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ABSTRACT

We will study a so-called radial gravitational wave corresponding to a wave which
is not diffused in all directions, but in a single direction. We will establish that
its energy level depends, in the same way as an electromagnetic radiation, of its
amplitude (constant over all its trajectory), correlated then to its electric field, and of
the discrete potential of energy, then given by its frequency multiplied by the Planck
constant. We will then observe the structure of the wave, corresponding to a series
of contractions and dilations of space. This will describe the discrete nature of the
radiation and provide a beginning of response to the paradox of increasing mass,
directly derived from General Relativity. By considering the quantity of energy
of the radial wave and in application of the Special Relativity, we will note its
contraction which will make it possible to explain the observed corpuscular aspect
of the radiation. It will thus be determined that an electromagnetic radiation, then
identified as a radial gravitational wave, is in reality neither exclusively a wave
nor actually a corpuscle, these notions not being dissociable here, but as a radial
wave whose space, in which the quantity of energy is distributed, is, from the point
of view of an external observer, infinitely contracted. The "problem" of the wave-
particle duality will then be solved in the case of electromagnetic radiations, ie
relativistic particles (of zero mass), whose discrete nature will be determined, a
physical meaning will be given to the constant of fine-structure, the electric field
will then be described as a property of Space-Time (more than a force field), and a
quantization start of Space-Time compatible to the observation will be provided.
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1 Introduction

Gravitational waves, although they were indirectly detected well before [1, 2], were recently
detected by LIGO-VIRGO collaborations [3, 4, 5], confirming once again the predictions of General
Relativity [6].

A polarization is associated with a gravitational wave, whose definition is identical to the classical
definition of the polarity of electromagnetic radiations. The wave is then associated with an
amplitude correlated to the electric field of the wave. Albert Einstein had already predicted that
these waves carried an energy emitted by the source binary system [6]. It is also thanks to this loss
of energy that it was possible, for the first time, to detect "indirectly" these waves. The diffusion
in all directions of these waves induces, as for the sets of electromagnetic radiations, a loss of
amplitude throughout their propagation, to which is added a redshift, in particular quantified at the
time of the most recent detections [4, 5]. Gravitational waves accumulate enough resemblances
with electromagnetic radiations to be interested in what would be a radial gravitational wave, that
is to say a gravitational wave that would propagate in a proper direction, in the same way that an
electromagnetic radiation emitted in a single direction from its source.

We will try to use this axis of reflection to determine the nature of electromagnetic radiations.

2 Radial diffusion of gravitational wave

Consider a Ω gravitational wave on a circular dispersion plane of l radius.

This wave is associated with a frequency and a decreasing amplitude as the dispersion increases,
having spread over a distance l.

We will then have:

πlA(r= l
2

)Ω
νΩ = 2πlA(r=l)Ω

νΩ (1)

Where ν is the frequency of the wave, postulated too little variant over the duration of the entire
propagation of Ω so that its variation due to an evolution of the emitting system is taken into account.
Here ν will be considered constant. A is the amplitude factor of the maximum contraction, effective
thereafter, for ω, in the form of an integer noted a, and η, constant, also associated with ω whose
existence and value we will demonstrate in the next section (until this demonstration, the continued
nature of AΩ and the discrete nature of Aω will not matter much).

Let’s now model the ω wave so that:

A(r=l;ϕ=π
2

)ωνω = A(r= l
2

;ϕ=π
2

)ω
νω (2)

We will then obtain a radial wave coincident with the radius of length l of the plane.
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Thus, the amplitude, correlated to the electric field, and the frequency are constant regardless of the
distance r at which the wavefront associated with ω is located from the source. So, we get:

A(r=l;ϕ=π
2

)ωνω = 2πlA(r=l)Ω
νΩ (3)

With:

νω = νΩ (4)

Figure 1: Diagram of the two wave types

On the left, we have represented a gravitational wave diffused in all directions of a plane, over a
length l from its source S. We can see that each cloud of points surrounding S has the same number
of points, but not the same density. For example, the cloud at A will be denser than the cloud at A′.
This represents the intensity of the spatial contractions. Thus, the amplitude of the wave in A is
greater than in A′, the amplitude decreasing as l increases.

On the right, we have represented a radial gravitational wave, diffused in a single direction of a
plane, over a length l from its source S. We can see that each cloud of points along l has the same
number of points and has the same density. For example, the cloud at A will be as dense as the
cloud at A′. This represents the intensity of the spatial contractions. Thus, the amplitude of the
wave in A is as important as in A′, the amplitude not decreasing as l increases. However, it must be
remembered that the geometry of the radial wave on a plane can only be represented accurately in
one dimension, the present representation being an approximation offering a visual clarity and not a
conceptual accuracy.
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3 Amplitude and discrete potential energy of radial gravitational
wave

3.1 Preamble

Since the polarization of a Ω gravitational wave is identical to that of an electromagnetic radiation,
it can be assumed that a radial gravitational wave ω can be associated with an amplitude factor A,
corresponding to a electric field, of discrete value, of form:

A = aη (5)

With η constant and a ∈ N.

To demonstrate this and prove that η depends on the invariant and discrete charge e of the source, we
will use the similarity between the polarization of gravitational waves and that of electromagnetic
radiations.

First, we will observe the construction of the amplitude H of a gravitational wave Ω diffused in all
directions [6]:

HΩ =
2G

c4

Q̈(t− lc−1)

l
(6)

Where 2G
c4

translates the rigidity (high) of Space-Time and Q̈(t−lc−1)
l

the set of factors determining
the amplitude HΩ with respect to this rigidity.

If we report all the diffusion of this wave on an axis (that of the ω wave), as seen in the first section,
we obtain a continuous amplitude. However, the amplitude of a gravitational wave, in the same way
as an electromagnetic radiation, is correlated to its electric field. We will imagine that a gravitational
wave ω can be emitted by a particle % of charge q. In the same way as for electromagnetic radiations,
the amplitude H (and thus the amplitude factor A) will correspond to the amplitude of the electric
field of the wave, the unique polarization of the electromagnetic radiations being identical to the
polarization of gravitational waves. We will speak here of rectilinear polarization.

However, the development from the equation mentioned above and determined by Albert Einstein
in 1916 will be exposed in section 4 [6], the present development covering the electromagnetic
aspect of the wave (consideration of its polarization, his electric field, ...).

Let’s consider now an electric field S induced by a point charge q:

S =
q

ε04πd2
(7)

The Coulomb constant is equal to k = (4πε0)−1, where ε0 is the electrical permittivity of the
vacuum.
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We thus obtain the point charge effect Z distributed over the surface 4πd2, such that:

Z =
q

ε0

(8)

Knowing that c = (
√
ε0µ0)−1, the charge effect is also expressible in this way:

Z = qc2µ0 (9)

Where µ is the magnetic permeability of the vacuum.

We then deduce that k = µ0c2

4π
.

In order to determine that the energy level of our ω wave corresponds to a discrete value, it is
necessary to solve the problem of the interpretation of the fine-structure constant [7].

3.2 Physical interpretation of the fine-structure constant

Let’s start by recalling that:

e =

√
h2α

µ0c
(10)

Where α is the coupling constant, such as:

α =
ke2

~c
=

e2

2ε0hc
(11)

We can then continue:

α =
ke22π

hc
(12)

α =
µ0c

2e22π

4πhc
(13)

We know that:

Z =
e

ε0

(14)

And that:

S =
e

ε04πd2
(15)
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In addition, if:

Z =
e

ε0

(16)

So:

Z = eµ0c
2 (17)

Also:

S =
Z

4πd2
(18)

And:

S =
eµ0c

2

4πd2
(19)

We can then develop:

α =
Sd2e2π

hc
(20)

α =
Sd2e4π

2hc
(21)

2α =
(Z.e)

hc
(22)

2α =
(Z.e)
E
ν
c

(23)

2α =
(Z.e)λ−1

E
(24)

To finally conclude:

2α =
(Z.e)λ−1

E
(25)

The physical significance of the fine-structure constant is half the ratio of the charge effect Z of the
electric field S, of the point charge e, exerted on e, on a wavelength and on the other hand the level
of energy carried by the wave emitted by the charge source e (and charge effect Z). Insofar as, as
specified in section 1:

A(r=l;ϕ=π
2

)ωνω = A(r= l
2

;ϕ=π
2

)ω
νω (26)
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And:

Eω = A(r=l;ϕ=π
2

)ωνω (27)

And that the factor A depends on a, we get, for a = 1:

Eω = ηνω (28)

Eω = η
c

λω
(29)

We can deduce that λ omega is inversely proportional to E omega and that η is independent of E.

Here, η itself depends on α, independent of E because:

2α =
(Z.e)λ−1

E
(30)

And since E is inversely proportional to λ, then α is independent of E and λ and depends only on
E.

Z varying according to q of %, it is constant for q = e, which will allow us to define η for a q charge
of the source equal to e.

3.3 Structural definition of the constant linking wave energy and frequency

Eω = ηνω (31)

η corresponding to the ratio in the energy and the frequency of the ω wave, it is natural that the ratio
between the effective electric field on a wavelength is inversely proportional to η. Indeed, if this
ratio increases, the energy emitted by an invariant charge body will decrease with respect to this
charge. Thus, for a fixed wavelength, if α increases, η decreases, and E decreases.

Also, if:

η =
X

2α
(32)

And if:

2α =
(Z.e)

hc
(33)

And if:

2α =
(Z.e)
E
ν
c

(34)
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2α =
(Z.e)ν

Ec
(35)

So, for Z = ec2µ0 :

E =
X

2α
ν (36)

X =
E2α

ν
(37)

X =
E (Z.e)ν

Ec

ν
(38)

X =
(Z.e)

c
(39)

From this follows the meaning of X:

X =
(Z.e)

c
(40)

X =
(Z.e)

λν
(41)

X =
(Z.e)λ−1

ν
(42)

The physical meaning of X is the ratio between, on the one hand, the charge effect Z of the electric
field S, of point charge e, exerted on e, on a wavelength and on the other hand, the frequency of the
wave emitted by the charge source e (and charge effect Z).

We can then conclude that X , just like 2α is independent of E, ν and λ, for the same reasons.

η then corresponds to the ratio between these two structural constants 2α and X , so that the physical
meaning of η becomes:

Ratio : charge · effect · of · the · electric · field · of · the · wave · exerted · on
a · charge · e · for · a · wavelength/frequency · of · the · wave

Ratio : charge · effect · of · the · electric · field · of · the · wave · exerted · on
a · charge · e · for · a · wavelength/energy · of · the · wave

(43)

So we can continue to develop:

X =
(ec2µ0.e)

c
(44)
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X = e2cµ0 (45)

Also:

η =
e2cµ0

2α
(46)

But:

- e = 1, 6.10−19

- c = 3, 0.108

- µ0 = c−2ε−1 = (3, 0.108)−2.(8, 9.10−12)−1 = 1, 2.10−6

- α = 7, 3.10−3

Which leads to the conclusion that:

η = h (47)

For a radial gravitational wave emitted by a charge source e. We have shown that, like electromag-
netic radiations, ω has a minimum amplitude for which:

Eω = hνω (48)

The minimum amplitude of the wave is therefore the amplitude for which E = ahν with a = 1,
that is to say for a quantum of energy associated with the wave. As we have seen, its value is due to
the fact that the electric charge of the particle % constituting the source of the wave is equal to the
elementary charge e.

Thus, assuming that the polarization of gravitational waves was identical to that of electromagnetic
radiations, we concluded that a radial gravitational wave emitted from a charge source e could be an
electromagnetic radiation. To demonstrate that an electromagnetic radiation is in fact completely
equivalent to a radial gravitational wave and that its electric field is in fact only a property of
Space-Time (speaking well here of that described by General Relativity) it is necessary to establish
the significance of h from a gravitational point of view and to reach the same conclusions as its
electromagnetic meaning.

4 Radial gravitational wave structure in Space-Time

4.1 Structure

The structure of a radial gravitational wave would be a series of expansions and contractions
of space, the amplitude of which would be correlated with the electric field assimilated to the
charge-dependent wave e of the source that emitted the wave.
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Thus, we should now be able to determine the minimum amplitude (smallest possible amplitude
for a radial gravitational wave) of these contractions and dilations, taking into account the results
obtained previously.

First, let’s take a look at the construction of the H amplitude of a Ω gravitational wave diffused in
all directions [6]:

HΩ =
2G

c4

Q̈(t− lc−1)

l
(49)

Where 2G
c4

translates the rigidity (high) of Space-Time and Q̈(t−lc−1)
l

the set of factors determining
the amplitude HΩ with respect to this rigidity.

We know that:

Q̈ ≈ mf 2R2 (50)

Corresponding to the variation of quadrupole moment (as a function of time, so that the initial
amplitude that we will adapt is adimensional), whose value however corresponds here to a net
variation.

Where f = 2πν and where R is the distance between the two objects emitting Ω, in joint rotations,
around the same point.

In the case of ω, it will be necessary to take into account the geometry of the non-binary system (of
unique object here). Let’s first reexpress HΩ, before adapting it to the emission of a radial wave by
a non-binary system:

HΩ =
2G

c4
Q̈

(t− lc−1)

l
(51)

Now, Q̈ corresponding to a kinetic energy difference between the first and second state of the source
particle, we would have, for a single source particle:

Q̈ =
dEc
dt

(52)

Now, this is a single emission by the source system, dEc
dt

corresponds to a punctual emission of
energy ∆Ec = Ec1 − Ec2 , whose value can be determined as follows:

Q̈ = ∆Ec (53)

Q̈ =
1

2
m∆v2 (54)

Now, as seen in Figures 2 and 3:
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Figure 2: Binary system diagram

It will be observed that the wavelength of a gravitational wave emitted by a binary system (sources
S and S ′) corresponds to the distance R, so that λ = Rπ

2
.

Figure 3: Non-binary system diagram

While in a non-binary system (source S), λ = 2π∆r, so time interval for λ correspond to (t− lc−1).

The difference between velocities v1 = r1
δt

and v2 = r2
δt

is equal to:

∆v =
∆r

δt
(55)

As mentioned above, if we consider that the electron "traverses" the angle 2π periodically, a
difference of radius r1 − r2 generates, in the case of the non-binary system (source unique), a wave
of wavelength λ = (r1 − r2)2π.

That is, since ∆r = λ
2π

and therefore ∆t = T
2π

, ∆v being then independent of λ and T for a radial
gravitational wave emission by a non-binary system.:

∆v = 2πT−1 λ

2π
(56)
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And so:

∆v = f
λ

2π
(57)

Also:

Q̈ =
1

2
m(f

λ

2π
)2 (58)

Moreover, in order to operate at an equivalence between Hω and Hω, we must consider twice
the quadrupole moment variation in the equation, since the object alone shall, for an equivalent
transported energy wave, have the same moment as that of the binary system, so that:

2Q̈ = 2(
1

2
m(f

λ

2π
)2) (59)

Which is quite logical, since for a mass equivalent to half the total mass of the binary system, the
object of the non-binary system will have to generate the same amount of energy as the binary
system and emit a wave by "traversing" an angle of 2π (instead of π for each binary system object
of equivalent mass m).

Moreover, in the case of a radial gravitational wave, Hω does not decrease as a function of l. Indeed,
as seen previously, we can consider that:

A(r=l;ϕ=π
2

)ωνω = 2πlA(r=l)Ω
νΩ (60)

Thus, we can express:

Hω = 2πlH ′Ω = 2πl
2G

c4
2(

1

2
m(f

λ

2π
)2)

(t− lc−1)

l
(61)

Here, H ′Ω is already partially adapted and t is a time interval. Now, for our radial wave emission,
we can observe that, if ∆t = t1 − t2, then the interval ∆t = l1c

−1 − l2c−1, which makes it possible
to supply t1 = (l2 + λ)c−1, for a single emission of a discrete potential energy. Indeed, if ∆r

corresponds to λ
2π

, here we have a ∆l which corresponds to the linear trajectory of the radial wave,
and not to a shape circumference 2πr. Thus, we can develop:

(t− lc−1)

l
=

((l + λ)c−1 − lc−1)

l
(62)

(t− lc−1)

l
=
λc−1

l
(63)

(t− lc−1)

l
=
T

l
(64)
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So:

Hω = 2πl
2G

c4
2(

1

2
m(f

λ

2π
)2)
T

l
(65)

We can then develop:

Hω =
2G2π

c4
2(

1

2
m(2πν

λ

2π
)2)T (66)

Hω =
4Gπ

c4
m(νλ)2T (67)

Hω =
4Gπ

c4
mc2T (68)

Hω =
4Gπ

c2
mT (69)

With m the mass of the source,

We have thus been able to "postpone" the total amplitude of a gravitational wave scattered in all
directions of a plane on a 1 radius of this plane (of origin corresponding to the source of the wave),
in order to conceive the amplitude of a radial gravitational wave, as geometrized in section 1.

Considering Hω linearly, like the amplitude of a radial gravitational wave, it will be a multiple
of Es = mc2. Thus, as seen in the previous sections, if we want to demonstrate the amplitude
corresponds to a field, we must highlight the discrete nature in h (which we already know), in which
way this potential field would be exercised on the object that generates this field itself. Thus, in h,
we will have to find the mass energy of the source Es which will be factor of H correlated with
this same mass energy Es. Indeed, in order to have the ratio between E and ν as depending on the
amplitude of a wave emitted by a source of mass energy Es = mc2 where m is the mass of the
source, H will have to be multiplied by Es.

Thus, the ratio HEs
HEs
h

should link the E and ν values as follows:

E =
4Gπ
c2
mTEs

4Gπ
c2

mTEs

h

ν (70)

The important thing here is not to fall back on h, as we have already been allowed in section 2, but
to determine the physical meaning of h in Space-Time.

Taking again:

E =
4Gπ
c2
mTEs

4Gπ
c2

mTEs

h

ν (71)
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We will try to give a meaning to this ratio HEs
HEs
h

and it will be compared with the meaning given to h
(η) in the previous section, developing:

E =
4Gπ
c2
mTmc2

4Gπ
c2

mTmc2

h

ν (72)

E =
4GπmTm

4GπmTm
h

ν (73)

After translating the standard gravitational parameter Gm into a Gm
d2 field to which the parameter

corresponds, while maintaining the ratio, we get [8]:

E =
4Gπd2

d2 mTm
4Gπd2

d2
mTm

h

ν (74)

Let a g field generated by a point mass m such that:

g =
Gm

d2
(75)

We will then have:

E =
g4πd2Tm
g4πd2Tm

h

ν (76)

The κ gravitational mass effect of the g gravitational field generated by a m point mass results in:

κ = g4πd2 (77)

We would then have:

E = (
(κ.m)T

(κ.m)T
h)ν (78)

And will can continue :

E = (
(κ.m)T

(κ.m)T

E

ν
)ν (79)

E = (
(κ.m)T

(κ.m)T

ν−1

E−1
)ν (80)

However, as seen at the end of section 3.2 (equation 30), the terms upper and lower must be constant
and respectively independent of ν−1 and E−1. Thus, a new common variable at the top and bottom
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terms will have to be extracted from h, to mimic the form seen in section 3.2, so that the added
factors that will be extracted from h are equal, do not compensate for ν−1 nor E−1, and are inversely
proportional to the terms ν−1 and E−1 (it is not enough just to make appear two identical variables
in the upper and lower terms). Thus, we can not get the parameters λ, T , T−1, ν, ν−1, E, or E−1 of
the wave. We will therefore extract the last relevant parameter λ−1:

E = (
(κ.m)T

(κ.m)T

ν−1

E−1
)ν (81)

E = (
(κ.m)T

(κ.m)T

λc−1

E−1
)ν (82)

E = (
(κ.m)T

(κ.m)T

cTc−1

E−1
)ν (83)

E = (
(κ.m)T

(κ.m)T

T−1λTc−1

E−1
)ν (84)

E = (
(κ.m)TT−1c−1

(κ.m)T

λT

E−1
)ν (85)

E = (
(κ.m)λ−1ν−1

(κ.m)T

1

λ−1T−1E−1
)ν (86)

E = (
(κ.m)λ−1ν−1

(κ.m)Tλ−1T−1E−1
)ν (87)

E = (
(κ.m)λ−1ν−1

(κ.m)λ−1E−1
)ν (88)

The expression of h thus fulfills all the criteria for constituting a ratio between two structural
constants, these criteria being intrinsic to the definition of the constant h, as demonstrated in section
3.3.

Which allows us to note that:

Hω.Es.λ
−1.ν−1

Hω.Es.λ−1.E−1
(89)

That is to say, approximately:

2πl(2H ′′Ω).Es.λ
−1.ν−1

2πl(2H ′′Ω).Es.λ−1.E−1
(90)
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Where H ′′Ω, already partially adapted to radial emission type, so 2πl(2H ′′Ω).Es.λ
−1.E−1, and also

Hω.Es.λ
−1.E−1 is dimensionless, just like 2α (see equation (23) for symmetry confirmation between

ratios), which is a good sign for the rest.

We can finally interpret this ratio as the relationship between

(κ.m)λ−1ν−1, itself the ratio between, on the one hand the gravitational mass effect κ of the
gravitational field g, of punctual point mass m, exerted on the mass m, on a wavelength and, on the
other hand, the frequency of the wave emitted by the mass source m (and mass effect κ).

And

(κ.m)λ−1E−1, the same ratio between, on the one hand, the κ gravitational mass effect of the
gravitational field g of punctual mass m, exerted on m, on a wavelength and, on the other hand, the
energy of the wave emitted by the mass source m (and of serious mass effect κ).

As a reminder, the objective of the development was not to determine h, as we have already been
allowed in section 1, but to provide a physical meaning of h in Space-Time.

Also:

(κ.m)λ−1ν−1

(κ.m)λ−1E−1
=

(Z.e)λ−1ν−1

(Z.e)λ−1E−1
(91)

This allows us to note, after studying our radial gravitational wave, that the electric field, here
equivalent to the gravitational field, appears very clearly as a property of Space-Time, and not as a
force field, in the same way as gravity. Thus, to associate an electric field with an electromagnetic
radiation amounts to associating it with a gravitational field and to establish that an electromagnetic
radiation is actually a succession of contractions and expansions of space, the electric fields being
in fact more properties of Space-Time as fields of force. This, coupled with the demonstration
of the discrete nature of the radial gravitational waves, provides a beginning of Quantization of
the Space-Time [9, 10, 11] quite in conformity with the observation and resulting from models
already benefiting from strong experimental confirmation (Relativity [12, 13, 14, 3, 4, 5, 15],
electromagnetic character of the light, ...).

4.2 Example of interference

Let there be two radial gravitational waves ω1 and ω2 of respective frequencies ν1 and ν2 equal to
each other.

If the waves are emitted in phase, there will be amplification of the contractions and spatial dilations
of the two waves.

In the exactly opposite case, the spatial contractions will be superimposed on spatial expansions of
the same amplitude and will compensate each other, so as to cancel the wave phenomenon. This
phenomenon will be represented in Figure 4.

Figure 4: Interference diagram with equal frequencies
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We can observe, on a median A that these two waves "in phase" and of equal frequencies produce a
wave E of doubled amplitude with respect to a first wave D. It will be here to cumulate the space
contractions B and space dilations C.

If the waves have frequencies ν1 and ν2 unequal, the contractions and spatial expansions of the two
waves can not be superimposed perfectly. There cannot therefore be complete cancellation of the
wave phenomenon and the amplitude of a first series of contractions and spatial dilations will be
found "marked" by the amplitude of the other series. This case will be illustrated in Figure 5.

Figure 5: Interference diagram with unequal frequencies

We can observe, on a median A that these two waves of unequal frequencies produce a wave E of
amplitude corresponding to the sum of the amplitudes of the second wave and the first wave D.
It will be here to cumulate the contractions B and dilatations C. It can then be observed that the
contractions B and dilatations C of the second wave mark the contractions B and dilatations C of
the first wave D, so that the total amplitude corresponds to the sum of the amplitudes of the two
waves, first showing the frequency of the wave at the highest frequency (the second wave), while
letting appear, in the wave corridor F , the frequency of the first wave D.
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5 Radial gravitational wave contraction

A radial gravitational wave moving from the source over a length l, in a single direction, is deemed
to have no precise position in its l space. Now, if I wish to know precisely the position of the
quantity of energy which it transports, I will not be able to do it without admitting its corpuscular
nature.

Indeed, if I observe my wave and I want to know the position of the quantity of energy that is
assimilated, I observe a series of contractions and dilations carrying a power potential depending
on its frequency and distributed. Now, this quantum of energy γ corresponding to the quantity of
energy of said wave potential moves at the speed of the wave, ie at the speed of light.

Thus, the wave corresponds well to a series of contractions and expansions of space, but the
observation of its energy potential by an outside observer implies to consider the relativistic effect
that it undergoes because of its speed. Thus the potential of energy transported by the wave,
expressed as follows:

E = A(r=l;ϕ=π
2

)ωνω (92)

Implies that the wave and its energy potential are considered as geometric objects. Now, considering
the energy potential E conveyed by the wave from the point of view of an observer external to the
ω wave moving on l, the energy potential of the object The geometric representation of the wave
would no longer be considered over the entire length l, because of the contraction of the lengths, but
on an infinitely contracted space, as follows [16]:

l′γ = l

√
1− v2

c2
(93)

But v = c, so:

l′γ = 0 (94)

l′ here represents the length of the quantum of energy γ, constituting the energy potential E
distributed over the whole wave ω, from the point of view of an observer outside the wave.

Thus, the space in which the quantity of energy transported by the wave is distributed is only one
point, corresponding to the contraction of the length l on which the wave moves.

This is, moreover, quite coherent with the theorem of indeterminacy (it is more a question here of an
unobservability than an indeterminacy) [17], insofar as to determine the position of the wave would
be to ignore its wave character, while considering the position of its energy potential E would,
according to the Special Relativity, be considered to consider an infinitely contracted form of the
wave moving on l, ie a point [16]. Indeed, an estimated length l in one dimension, a radial axis r,
would actually be a point if it was infinitely contracted on the radial axis r.
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The non-simultaneity of the two observations (observation of the wave and observation of its
quantity of energy in a space corresponding to the infinitely contracted space of the whole wave)
could be very important to explain the probabilistic aspect of the position of the quantity of energy
in the probability wave associated with it and therefore in the probabilistic aspect of the behavior of
the wave itself.

It should be noted that the quantum has no real physical existence, it is only the potential of energy
transported by the wave, observed by an observer outside the wave. The energy potential is well
distributed over the entire wave moving over l, but, the quantity of energy associated with the wave
moving at the speed of light, the space allocated to it is punctual and corresponds to the length l, on
which it can be distributed, infinitely contracted.

At this moment of the work, we have been able to describe the physical nature of an electromagnetic
radiation, by demonstrating that it was actually a radial gravitational wave, its electric field being
then considered as a property of the Space- Time and not as a force field. This allowed us to
demonstrate that a wave is actually a series of contractions and dilations of the space carrying a
potential of energy distributed over the whole wave, to which we will associate a quantum of energy
of infinitely contracted length. (null), ie distributed on a punctual space, from the point of view of an
observer outside the wave, because of the Special Relativity. The "problem" of wave-particle duality
is solved. Electromagnetic radiation is neither a single wave nor a single corpuscle, insofar as we
can not envisage the one without the other, the corpuscle corresponding to a contacted wave and
the wave corresponding to a corpuscle (a quantity energy) dilated. A wave is therefore essentially
the same thing as a corpuscle, the latter being only a quantity of energy in the space of its wave,
infinitely contracted because of the Special Relativity.

6 Expected breaks in energy conservation

6.1 Gravitational redshift and blueshift

Gravitational shift phenomena are directly induced by Relativity and have been confirmed by the
Pound-Rebka experiments [12, 13, 14]. The gravitational waves that can undergo these relativistic
effects (insert here observed redshift reference), a radial gravitational wave would be sensitive in
this way:

E = A(r=l;ϕ=π
2

)ωνω (95)

E =
A(r=l;ϕ=π

2
)ω

Tω
(96)
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After extracting the outer metric of Schwarzschild [8], we use the term
√

1− 2GM
c2ρ

, as follows:

E =
A(r=l;ϕ=π

2
)ω

tω
√

1− 2GM
c2ρ

(97)

Where ρwould be the radial distance between ω of the object deforming the geometry of Space-Time
near the wave ω, M the mass of the same object, and t would the period of ω for which:

E ′ =
A(r=l;ϕ=π

2
)ω

tω
(98)

E ′ corresponding to the energy potential of the wave if it were located in an almost flat space-time,
here that of the observer.

Inasmuch as the series of dilations and contractions would not see its amplitude changed, since not
only would the spatial contractions increase, but also the dilations that would diminish. Indeed, in
such a configuration, the difference between the maxima of the dilations and the maximum of the
contractions would remain constant. On the other hand, the frequency-dependent energy potential,
in addition to being dependent on the amplitude, would increase as the curvature of the space-time
in which the radial gravitational wave evolves would be accentuated.

With this model, the conservation of energy is quite relative, but one can, provided to apply this
principle to the mass particles and to eliminate the second problem of the paradox of the increasing
mass (developed hereafter), to note despite all the curvatures of Space Time, they are preserved.
This would make it possible to solve the first problem of the paradox of the growing mass and to
eliminate the second, while allowing to satisfy the principle of mass-energy equivalence.

6.2 The paradox of increasing mass

The paradox of the growing mass is a highlighting of a gap between the predictions from General
Relativity and those from the standard model [18]. It is an application of gravitational shift to mass
particles, using the de Broglie relation [19]. The two "problems" raised are:

- An increase in the mass of a particle due to the accentuation of the curvature of the Space-Time in
which it is located, as follows:

λ =
h

mvβ
(99)

Where β =
√

1− v2

c2

−1

.

Θ =
h

mv2β
(100)
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θ

√
1− 2GM

c2ρ
=

h

mv2β
(101)

m =
h

v2βθ
√

1− 2GM
c2ρ

(102)

So that, for ρ1 > ρ2, m1 < m2.

- An increase in the total mass of a system consisting of two particles continuously increasing their
masses over the time of their cohabitation, the mass increase of one causing an amplification of the
curvature of the space-time due to its mass involving the increase of the mass of the other particle,
and so on, so that:


mn+1 = h

v2βθ
√

1− 2GMn
c2ρ

Mn+1 = h

v2βθ
√

1− 2Gmn
c2ρ

(103)

If the first problem makes it possible to establish a parallel with the offset suffered by the elec-
tromagnetic radiations and to confirm a certain mass-energy symmetry, the second one breaks
completely with the mass-energy equivalence principle and does not seem to correspond at all to
the observation, or in any case has never been evidenced by observation.

An application of the model outlined in the previous sections would eliminate the second problem.
Indeed, if the mass, in the same way as the energy for the light, was the result of the deformation
of the space-time, then the increase of mass due to the accentuation of its curvature would not
be consider, to the extent that the mass and curvature of the space-time that "generates" it would
always remain relative to the curvature of the space-time in which the particle evolves and that
an accentuation of the curvature of the The space-time in which the particle evolves would not
necessarily imply an increase in the deformation of the space-time geometry propagated from said
particle ("generating its mass"). The second problem of the paradox would then be eliminated.

6.3 Overtures

The application of this model to mass particles would thus make it possible to solve the paradox
of increasing mass and to maintain a certain mass-energy symmetry, in addition to completing the
resolution of the "problem" of wave-particle duality. Moreover, this would explain the emergence
of particle pairs in the void by fluctuations in the curvature of space-time. This is an opening that
will not be dealt within this paper.

Moreover, this would solve the problem of incompatibility by reinterpreting the Principle of
Uncertainty as a theorem of unobservability and solve the problem of the incompatibility between
the dilation of time and the Principle of Uncertainty (this is say between the foundations of General
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Relativity and Quantum Mechanics) [20], using the first prediction of the paradox of increasing
mass [18].

7 Conclusions

By succeeding in extracting the Planck constant from the equations relating to the electric field of
a radial gravitational wave, a gravitational wave propagating in a single direction, we have been
able to demonstrate computationally the discrete nature of the amplitude and the level of the energy
of such a wave, to establish a physical meaning for this constant, as well as for the fine-structure
constant, the real physical interpretation of which escaped the scientific community since the 1920s
[7]. Then, we have been able to establish the gravitational field to which the amplitude of the wave
is correlated, as well as the electric field, and we have been able to demonstrate that the electric field
was not a force field but, in the same way as gravitation, a property of Space-Time, while defining
the electromagnetic radiations as radial gravitational waves, that is to say series of contractions and
dilations of the space propagating in a single direction. We were then able to assign to this wave a
quantity of energy, actually corresponding to the contraction of the energy potential distributed over
the whole wave, because of its speed, thus making it possible to understand why the waves have
this corpuscular aspect. Special Relativity will have solved the "problem" of wave-particle duality
for electromagnetic radiations.

We have then briefly been able to address the question of mass particles, for which the application
of this wave model could have the consequence of explaining the fluctuations of the vacuum such as
fluctuations in the geometry of the space-time, the particles being then described as consequences of
the deformation of the geometry of Space-Time. This approach would allow us to approach a little
more than a conciliation of the notion of dilation of time and the principle of uncertainty, here used
as a mathematical theorem of unobservability rather than as a physical principle of indeterminacy
[20] . Indeed, by using the paradox of the increasing mass and using the concept of relative mass,
the theorem becomes completely compatible with the Relativity, insofar as the abandonment of
the absolute mass would make it possible to erase this incompatibility, the relative mass actually
observed depending on the position of the object and can only be observed as quantity by ignoring
the wave aspect of the mass particle, as explained in section 5. This reinterpretation refining the
definition of the Principle of Uncertainty, to be effective, must however benefit from an enlargement
of the present model to mass particles.

Moreover, it would also eliminate the second and main problem posed by the growing mass paradox.

Finally, the demonstration of the discretion of the amplitude of the contractions and dilations of the
space makes it possible to provide a first quantization of the space-time [9, 10, 11] in conformity
with the general relativity, based on models with strong observational substantiation, and, of course,
consistent with all observations already made.
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