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Abstract. This paper deals with the development of computerized brain atlases 

addressing both research and clinical needs. The authors analyze in detail the 

potentialities of these systems and discuss the capabilities and limitations of the digital 

atlases currently being developed around the world. The authors propose to reconsider 

the concept of a brain atlas, regarding both its content, and the way it has to be used and 
managed in order to set up a more effective cooperation between the user and the 

system. Particular emphasis is put on the evolutivity and reuse issues, which are critical 

in this rapidly evolving field. These orientations result from both the authors' experience 

and the analysis of current trends in the field of neuroimaging. The general methodology 

is illustrated with examples related to computer aided surgical planning. 

1. Introduction

The role of medical imaging in the neurological and neurosurgical practice, as well as in 
neuroscience in general, is becoming increasingly important. Indeed, the interpretation of 
the images plays a prominent role in diagnostic and therapeutic decisions, and quantitative 
image analysis is a major research issue in neuroimaging. Brain atlases [e.g. l, 2, 3, 4) 
aim at assisting the interpretation of brain images by providing a priori knowledge about 
brain anatomy by means of anatomical plates obtained from post-mortem brains or in vivo 
images. These plates provide the anatomical substrate, from which more details about 
brain features (e.g. morphology, relationships with surrounding anatomical structures, 
function, variability) are accessible in textual or graphical form. 

From an historical point of view, atlases were developed to overcome the limitations of 
the in vivo imaging techniques. However, in spite of the availability of modem and 
powerful imaging techniques such as Magnetic Resonance Imaging (MRI), atlases are still 
necessary for three major reasons: ( 1) The spatial resolution and the contrast of the images 
are limited: for example the different nuclei composing the thalamus cannot be 
distinguished on MRI images; (2) Through the anatomical substrate, it is often the
function of the different brain areas that is relevant to the surgeon in order to select the 
best surgical approach. In most cases this information is not available (functional imaging 
modalities are not so widespread) and this information has to be retrieved from an atlas; 
(3) Brain atlases are still commonly used in the neuroimaging community, especially by
people working on the mapping of human brain functions [5, 6]. A first explanation is 
related to the low spatial resolution of functional imaging techniques like Positron 
Emission Tomography (PET): indeed, the registration with patient anatomy (through 
MRI) cannot be very precise, so it may be more simple to relate functional information to 
anatomy by means of a reference atlas (e.g. Talairach) rather than the patient MRI data 
itself. A second explanation arises from the fact that PET experiments cannot be repeated 
many times on the same individual due to the use of radiopharmaceuticals. Therefore PET 
studies must be conducted onto several individuals in order to provide statistically 
significant results: registration to a common atlas is a simple way to merge results from 
different patients in a standardized way. 
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The digital nature of in vivo imaging techniques brings new capabilities to represent 
anatomical information in an atlas and to access to related knowledge. We have 
experienced some of them during the last decade. Our interest in the mid-80s was 
primarily focused on 3D representation of brain anatomy [7, 8), then on the registration of 
images between different patients [9, 10). More recently we have studied how knowledge 
about the major anatomical features could be represented in a more explicit way (e.g. atlas 
plates, symbolic objects represented by frames, illustrations) [11, 12 ], and how access to 
this information could be managed in a way taking into account contextual information 
(domain of interest and task of the user) [13]. Finally some aspects of the evolutivity of 
such systems have been studied, especially regarding schema evolution capabilities in 
Object Oriented databases [14). 

These works, as well as the analysis of general trends concerning the management of 
information in the neuroimaging community have led us to reconsider the concept of a 
brain atlas, regarding both its content, and the way it has to be used and managed. This is 
the major subject of this paper. Section 2 analyzes in more details new capabilities
induced by the digital nature of the images, and discusses the major trends arising from 
the recent literature on brain atlases. Section 3 presents our approach to this problem, with 
particular emphasis on the evolutivity and reuse issues. These two constraints strongly 
influence both the content of the atlas and the way it is used and managed. Finally, section 
4 summerizes this general approach, and underlines some difficulties in putting this 
methodology into practice. 

2. Current Status of Digital Atlases

Before analyzing the potentialities and added value of digital brain atlases, and reviewing 
current works in this field, it is useful to briefly recall the basic function of an atlas. The 
utilization of an atlas involves 3 steps (Fig. 1): (I) spatial registration between the image 
data to interpret and the anatomy of one or several individuals displayed on atlas plates; 
(2) identification of anatomical structures of the subject from the outlines and labels of the 
same structures within the atlas plates; (3) access to the knowledge associated to the 
anatomical structures. 

Images to 

inte rel 

Images of the 
subject 

Atlas 

Knowledge 

Fig. 1: Process of utilization of an atlas 

Atlases are usually printed and thereby have severe limitations. Digital atlases offer a 
wide range of capabilities, which overcome these limitations. 

• The first concerns image display. Brain anatomy is 3D, so the understanding of 3D 
data sets makes it necessary to use both surface representation and volume 
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representation (cut planes in the three major directions of space). Printed atlases 
obviously cannot offer this flexibility (limited to 2D display, no possibility to redefine 
viewing angles). 

• The second concerns inter-individual variability. The matching between two brains 
assumes that some warping model can be applied. Printed atlases impose warping 
models to be very simple (for example Talairach [I]). Computer-based atlases allow 
much more complex models to be used (e.g. non-linear rather than linear), leading to 
simpler use and better accuracy. 

• The third is related to extensibility. As opposed to printed atlases, a digital atlas can
be extensible: i) the number of atlas plates can be increased (which helps to overcome 
the inter-individual variability problem); ii) new warping models can be added; iii) the 
corpus of accessible knowledge can be extended. 

•The fourth concerns the flexibility of navigation within the associated knowledge
corpus; this allows for taking into account the goals and tasks of the user in order to 
guide the navigation towards the more pertinent information. 

• The last concerns the possible utilization of this knowledge by artificial cognitive

agents for decision-making. This is obviously not feasible with classical atlases and 
permits to free the user from computing tasks that computers do more efficiently than 
humans. 

The development of computer-based atlases is motivated by this potential added value; 
three major categories of systems have been or are being developed. 

(1) The first category is basically a transposition of paper-atlases, and may be called 
computerised maps. Some of these systems put emphasis on gathering encyclopaedic 
knowledge from neuroscience sub-areas. For example Toga has developed a 3D 
anatomical and functional atlas of the rat brain [ 15]. Other systems propose the integration 
of data from various atlases, such as the system developed by Nowinski: this system 
provides atlas plates from the Talairach et Tournoux, Schaltenbrand/Wahren and Ono 
atlases [16]. Finally, some systems are organized around 3D display tools: for example 
the system called "Digital Anatomist", proposed by Brinkley, provides 3D display of the 
anatomical features by means of both still and moving images, and offers designation 
facilities allowing their naming [17]. The "Voxel-Man" system developed by Hohne is 
based on the same concept with more enhanced facilities for editing the 3D model and 
retrieving related symbolic information [18]. These systems are more and more edited and 
distributed on CD-ROM; demonstrations are sometimes possible through Internet. 

(2) The second category focuses on modeling the morphological inter-subject 
variability and on the design of warping models. The general principle consists of 
labelling precisely 3D data sets of one (or several) brains, and to estimate a displacement 
field between this reference brain and the particular brain to be matched, in order to assign 
the reference brain labels to the voxels of the unknown brain. The major issue is to make 
sure that this transformation guarantees the conservation of topological relationships 
between the labelled regions. Many methods have been developed, for example: [19, 20, 
21,22,23,24,25]. 

(3) Finally, many atlas systems have been developed to support the automatic 
interpretation of anatomical images. They generally include symbolic knowledge about 
anatomy or imaging techniques in order to assist the delineation and labelling of these 
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features within morphological or functional images, for example: [26, 27, 28, 29, 30, 31, 
32]. 

It is also important to mention collaborative efforts carried out in the context of the 
american Human Brain Project. Mazziota proposed the constitution of a multi-centric 
database, in order to build a probabilistic brain atlas [33, 34]. The "BrainMap" system 
developed by Fox at the University of Texas is accessible through the Internet and gathers 
many experimental results concerning cognitive studies from many laboratories 
(activation protocols, localization in the Talairach space, references of publications). 

All these works have brought out significant contributions to the various aspects of 
brain atlas conception and use (more accurate models of the brain variability, 3D display 
and editing tools, computer-aided image interpretation techniques). Besides, projects like 
the Human Brain Project highlighted the interest of collaboration across disciplinary and 
geographic boundaries for brain research. Nevertheless, although claimed as important 
[34], evolutivity and reuse issues have not really been addressed yet. Finally, potentialities 
concerning the utilization of knowledge available from an atlas for automatic or assisted 
problem resolution (for example surgery planning) have not been really investigated yet. 
Projects like SAMMIE have tried to go into this direction, in particular for assisting the 
interpretation of Electroencephalography (EEG) or Magnetoencephalography (MEG), but 
achievements are still in their infancy [31 ]. 

This situation requires a more thorough analysis of the way knowledge is used by 
humans for the resolution of medical problems concerning the brain. Experiments carried 
out by Boshuizen and Schmidt [35] have shown that physicians make use of several kinds 
of knowledge, including both general knowledge (called biomedical knowledge) and 
situated knowledge derived from previous experiences. They also demonstrated that 
novices use more biomedical knowledge than experts do. However, in difficult cases 
where usual reasoning schemes may fail, experts use general knowledge as well. These 
works are very interesting with respect to our atlas problem. First, they reinforce the need 
of associating in an atlas several kinds of knowledge, namely general knowledge, and 
situated knowledge. Second, they suggest that the system should be designed in such a 
way that: (1) it provides the user with the most relevant knowledge, depending on the 
user's task and expertise level, and (2) it supports the emergence of new biomedical 
knowledge from the experience of past cases. This is the general orientation described 
hereafter. 

3. Design and Use of Atlases

The general approach described here emphasizes the evolutivity and reuse issues. This 
concern tends to be more and more critical in the design of Information Systems in 
general, and are particularly relevant in the context of the management and use of brain 
related knowledge. Indeed, neuroscience is a very active research field [34], and many 
disciplines try to elucidate brain structure and functioning from different perspectives 
(e.g. anatomy, physiology, psychology, behaviour), which leads to an extreme 
fragmentation of knowledge. However it is generally admitted that multi-disciplinary 
research is very effective and fruitful, which assumes that knowledge and results must be 
shared in an appropriate way. Brain research is also very productive which means that this 
knowledge must be able to be easily updated, which obliges to consider evolutivity as a 
major concern in the design of brain knowledge management systems. The same 
arguments apply regarding clinical applications, since clinical processes and medical 
decisions oblige to integrate many components (patient specific anatomy, physiology, 
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age, medical history, social condition) each of which referring to specific knowledge, and 
involving references to previous cases. 

This approach articulates around three axes: (1) the first deals with the content of 
atlases (knowledge sources), (2) the second with the general organization of information 
processing (Decision-making and knowledge acquisition processes) and (3) the third with 
the way multi-disciplinary knowledge can be managed. 

3.1 Knowledge Sources 

Before describing in detail the different kinds of information a digital atlas should 
manage, it is necessary to introduce the terminology we are going to use in the following. 
The term data refers to any signifying entity used by an information processing agent. 
The term information refers to the meaning attached to a particular datum, which thereby 
depends on the cognitive background of the agent which interprets this datum [36]. The 
term knowledge is (as usual) more difficult to define: we will consider as knowledge any 
information allowing data to be interpreted and to which one wishes to attach a particular 
worth; this worth may arise from several origins: (I) abstraction level and capacity to
synthesize a set of information; (2) level of consensus a piece of information is gathering; 
(3) applicability of a piece of information in a given context (solving power) and potential 
of reuse in other contexts. 

These notions are very important with respect to evolutivity and reuse: the level of 
abstraction, applicability and degree of confidence play a major role in reuse. Moreover 
broadly accepted knowledge is likely to be more stable in time than uncertain one. 

An atlas involves two fundamentally different kinds of information: 

(1) biomedical knowledge concerning brain, characterizing the properties which are 
shared by most individuals, or within meaningful categories of individuals (such as right­
handed people). 

(2) Situated knowledge (cases): this information characterizes particular individuals, 
about which data have been recorded (e.g. images, physiological signals) and interpreted, 
in order to make their specific characters explicit. 

One may feel appropriate to speak about these two kinds of information in terms of 
knowledge base and database. We prefer avoiding to do so in order to emphasize the 
conceptual difference between the two, rather than focusing on implementation issues. 

3.1.1 Biomedical Knowledge 

This general biomedical knowledge includes four major kinds of knowledge: 

- Conceptual knowledge about one or more brain disciplines: it is usually organized in 
ontologies describing abstract brain entities (e.g. anatomical structures, functional 
systems, neurochemicals) or relationships between these entities (e.g. spatial 
relationships, neural connections, part-whole relationships). These entities are generally 
represented by means of object oriented models or frames. 

- Illustrations (such as drawings or schemata) aim at making more explicit the meaning 
to be associated to the previous brain abstract entities. By definition they are indented to 
humans rather than artificial agents. 

- Numerical data, functions of space or time: for example 3D probability maps 
represent the probability that a point belongs to a particular anatomical structure. 
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- Decision models include inference mechanisms or algorithms capable of deriving new 
information from existing one: for example a warping model which allows a brain to be 
mapped onto another, or an image segmentation algorithm, consisting of successive image 
processing operations, aiming at delineating and labelling a particular structure. 

3.1.2 Situated Knowledge 

This information depicts various aspects of the brain of particular subjects: anatomy, 
physiology, behaviour of the subject, characteristics of the individual himself (for 
example sex, manual dominance, age, pathology, if any). It may have been obtained in 
vivo, by means of imaging techniques (e.g. CT scanner, MRI, functional MRI, PET) or 
neurophysiological techniques (e.g. EEG, Depth electrodes recordings, MEG), or from 
cadavers (photographs of brain cryosections, histological or histochemical data). 

This information about individual brains can take several forms: 

- numerical data, functions of space or time: e.g. images or physiological signals. 

- instances of brain abstract entities, whose attributes describe the specific characters 
of each brain (e.g. length and depth of a cortical sulcus, volume of grey matter within a 
gyms), or relationships between these entities for example spatial relationships 
between anatomical structures. These objects describe in an explicit way some 
properties which are shown by images or signals, as a result of a manual or automatic 
interpretation process. 

- instances of application of a decision model, for example describing the successive 
steps of an image processing procedure resulting in the labelling of a particular 
anatomical structure (interpretation process). 

This information can be considered as knowledge, because according to previous 
definitions, one assigns a worth to it, and therefore wishes to keep it, in order to refer to it 
and reuse it. This value arises from several factors: 

- a particular brain feature may be typical or atypical; 

- some information may be difficult to obtain for technical or medical reasons: for 
example depth electrodes recordings can be obtained in very few patients (e.g. patients 
suffering some form of epilepsy requiring surgery). This kind of information is very 
precious although a very small part of it can be understood yet: indeed it provides a 
view of what is really happening inside the brain. 

- complexity level of the description: the delineation, identification and labelling of 
brain features on images or signals bring a significant added value to the data because 
it establishes explicit relationships between this data and abstract brain entities. This 
added value is manifold and brings potentialities of reuse: (1) the result of this 
delineation may help another user or expert to achieve a similar task; (2) the 
description itself provides many ways for accessing the images (indexation of the 
data); the more complex the description is, the more various and specific these ways 
are; (3) it allows multivariate analysis to be done in the future in order to put in light 
interesting correlations. 

- level of consensus they gather: an interpretation may always be wrong or uncertain. 
Validation by several experts increases the confidence one may have, and thereby 
augments the chances of reuse. 
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A major issue is to be able to clearly distinguish, each time it is feasible, the raw data 
(which are relatively objective) and the interpretations one may wish to record (which are 
necessarily subjective). Digital atlases allow to do that, whereas it is much more difficult 
with classical printed ones (for example on paper, the delineation of a region on an image 
generally hides the initial information, e.g. pixels values in an MRI image). This issue is 
also very important with respect to the system evolutivity: in effect, one may be able to 
interpret or re-interpret data, using some new knowledge appeared in the meantime: in a 
such case it is important to be able to use the original data, rather than processed ones. 

3.1.3 Relationships Between Situated and Biomedical Knowledge 

Biomedical knowledge and situated knowledge are complementary. As previously 
mentioned, the descriptions of particular subjects' brains refer to abstract brain entities, 
which have to be defined in a non-ambiguous way (notably to allow correct interpretation 
and reuse in other contexts). Conversely, situated knowledge explain general concepts by 
providing real world examples. 

3.2 Decision and Knowledge Acquisition Processes 

We are now presenting our general framework for managing information and knowledge 
in computerized brain atlases. It details the decision-making processes in which data are 
interpreted, leading to the production of new information, and the knowledge acquisition 
processes by which information (situated knowledge) is transformed into new biomedical 
knowledge. The analysis of decision-making processes will particularly focus on human­
computer cooperation and on the management of multi-disciplinary knowledge. 

3.2.1 Modeling of the General Approach 

The general process of using and evolving an atlas is presented on Fig 2. It involves nvo 
major kinds of processes: decision processes which make use of current knowledge and 
produce new information, and knowledge acquisition processes which allow new 
knowledge to be created. 

Now l<nowMdgo / Now Organlzadon c4 Krlow14d91 

Fig. 2 : General framework - Decision processes and knowledge acquisition processes 
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(1) Decision processes (Fig 2 - Left) usually consist of analyzing brain-related data 
acquired for clinical or research purposes, and interpreting them. These interpretations 
(for example in which anatomical structure a particular depth electrode is located) may be 
part of the resolution of a more global and more complex problem (in this case, locating 
an epileptogenic focus, in order to remove it by surgery). Such processes make use of: 

- brain-related information concerning a particular individual (such as a 3D MRI 
dataset, neurophysiological data), 

- general biomedical knowledge (brain abstract entities, decision models), 

- information concerning previous cases (situated knowledge), which present 
similarities with the current problem. 

These decision processes are active processes making connections between situated 
knowledge and the global framework and produces new information (interpretation) 
which becomes part of the information patrimony of the atlas. 

(2) Knowledge Acquisition Processes (Fig 2 - Right) aim at formalising new biomedical 
knowledge from available information (more abstract or more synthetic models): 

- classification into categories (for example cortical sulci having similar structural and 
morphological characteristics), 

- numerical models as probability maps (probability that a point belongs to a particular 
anatomical structure), 

- deformable models resuming the morphological properties of a particular anatomical 
structure. 

Of course, the validity of this new information has to be assessed. In particular it 
should not be contradictory with previous knowledge. Eventual conflicts must be detected 
and solved in one way or another. This new knowledge may authorize or require to update 
previous knowledge (and concern both general biomedical knowledge and situated 
knowledge). For this reason, schema evolution capabilities must be provided in order to 
achieve these modifications. 

3.2.2 Decision-making Processes and Human/Computer Cooperation

The decision-making processes requiring use of a medical atlas cannot be formalised, they 
are what Simon calls "unstructured decisions". This means that the processes leading to 
the decision may be unknown to the user himself: they are usually very heuristic and 
progressive, and may require backtracking stages. Decision support systems address this 
kind of needs by providing multiple decision models (knowledge-based systems, image 
tools) and human computer interaction tools, allowing the most appropriate solution to be 
chosen interactively, case by case. 

Tasks distribution between natural and artificial cognitive agents 

Current digital atlases are purely reactive systems, limited to the supplying of the 
information requested by the user. A more fruitful approach is to design an active 
environment capable of augmenting his skills. Then, the interaction between the user and 
the system is based on a mixed approach. Users should be able to question the system and 
the system can offer hints to the user as well. The tasks and the control are distributed 
among the user and the system in an adaptive manner. 
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This distribution must be flexible and evolutive. Let us take an example, in order to 
show how the system contribution can be smoothly augmented. In this example four 
stages of development of the system are considered, in order to assist the identification of 
a given anatomical structure in a 3D MRI data set: 

1. the system allows for the retrieval of other individuals' 3D MRI data sets ;

2. the system allows for the retrieval of those 3D MRI data sets in which the
anatomical structure of interest has been delineated and labelled; 

3. the system actually performs the superposition of a probability map concerning the
anatomical structure of interest on the new 3D MRI data set; 

4. finally, the system controls a segmentation algorithm which makes use of the
probability map in order to achieve the delineation. 

This example suggests how the boundary between automatic and human-controlled 
tasks can be shifted. The system architecture must be designed in such a way that this 
boundary can be moved very easily in order to enhance progressively the performances of 
the system (evolutivity). 

Organization of cooperation 

This cooperation should be organized in a way which is both flexible and natural to the 
user, allowing him to assess his reasoning, and validate his assumptions. It should allow 
him to interrupt the system's resolution process, choose another decision model, or do the 
resolution himself. The system would primarily be used for executing calculations within 
well-known and well-formalized tasks. However, artificial agents may also be involved to 
provide the user with the information he needs or even play a part in determining the 
appropriate cooperation level, taking into account the distribution of skills in the context 
of a specific problem. 

This imposes that the relevance of available information should be explicitly and 
continuously assessed, which can be achieved by means of a task model [37]. The 
precision and the sophistication of this model depend on the kind of support the system is 
supposed to offer. Supporting the retrieval of relevant general biomedical knowledge and 
relevant previous cases can be achieved in a relatively simple way, relating this 
information with the general concepts involved in the user's task. If the system must 
contribute more effectively in solving sub-problems or be involved in the control of the 
cooperation, then it is necessary to develop much more complex models of the tasks and 
the skills of the (natural and artificial) agents involved (e.g. a priori distribution schemes, 
decomposition of tasks into sub-tasks) [38]. 

3.3 Managing Multi-disciplinary Knowledge 

The necessity to manage multi-disciplinary knowledge has been underlined previously. 
A major issue is that knowledge production and maintenance is generally organized 
vertically (according to more and more specialized research fields), whereas utilization is 
primarily organized horizontally (i.e. multi-disciplinary). These two organization schemes 
lead to contradictory constraints: taking into account evolutivity constraints would lead to 
organize knowledge in separate ontologies, whereas multi-disciplinarity may orient to a 
more ad-hoc (specific problem driven) knowledge management. 

Our approach to this problem takes into account the concern of evolutivity and reuse, 
and recommends to organize the knowledge base by means of multiple knowledge 
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sources [39, 40] which can be partitioned by type (for instance, knowledge about tasks, 
methods and domains) and by level of abstraction (in our framework: neuroanatomy, 
neurology, neurophysiology, etc). 

4. Discussion and Conclusion

We have proposed a general methodology for building and managing knowledge in 
digital brain atlases, in a way which guarantees evolutivity and facilitates reuse in 
different contexts: it can be summerized by a number of basic principles. 

1. Information concerning particular brain instances is a form of knowledge, which is
complementary to general knowledge (called biomedical knowledge) . One should clearly 
distinguish several levels of interpretation of the data acquired about each brain instance, 
in order to allow these interpretations to be refined in the future, in the light of some new 
knowledge. 

2. General biomedical knowledge should be organized in a vertical way (scientific
disciplines). In effect, it is difficult (almost impossible) to design a single ontology that 
includes every aspect required to model the world. Dividing the world into distinct 
knowledge sources makes it easier to understand, to reuse and to update. 

3. Knowledge based decision-making processes involve multi-disciplinary knowledge;
it is therefore necessary to establish cross-speciality relationships. 

4. Applications should as far as possible reuse existing knowledge rather redevelop it
from scratch. This could save time and energy, and facilitate the maintenance and the 
evolution of this knowledge. Moreover it would allow the knowledge corpus to be built in 
an incremental way. 

5. Cooperation between the user and the system should be user-centered because the 
decision-making processes are complex and not fully understood by the users themselves. 
The boundary between automatic and human-controlled tasks must be very flexible to 
upgrade progressively the system performance (evolutivity), and to achieve an optimal 
way of cooperation adapted to each situation (optimal reuse of available knowledge). 

These principles provide general orientations. However putting them into practice 
raises many unsolved issues that one should not ignore. Evolving and reusing knowledge 
leads to face difficulties at four different levels: (l) at a geographical level, (2) at an
organizational level, (3) at a semantic level, and finally (4) at a strategic level. Whereas 
the two first ones can be easily overcome, the two latter are far more fundamental. 

• In the field of brain atlases, more and more information can be obtained in digital
form, thus facilitating their communication between research labs or within the Healthcare 
System, through local and global networks (Internet). 

• The second level is organizational. Indeed, in order to communicate or to share
information, communicating parties have to share common objectives, in order to define 
the intention of communication and how it should take place. Regarding this issue, we can 
notice that many initiatives have been launched in the field of brain research to set up 
common frameworks between research labs (e.g. European projects such as SAMMIE, 
Human Brain Mapping project in the USA). 

• The third obstacle arises from the various scientific disciplines concerned by brain
research. Modeling brain related concepts within a given discipline is already a difficult 
task (due to the brain intrinsic complexity). Establishing models which are understood and 
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valid across several disciplines is probably not feasible. In practice, trying to describe 
explicitly those concepts by means of multiple forms of representation (symbolic objects, 
illustrations, cases) should facilitate the understanding and the reuse by both natural and 
artificial cognitive agents in various research or clinical environments, or at least facilitate 
the detection of contradictions and mismatches. Setting up explanation mechanisms may 
be a good way to satisfy both the needs for concision (e.g. referring to the concepts rather 
than detailing them when both parties share a common understanding) and semantical 
accuracy (e.g. control that the associated semantics are not contradictory). 

• Finally, one must be able to assess and manage the value and relevance of knowledge 
with respect to the goals of each organization. It becomes more and more difficult, 
because global networks considerably increase the possibilities of accessing existing 
knowledge. The problem is to find efficient ways of appropriation of this knowledge, 
which is particularly challenging in a multi-disciplinary context like brain research. 
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