at long periods. The SP part is iteratively
scaled, starting from the HYB trial, by computing the ratio Sa(ANN)/Sa(HY B) at each iteration and applying it as a

corrective scaling factor in the Fourier’s domain. (c) Scheme of the ANN architecture employed in this study.

eralization features), one referring to the geomet-
ric mean of the horizontal components and one
to the vertical one. In our case, the neural net-
work is designed as a feed-forward two-layers Per-
ceptron (Bishop, 1995; Bishop and Roach, 1992),
featured by Nh

n =30 sigmoid hidden neurons and a
linear output. The number of nodes in the input
layer Ni

n equals the number of input variables NLP
Sa ,

whereas the number of nodes in the output layer
No

n equals the number of target values NSP
Sa . The

ANNs were trained by exploiting the Levenberg-
Marquardt algorithm (Levenberg, 1944; Marquardt,
1963) to perform back-propagation of the error and
adjust the weights1 (see Paolucci et al. (2018) for
further details and Figure 1c).
In the training phase, it is natural to investigate the
ANN performance at hand on a test database, for in-
stance on the Sa profiles obtained from recordings
not belonging to the teaching dataset.

To prove ANN2BB efficiency, we tested it on
the synthetic time-histories obtained by Gatti et al.
(2018a) in the surroundings of the Kashiwazaki-

1At this stage, the neural network fitting tools (nftool)
implemented in Matlab is used. MATLAB is avail-
able at https://fr.mathworks.com/solutions/
deep-learning.html (last accessed March 2018).

Kariwa nuclear power plant, in their numerical
simulation2 of one of the aftershock (AS1) of the
2007 Mw6.8 Niigata earthquake. The earthquake
ground motion simulations performed in Gatti et al.
(2018a) are reliable up to 5 Hz. The jump from 5 to
30 Hz is performed by applying the ANN2BB pro-
cedure, upon training with corner period T ?=0.75 s.
Figures 2 portrays the site response (in terms of Sa,
with 5% damping) at stations SG1 (Service Hall,
G.L. -2.7 m, Figures 2a) and for 1G1 (Unit 1, G.L.
0 m, 2b) respectively. It is evident that feeding the
ANN2BB procedure with the seismic wave-motion
obtained by a refined site-specific numerical anal-
ysis (including the folding structure) improves the
overall broad-band prediction of the outcropping
wave-motion. Figure 3 shows the ANN2BB time-
histories (in a 0.1-30 Hz frequency range) which
were exploited as synthetic input wave-motion for
the structural model of the Unit 7 reactor build-
ing. The improved outcome of the broad-band
synthetics obtained by ANN2BB confirms some-
how the fact that the predictive methodology inher-
its the information concerning spatial distribution
of the earthquake ground motion and it propagates
it to shorter periods. This is an interesting phe-

2performed by means of SEM
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Figure 2: Sa spectra after ANN2BB application on the
SEM3D analysis performed for AS1, at the Service Hall

of the KKNPP site: (a) SG1, G.L. -250 m, (b) 1G1, G.L.
0 m respectively. REC (red), SEM3D (blue) and ANN2BB

(black) are the recorded, simulated and enriched Sa
spectra respectively. REC and ANN2BB signals were
filtered between 0.1-30 Hz, SEM3D synthetics between

0.1-5 Hz.

nomenon, since it proves the exceptional capability
of neural networks to recognize the input pattern
and predict the outcome based on the experience
gained during the training phase. Even when SEM3D
analyses provided poor fit to the records (proba-
bly due to the effect of shallow geotechnical lay-
ers, not considered in the 3-D numerical analyses
at regional scale), the ANN2BB provides more rea-
sonable spectral ordinates, recommending its uti-
lization to generate realistic broad-band synthet-

ics. It has to be noted again that the ANN em-
ployed at this stage were trained upon the SIM-
BAD database Smerzini et al. (2014), containing
high-quality recordings observed for earthquakes in
a magnitude range MW 5.0-7.5. Despite the fact that
AS1 has a magnitude MW 4.4, the satisfactory re-
sults obtained ensure somehow the reliability of the
ANN predictive capabilities.
It is reasonable to disregard the non-linear site-
effects occurred during the main shock, since a
small aftershocks were solely considered.

3. SENSITIVITY ANANLYSIS ON ANN2BB
3.1. Influence of the correlation Sa correlation

structure at LP
To assess the sensitivity of the ANN2BB prediction
with respect to the input spectral ordinates SaSP

i ∈
R+, a multi-variate log-normal random fluctuation
was added to it:

log
(

SaSP
)
= log(µµµSaSP)+UN (0,diag [ΣΣΣ]) (1)

where µµµSaSP represents the random input vector of
spectral ordinates at long periods, ΣΣΣ is the correla-
tion matrix reported in Jayaram et al. (2011), U its
eigenvector and N a random vector of NLP

Sa i.i.d.
normal distributed random variables. Figure ??
shows the outcome of the ANN2BB procedure
when feeding it with uncorrelated (Figure 4a) and
correlated (Figure 4b) spectral ordinates at long pe-
riod. This first sensitivity analysis shows ANN2BB
capability of recognizing the hidden patterns char-
acterizing the input dataset. Those features are in-
herited by the prediction at short period: uncorre-
lated input values provide larger uncertainty on the
output values.

3.2. Sobol sensitivity indices
We further tested the sensitivity of the ANN2BB
method by employing the global sensitivity anal-
ysis, known as Sobol’s method. The latter de-
composes the variance of the output vector (Y =

SaSP ∈ RNSP
Sa +) of the model or system into frac-

tions which can be attributed to inputs or sets of
inputs (x = SaLP ∈ RNLP

Sa +). As a matter of fact,
any ANN can be viewed a complex imbrication
of non-linear regressions which expresses the out-
put as a continuous function f : RNLP

Sa + → RNSP
Sa +
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Figure 3: Acceleration time histories (EW-NS directions, in cm/s2) after ANN2BB application on the SEM3D
analysis performed for AS1, at the Service Hall of the KKNPP site: (a-d) SG4, Service Hall, G.L. -250 m; (b-e)

SG1, Service Hall, G.L. 0 m; (c-f) 1G1, Unit 1, G.L. 0 m. Synthetics were filtered between 0.1-30 Hz.

of the input: Y = f(x). However, f rarely has ex-
plicit form (depending on the complexity and the
depth of the ANN). Moreover, the input random
vector x has a auto-covariance structure that has
been stated by performing statistics on strong mo-
tion databases, but that is very difficult to be un-
raveled by analytical derivations from an underly-
ing physical model: the values of Sa are the re-
sult of a non-linear filter on the Single-Degree-Of-
Freedom equation (SDOF), by taking the maximum
absolute displacement value for each natural pe-
riod T and multiplying it by

(2π

T

)2
. Therefore,

without loss of generality, the input random vec-
tor is considered composed by i.i.d. (independent
identically distributed) variables xi. For the sake
of simplicity, a uniform distribution is assumed:
ui ∼U [µxi(1−CV ); µxi(1+CV )] with Coefficient
of Variation CV = 0.1 and µxi the average value,
taken as the SaLP

i obtained by numerical simulation.
This incurs no loss of generality because any input
space X can be transformed onto this unit hyper-
cube [0;1]N

LP
Sa , though the application of the cumu-

lative distribution function F .
Sobol method consists into approximate f(x) by a

sum of orthogonal functions:

Y= f0+
d

∑
i

fi (xi)+
d

∑
i< j, j

fi j
(
xi;x j

)
+...+f1,...,i,..., j,d (x)

(2)
with d = NLP

Sa and xi = SaLP
i . A condition of this

decomposition is that:∫ 1

0
fi1,i2,...,is (Xi1,Xi2 , ...,Xis)dXk = 0,∀k= i1, i2, ..., is

(3)
which expresses the orthogonality of the basis
function used for the decomposition (in stochastic
sense). The result relies on the Theorem of the Law
of Total Variance, which states that:

Var [Y ] = Var [E [Y |X ]]+E [Var [Y |X ]] (4)

for any two random variables Y and X . The latter
result extends to stochastic dynamic systems as:

Var [Y (t)] = Var [E [Y (t) |H1,t ]]+

r−1

∑
j=2

E
[
Var
[
E
[(

Y |
{

Hk,t
} j

k=2

)
|
{

Hk,t
} j−1

k=1

]]]
+

E
[
Var
[
Y (t) |

{
Hk,t
}r−1

k=1

]]
(5)

where Hi,t are the natural filtration associated to the
stochastic process Y . Note that this approach ex-
amines scalar model outputs, but multiple outputs
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Figure 4: Influence of the auto-correlation structure on
the predicted values of ANN2BB at short period. (a)
ANN2BB prediction obtained feeding it with sets of
uncorrelated spectral ordinates at long period. (b)
ANN2BB outcome feeding it with sets of correlated

spectral ordinates at long period.

can be analysed by multiple independent sensitiv-
ity analyses. Owing to Equation (5), given the or-
thogonality condition (3), the functions fi, j,... can
be identified as:

f0 = E [Y] ,

fi (xi) = E [Y|xi]− f0,

fi,j
(
xi,x j

)
= E

[
Y|xi,x j

]
− fi (xi)− fj

(
x j
)
− f0,

...

(6)

Moreover, the variance of the output can be ex-
pressed as:

Var [Y] =
d

∑
i=1

Var [fi (xi)]+
d

∑
i6= j

Var
[
fi,j
(
xi,x j

)]
+

...

+Var
[
f1,2,...,i,...,j,...,d (x)

]
(7)

In this analysis, solely the first order Sobol indices
were analyzed, which read (for the ith output yi):

Si, j =
Var [E [yi|xj]−E [yi]]

Var [yi]
(8)

In this analysis, the trajectories to explore the mul-
tivariate distributions yi [x] were obtained by quasi-
Monte Carlo (qMC) method: Figure 5 shows the
obtained results (in terms of Sa) for 2000 sim-
ulations. In Figure 6, the Sobol indices corre-
sponding to the qMC simulations depicted in Fig-
ure 5 are reported: the sensitivity of the nth output
variable SaSP [Tn] is pictured by the corresponding
Sobol indices at each mth input variable SaLP [Tm].
The outcome of this sensitivity analysis outlines a
few remarkable features of the ANN2BB proce-
dure. SaSP values at very short-period (T < 0.2s)
are equally sensitive to the ensemble of SaLP val-
ues. For a range of natural periods T ≈ 0.2−0.3 s,
the ANN2BB prediction is mostly affected by the
values of the long-period spectral ordinates closed
to the corner period (T ∈ [0.75−1]s). A major
influence of the input spectral ordinates SaLP [T ]
for T ∈ [1.25−2]s is highlighted when consider-
ing SaSP values corresponding to T > 0.5 s. An
equal and low sensitivity is shown for input spec-
tral ordinates SaLP [T ] > 2 s (with the exception of
a unexpected peak at T > 4s for one of the stations
considered).

4. CONCLUSIONS

In this paper, a sensitivity analysis of the ANN2BB
procedure proposed by Paolucci et al. (2018) is pre-
sented. The key idea is to enrich the synthetic wave
motion rendered by regional scale earthquake simu-
lations at high-frequency ( f > 5 Hz) by employing
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Figure 5: Sa values at SG1 (a) and 1G1 (b), produced
by quasi-Monte Carlo simulation

a two-layers feed-forward Neural Network to pre-
dict the short-period part of the pseudo-spectral ac-
celeration, given the long-period part provided by
realistic synthetic wave-forms. In this study, Sobol
indices were computed for the ANN2VBB frame-
work, which carries the statistical information de-
scribing the variability of the pseudo-spectral pre-
diction and its sensitivity to the spectral ordinates
at longer periods. The outcome was obtained by
polluting the input spectral ordinates (correspond-
ing to T > 0.75 s) with uniform random fluctua-
tions, and running a quasi-Monte Carlo simulation
to create the adapt sample space on which compute
the statistical moments required. The Sobol indices
highlighted the poor influence exerted by the spec-
tral ordinates at T > 2 s on the prediction of the

short-period portion. Given this insightful remark,
a further improvement of the ANN2BB procedure
is foreseen, reducing the number of input spectral
ordinates, which resulted as redundant.
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Figure 6: Sobol indices for two recording points SG1 and 1G1: each point corresponds to the Sobol index of the
input SaLP [Ti] onto the output indicated by the color. (a-b) Sobol indices for SG1, EW-NS directions. (c-d) Sobol

indices for 1G1, EW-NS directions.
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