
HAL Id: hal-02142837
https://hal.science/hal-02142837

Submitted on 28 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid recursive regularized thermal lattice Boltzmann
model for high subsonic compressible flows
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut

To cite this version:
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized thermal
lattice Boltzmann model for high subsonic compressible flows. Journal of Computational Physics,
2019, 394, pp.82-99. �hal-02142837�

https://hal.science/hal-02142837
https://hal.archives-ouvertes.fr


Hybrid recursive regularized thermal lattice Boltzmann

model for high subsonic compressible flows

Yongliang Fenga, Pierre Boivina, Jérôme Jacoba, Pierre Sagauta,∗
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Abstract

A thermal lattice Boltzmann model with a hybrid recursive regularization

(HRR) collision operator is developed on standard lattices for simulation

of subsonic and sonic compressible flows without shock. The approach is

hybrid: mass and momentum conservation equations are solved using a lat-

tice Boltzmann solver, while the energy conservation is solved under entropy

form with a finite volume solver. The defect of Galilean invariance related to

Mach number is corrected by the third order equilibrium distribution func-

tion, supplemented by an additional correcting term and hybrid recursive

regularization. The proposed approach is assessed considering the simula-

tion of i) an isentropic vortex convection, ii) a two dimensional acoustic

pulse and iii) non-isothermal Gaussian pulse with Ma number in range of 0

to 1. Numerical simulations demonstrate that the flaw in Galilean invari-

ance is effectively eliminated by the compressible HRR model. At last, the

compressible laminar flows over flat plate at Ma number of 0.3 and 0.87,

Reynolds number of 105 are considered to validate the capture of viscous

and diffusive effects.
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1. Introduction

The lattice Boltzmann method (LBM) is an alternative approach to sim-

ulate fluid flows based on the Boltzmann equation. The base model is well

suited for the simulation of low-Mach, athermal flows [1–3]. Due to its ad-

vantages for massively parallel computing as well as its ability to handle

very complex geometries, there are significant research efforts invested in

extending LBM to thermal and subsonic to supersonic applications.

In achieving that goal, the numerical stability of the Lattice-Boltzmann

collision model has long been identified along the key issues [4]. The most

commonly used collision model is the single time relaxation process referred

to as the Bhatnagar-Gross-Krook (BGK) model [5]. In order to overcome the

insufficient stability observed in the BGK model, several improved collision

models with enhanced stability have been proposed, e.g. multi-relaxation-

time models [6, 7], entropic LB models [8, 9], regularized BGK models [10,

11], or cumulant/cascaded LB models [12, 13].

Numerous studies have shown the capabilities of LBM in the simulation

of thermal flows including scalar transport processes. A hybrid finite differ-

ence thermal model using two dimensional multiple relaxation time collision

model was presented for low Mach number compressible flows [14]. As re-

ported in [15], the hybrid finite difference thermal model can simply cancel

a spurious source term in thermal lattice Boltzmann models with forcing

terms. Moreover, the robustness of hybrid approach was demonstrated in

simulations of highly compressible flows [16].

For the simulation of compressible flows at higher Mach numbers, how-
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ever, no clear consensus has been reached within the LB framework. The

classical method requires considering high-order moments of density distri-

bution functions to recover the macroscopic energy conservation equation for

thermal lattice Boltzmann model [17], usually relying on extended-neighbour

lattice set (D1Q5, D2Q37, D3Q121 etc.) leading to LB methods referred to

as multi-speed models [18, 19]. This approach, seems rather expensive for in-

dustrial applications due to the high number of lattices (which may become

prohibitively high in multi-component flows).

Several attempts have also been made keeping lower-order lattices (D1Q3,

D2Q9, D2Q17, D3Q19, D3Q39 etc.). A two-dimensional compressible LB

model with reduction of lattice sound speed through incorporating an ather-

mal equation of state was proposed by Yu and Zhao [20], in which a forcing

term was added in the form of the pressure gradient calculated by D2V17

lattice nodes. Next, the LB model using reduction of sound speed [21] and

hybrid finite difference entropy equation was studied in D3Q39 lattice model

for transonic flows [16]. As reported in studies of Kupershtokh et al. [22],

both the method of incorporating forcing terms into the lattice Boltzmann

model and calculation of pressure gradient are crucial to implement an ar-

bitrary equation of state.

For the nearest-neighbour lattice sets (D1Q3, D2Q9, D3Q15, D3Q19,

D3Q27, i.e. the so called standard lattices), Házi and Kávrán [23] suggested

to use a third-order Hermite polynomial expansion the equilibrium distribu-

tion functions to address acoustic problems. Dellar [24] proposed a lattice

Boltzmann algorithm with Hermite-Gram-Schmidt polynomials to reduce

cubic defects in Galilean invariance on standard lattices for the simulation

of low-subsonic flows with uniform density. Malaspinas [25] developed a

recursive regularization procedure to increase stability and accuracy of the
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lattice Boltzmann scheme for athermal compressible flows at moderate Mach

numbers. For thermal compressible flows, a coupled double distribution

function (DDF) lattice Boltzmann model was developed for thermal flow

with correcting terms in two-dimensional space of multiple relaxation time

collision model [26]. A three-dimensional DDF thermal lattice Boltzmann

model with general correcting term for thermal flows with variable density

was developed by Feng et al. [27]. A DDF thermal lattice Boltzmann model

was extended to high-subsonic flows using finite volume approach to improve

numerical stability [28].

The collision models on standard lattice has also been investigated in

compressible and weakly compressible flows. An entropic thermal D2Q9

model was introduced in [29] for subsonic flows characterized by large tem-

perature and density variations. Recently, the central moment and cascaded

thermal lattice Boltzmann models with variable density was proposed for for

weakly compressible flows [30, 31]. Besides, the recursive regularized BGK

model was proposed for high Mach number flows basing on higher-order

lattice set [32, 11]. Jacob et al. [33] then proposed a dynamic hybrid recur-

sive regularized BGK model with self-adaptive dissipation for Large-Eddy

Simulation high Reynolds number flows and Reynolds-Averaged Numercial

Simulation [34], which could be generally extended to compressible flows by

considering the effects of turbulent fluctuations have a striking resemblance

to those of microscale (thermal) fluctuations in laminar flows [35, 36].

Due to its intrinsic low dissipation, high fidelity and simplicity compared

with the conventional finite volume/difference approach [37, 38], it is natural

to seek a stable and efficient LB model able to simulate fully compressible

flows on standard lattices. The objective of this paper is to present a new

thermal lattice Boltzmann model relying on the nearest-neighbour lattice
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structures with a hybrid recursive regularized BGK collision model for sub-

sonic to sonic smooth compressible flows. It is organized as follows: Sec-

tion 2 presents the governing equations including the energy conservation in

entropy form; Section 3 presents the thermal lattice Botlzmann method with

a hybrid recursive regularized BGK collision model along with the numeri-

cal algorithm; In section 4, simulation of an isentropic vortex convection, a

two dimensional acoustic pulse and non-isothermal Gaussian pulse with Ma

number between 0 and 1 and a compressible laminar flow over flat plate at

Ma = 0.87 are computed as validation and application. Finally, Section 5

draws conclusions and perspectives.

2. Governing equations

The mass and momentum conservation equations governing compressible

flows read

∂ρ

∂t
+∇ · (ρu) = 0, (1a)

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · τ (1b)

where ρ, u, p are the density, velocity, pressure, respectively. The viscous

stress tensor τ is given by

τ = µ[∇u+ (∇u)T − 2

3
(∇ · u)I], (2)

where µ is the fluid dynamic viscosity and I is identity matrix.

The total energy conservation can be expressed as

∂ρE

∂t
+∇ · [u(ρE + p)] = ∇ · (λ∇T ) +∇ · (u · τ ), (3)

λ is heat conductivity. Total energy E = e+ ‖u‖2 /2 is the sum of internal

and kinetic energies.
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Alternatively, the energy conservation (3) can be expressed in terms of

entropy as
∂s

∂t
+ u · ∇s = 1

ρT
∇ · (λ∇T ) + 1

ρT
τ : ∇u. (4)

Finally, a thermodynamic closure is needed, relating the internal energy

e (or entropy s) with the pressure p and volume mass ρ through the temper-

ature. Albeit not restricted to this equation of state, the perfect gas closure

was adopted for this work, but the model is compatible of more complex

closures. In the following,

p = ρ.r.T, e = Cv.T + q, s = Cv ln
( T

ργ−1

)

+ q′, (5)

where Cv is the mass specific heat capacity at constant volume, assumed to

be constant, r = R/W is the ratio of the perfect gas constant to the gas

molecular weight, γ = Cp/Cv is the specific ratio, and q and q′ are references

which can be set to zero for a mono-constituent gas.

3. Hybrid recursive regularized thermal LB model

This section presents the model we propose to solve the governing equa-

tions (1). A hybrid recursive regularized thermal LB model relying on the

third order Hermite expansion will be developed incorporating a finite vol-

ume approach for solving entropy equation.

3.1. Thermal LB model using the 3rd order Hermite expansion

The lattice Boltzmann equation (LBE) can be derived from the Boltz-

mann equation in the velocity space. It can be written as follows

∂f

∂t
+ ξ · ∂f

∂x
= Ωf (6)
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where f denotes the density distribution function, ξ is the particle veloc-

ity and Ωf is the collision operator. The macroscopic quantities, e.g., the

density ρ, mean velocity u can be obtained from the distribution function

as

ρ =

∫

fdξ,

ρu =

∫

ξfdξ.

(7)

A single-relaxation-time collision operator, Bhatnagar-Gross-Krook (BGK)

[5],

Ωf = −1

τ
(f − feq) (8)

is used as a basis to develop the proposed method, where τ is relaxation

time. The equilibrium distribution function feq can be derived as

feq = ρ

(

1

2πrT

)
D
2

exp

[

(ξ − u)2

2rT

]

(9)

where r is the gas constant, D is the number of spatial dimension and T

represents temperature.

In most LB models based on nearest neighbor lattices (D1Q3, D2Q9,

D3Q27, etc.), the density distribution function is approximated through a

second-order Hermite polynomials expansion, leading to discrete equilibrium

distribution functions feqi as

f eqi = wi



ρ+
ciα
c2s
ρuα +

H(2)
iαβ

2c4s
ρuαuβ



 (10)

where wi is the ith weight coefficient associated to discrete velocity ciα, the

second order Hermite polynomial reads

H(2)
iαβ = ciαciβ − c2sδαβ , (11)
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with δαβ being the classical Kronecker delta, and cs is the sound speed.

Using the second-order approximation (10) for the equilibrium function,

the Boltzmann equation (6) with BGK closure can be shown to be equivalent

to the weakly compressible Navier-Stokes equation closed with the following

athermal equation of state : p = ρc2s. Because of the assumption that

pressure only depends on ρ, the athermal equation of state is clearly not

suited for fully compressible flows, in which a source of heat can set a fluid

in motion (or, equivalently, a disequilibrium in the density function).

To handle compressible flows through a non-isothermal equation of state

(e.g. p = ρrT for ideal gas), it is then natural to consider the thermal

Maxwell-Boltzmann distribution instead [17], here expanded to the third

order as

feqi = wi



ρ+
ciα
c2s
ρuα +

H(2)
iαβ

2c4s
A(0)

αβ +
H(3)

i

6c6s
A(0)

αβγ



 . (12)

Indeed, the Hermite polynomials remain unaltered, the second-order given

by (11) and the third-order being

H(3)
iαβγ = ciαciβciγ − c2s[ciδ]αβγ , (13)

where [ciδ]αβγ = ciαδβγ + ciβδαγ + ciγδαβ . The second and third-order terms

in the expansion now include full compressiblity as (p − ρc2s), now allowed

to non-zero values

A(0)
αβ = ρuαuβ + (p− ρc2s)δαβ , (14)

A(0)
αβγ = ρuαuβuγ + (p− ρc2s)[uδ]αβγ , (15)

where [uδ]αβγ = uαδβγ + uβδαγ + uγδαβ .

The moments of the equilibrium distribution function (12) on nearest
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neighbor type lattices are then

∑

i

feqi = ρ, (16a)

∑

i

ciαf
eq
i = ρuα, (16b)

∑

i

ciαciβf
eq
i = pδαβ + ρuαuβ , (16c)

∑

i

ciαciβciγf
eq
i = p[uδ]αβγ + ρuαuβuγ −Ψαβγ . (16d)

where the term Ψαβγ is a correction due to defect of symmetry of the nearest

neighbor type lattices for the third-order moment. This deviation is intended

to be corrected by introducing a correcting term ψi, which can be applied as

a second order forcing term in lattice Boltzmann BGK equation following

∂fi
∂t

+ ciα
∂fi
∂xα

= Ωfi + ψi (17)

ψi = −wi
Hiαβ

2c4s

∂

∂xγ
Ψαβγ ,

∑

i

ciαciβψi = − ∂

∂xγ
Ψαβγ (18)

Taking into account the Chapman-Enskog multiscale technique [39] with

the second order correcting term ψi, the compressible Navier-Stokes equa-

tions can be recovered as follows (see Appendix A for the detailed Chapman-

Enskog analysis)
∂ρ

∂t
+

∂

∂xα
(ρuα) = 0 (19)

∂

∂t
(ρuα) +

∂

∂xβ
(ρuαuβ + pδαβ) =

∂

∂xβ

[

µ(
∂uβ
∂xα

+
∂uα
∂xβ

− k̃
∂uγ
∂xγ

)

]

(20)

The correcting term ψi is given, e.g., in two dimensional D2Q9 as

ψi =
wi

2c4s

{

Hixx
∂

∂x
[ρux(1−

p

ρc2s
− u2x)] +Hiyy

∂

∂y
[ρuy(1−

p

ρc2s
− u2y)]

}

, (21)
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and in three dimensional D3Q27 lattice model as

ψi =
wi

2c4s

{

Hixx
∂

∂x
[ρux(1−

p

ρc2s
− u2x)]

+Hiyy
∂

∂y
[ρuy(1−

p

ρc2s
− u2y)]

+Hizz
∂

∂z
[ρuz(1−

p

ρc2s
− u2z)]

}

, (22)

The correcting term ψi in D3Q19 lattice is derived in Appendix B.

3.2. Hybrid recursive regularized collision model

Regularization procedures were proposed as to improve the numerical

stability of BGK collision models for lattice Boltzmann methods [10, 25, 33].

They play the role of a filter on spurious ghost moments of the numeri-

cal scheme. Practically, a regularized distribution function is introduced

through recomputing the non-equilibrium parts prior to the collision step.

By including a forcing term ψi in the discrete velocity Boltzmann equa-

tion (17) and integrating it along the characteristic line with the trapezoidal

rule, the LB equation can be expressed as:

fi(xα + ciαδt, t+ δt)− fi(xα, t) =
δt
2

[

Ωfi(xα + ciαδt, t+ δt) + Ωfi(xα, t)
]

+
δt
2

[

ψi(xα + ciαδt, t+ δt) + ψi(xα, t)
]

(23)

In order to remove this implicit treatment of the collision and forcing terms,

a new distribution function is introduced:

fi = fi −
δt
2τ

(feqi − fi)−
δt
2
ψi (24)

The macroscopic density and momentum can be computed as

ρ =
∑

i

fi +
δt
2
ψi (25a)

ρuα =
∑

i

ciαfi +
δt
2

∑

i

ciαψi (25b)

10



Therefore, the LBGK equation can be expressed equivalently as

fi(xα + ciαδt, t+ δt) = feqi (xα, t) + (1− 1

τ
)fneqi +

δt
2
ψi(xα, t) (26)

where τ = τ/δt+1/2 and fneqi represents the off-equilibrium part of the new

distribution functions,

fneqi = fi − fi
eq +

δt
2
ψi =

2τ

2τ − 1
fneqi (27)

The off-equilibrium distribution function can be also expanded using

Hermite polynomials according to the Chapman-Enskog technique, leading

to

fneqi =
2τ

2τ − 1
fneqi ≈ wi

[H(2)
iαβ

2c4s
A(1)

αβ +
H(3)

iαβγ

6c6s
A(1)

αβγ

]

(28)

where

A(1)
αβ =

2τ

2τ − 1

∑

i

ciαciβf
neq
i =

∑

i

ciαciβf
neq
i (29)

= −δtτp[
∂uβ
∂xα

+
∂uα
∂xβ

− k̃
∂uγ
∂xγ

δαβ ]

A(1)
αβγ ≈ uαA(1)

βγ + uβA(1)
γα + uγA(1)

αβ (30)

where k̃ = γ − 1, γ being heat specific ratio. The third order recursive

regularization procedure of the thermal LB model by Eq. (30) is used to

reduce the Galilean invariance and increase numerical stability, which could

be derived by binomial theorem of Hermite polynomials [32, 11]. The third

order off-equilibrium terms on gradient of temperature derived by Ref. [32]

are not considered in this work, since they are related to contributions of

higher-order heat flux terms beyond Navier-Stokes equations.

Although the higher-order recursive regularization can reduce the defect

of Galilean invariance, the non-hydrodynamic modes were also introduced
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by the higher-order off-equilibrium moment. A parameterized hybrid recur-

sive regularized procedure is proposed to suppress those non-hydrodynamic

modes. According to Eq. (30), the off-equilibrium moment A(1)
αβ can be al-

ternatively reconstructed by velocity gradients which could be calculated

by a finite difference operator. Thus, following [33] an explicit stabilization

procedure relying on the linear combination of A(1,RR)
αβ given by Eq. (29) and

A(1,FD)
αβ obtained by second-order finite-difference approximation of Eq. (30)

is introduced, leading to the definition of the following hybrid recursive reg-

ularized collision operator

A(1,HRR)
αβ = σA(1,RR)

αβ + (1− σ)A(1,FD)
αβ (31)

where σ ∈ [0, 1] is an arbitrary weighting coefficient. A(1,HRR)
αβγ is recursively

updated by re-computed off-equilibrium moment A(1,HRR)
αβ .

In order to preserve the isotropy of the scheme, a second-order isotropic

central difference scheme is employed to compute the numerical gradient

operator. The second-order isotropic central difference scheme is given in

lattice units as
∂φ

∂xα
=

1

c2s

∑

i

wiciαφ(xα + ciα) (32)

Finally, the hybrid recursive regularization procedure for thermal com-

pressible flow is summarized as follows:

fi(xα + ciαδt, t+ δt) = feqi (xα, t) + (1− 1

τ
)R(fi

neq
) +

δt
2
ψi(xα, t) (33a)

R(fi
neq

) = wi

[H(2)
iαβ

2c4s
A(1,HRR)

αβ +
H(3)

iαβγ

6c6s
A(1,HRR)

αβγ

]

(33b)

A(1,RR)
αβ =

∑

i

ciαciβf
neq
i (33c)

fneqi = fi(xα, t)− fi
eq(xα, t) +

δt
2
ψi(xα, t) (33d)
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In the simulations, physical and lattice units for length, time, mass and

pressure are related through a reference length scale L0, the physical refer-

ence sound speed csp0 =
√

p0/ρ0 for space and time, a physical reference

pressure p0, a physical reference density ρ0 and a lattice reference density

ρl0. Accordingly, the physical variables can be converted from the quantities

in lattice units (l subscript) as

δx = L0/Nn, δt = δx.
cs
csp0

, t = Nt.δt

x = Ni.δx, ρ = ρl.
ρ0
ρl0
, u = ul.

δx
δt
,

µ = µl
δ2x
δt
, p =

ρ0
ρl0
.
δ2x
δ2t
.

The physical reference sound speed csp0 could be set to the far-field or

free-stream sound speed in compressible flows, it is more convenient to keep

it as a free parameter. This allows to freely accelerate the convergence rate,

by varying the time step in the same manner of Courant-Friedrichs-Lewy

(CFL) number for conventional Navier-Stokes solvers. Taking ideal gas as

an example, the physical sound speed for ideal gas can be computed in the

LB model as follows

csp =
√

∂p/∂ρ|s =
√

γRgT = csp0
√

γT/T0 (34)

where T0 is physical reference temperature corresponding to p0.

3.3. Finite volume method for entropy equation

In the hybrid lattice Boltzmann method presented in this section, the

entropy based energy conservation equation is solved separately using a finite

volume technique. The entropy equation with viscous heat dissipation term

is given as follow

∂s

∂t
+ uα

∂s

∂xα
=

1

ρT

∂

∂xα
(λ
∂T

∂xα
) +

Φ̇

ρT
. (35)
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where Φ̇ represents the term of viscous dissipation. An explicit second-order

Runge-Kutta scheme is adopted as temporal integration, which is given as

s(n+1/2) = s(n) +
δt
2
RHS[s(n)]

s(n+1) = s(n) + δtRHS[s
(n+1/2)]

(36)

The convective flux is constructed using MUSCL scheme, while the

classical second-order central difference scheme is adopted for the diffusion

term and term of viscous dissipation. The third order MUSCL scheme [40]

adopted in this study is given as follows:

u
∂φ

∂x
= ui

φi+1/2 − φi−1/2

δx
(37)

φi+1/2 for instance, can be given as

φi+ 1

2

=











φL
i+ 1

2

, ui > 0

φR
i+ 1

2

, ui ≤ 0

and

φL
i+ 1

2

= φi +
ψ(ri)

4
[(1− κ)δφi− 1

2

+ (1 + κ)δφi+ 1

2

],

φR
i+ 1

2

= φi+1 −
ψ(ri+1)

4
[(1− κ)δφi+ 3

2

+ (1 + κ)δφi+ 1

2

],

where κ = 1/3, and,

δφi+ 1

2

= (φi+1 − φi) , δφi− 1

2

= (φi − φi−1) ,

δφi+ 3

2

= (φi+2 − φi+1) , δφi− 3

2

= (φi−1 − φi−2) ,

ri =
φi − φi−1

φi+1 − φi

(38)

where i represents index of grid rather than lattice discrete velocity. The

van Albada limiter function ϕ(r) = 2r/(1+ r2) is used to avoid spurious os-

cillations [41]. The coupling between the LB and finite volume (FV) solvers

is illustrated in Fig.1, along with the relevant data exchanges.
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Start

Initialization

ρ,u, p, T, s

Compute

feqi (ρ,u, p) (12)

ψi(ρ,u, p) (21)

Streaming

and collision

step (33)

Update

(ρ,u) (25)

1st step of RK,

compute s(1/2)

Compute ρ(1/2)

u(1/2), T (1/2)

2nd step of RK,

update (s, T )

Output

LB
FV

time-step

fi = fi(ρ,u, p) (T, s)

(ρ,u)

(ρ,u)

ρ

p
=
p(ρ, T

), N
t +

1

Figure 1: The algorithm proposed consists of a Lattice-Boltzmann (LB) solver coupled

with a classical Finite Volume (FV) solver. Data exchanges between the two solvers are

clearly identified.
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3.4. Implementation of boundary conditions

The boundary conditions of density distribution function are imple-

mented by a finite difference reconstruction approach along with the hybrid

regularization procedure [10].

1. First, the macroscopic velocities ρ, u and p on the boundary nodes are

computed, following boundary conditions commonly used in Navier-

Stokes solvers. The entropy s and temperature T are then calculated

by the thermodynamic closure and equation of state.

2. Next, the shear stress tensor is computed using the velocity gradients

on boundary nodes, which are computed on these nodes using a first

order biased finite-difference scheme.

3. Then, the density distribution function is reconstructed using σ = 0

in hybrid regularization in which the off-equilibrium moment is recon-

structed as follows

A(1)
αβ ≈ −τδtp

(

∂uα
∂xβ

+
∂uβ
∂xα

+ k̃
∂uγ
∂xγ

δαβ

)

, (39)

A(1)
αβγ = uαA(1)

βγ + uβA(1)
γα + uγA(1)

αβ , (40)

In the following, prescription of macroscopic variables (step 1 above), is

done according to the boundary condition.

• For a velocity inlet, ρ, u, p are set as Dirichlet boundary conditions.

• For a pressure outlet, p is set as Dirichlet condition; ρ and u are

extrapolated enforcing a zero-gradient condition.

• For a no-slip wall, u = 0 is set as Dirichlet condition, and ρ and p are

extrapolated enforcing a zero-gradient condition.
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4. Results and discussion

Since the base HRR LB model has already been assessed for simulation of

thermal flows in low Mach number limit [27, 42, 36], the present compressible

HRR LB model is assessed considering three cases dealing with compressible

subsonic to sonic shock-free flows:

1. isentropic vortex convection by a uniform flow,

2. acoustic pulse,

3. flow over a flat plate.

The first two configurations are treated as quasi-inviscid, with a non-dimensional

viscosity µ = 10−15, as to test the model in extreme conditions. For the third

configuration, variable viscosity is assumed.

For the D2Q9 lattice, the microscopic discrete velocity ciα is given by

ciα =



























(0, 0) i = 0

(±1, 0), (0,±1) i = 1− 4

(±1,±1) i = 5− 8,

(41)

the weights wi = 4/9, i = 0; wi = 1/9, i = 1, 2, 3, 4; wi = 1/36, i = 5, 6, 7, 8

and the lattice reference sound speed cs being
√

1/3.

4.1. Isentropic vortex convection by a uniform flow

This is one of the few exact analytical solutions of the compressible Eu-

ler equations. This test case is related to the convection of an isentropic

vortex by an inviscid uniform flow at free-stream Mach number Ma ≈ 0.42

(u∞ = 0.5, γ = 1.4). It is used to show the ability of numerical schemes to

accurately capture vortical flows. The free-stream conditions and pertur-

bations added to the free-stream is initialized in a computational domain
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of size [0, 10] × [0, 10]. There is no entropy gradient in the flow-field. The

free-stream flow is given by

ρ∞ = 1, u∞ = 0.5, v∞ = 0, p∞ = 1 (42)

and the density and velocity perturbations are initially given as a vortex,

defined as

ρ =

[

1− (γ − 1) b2

8γπ2
e1−r2

]

1

γ−1

, p = ργ , (43)

u = u∞ − b

2π
e

1

2
(1−r2) (y − yc) , (44)

v = v∞ +
b

2π
e

1

2
(1−r2) (x− xc) . (45)

where b = 0.5 is the vortex strength and r =
[

(x− xc)
2 + (y − yc)

2
]1/2

is

the distance from the vortex center (xc, yc) = (5, 5).
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Figure 2: Profiles obtained by the LB method on isentropy vortex convection at t = 20T .

In our simulation, 200 × 200 node grids are employed with δx = 0.05.

The time step is δt = δx/
√
T0 with reference temperature T0 = 36.0. An

approximate inviscid condition is implemented setting the dynamic viscosity

to µ = 10−15 in the simulation, which results a relaxation time τ ≈ 0.5. The
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considered values of the HRR weighting parameter are σ =0.7, 0.5 and 0.0.

Periodic boundary conditions are implemented in all directions.

Figure 2 displays the distributions of density and velocities along the

domain symmetry lines after 20 flow-through-time (FTT), i.e. t = 20T . The

density along the horizontal line of symmetry is plotted in Fig. 2(a) while

x-velocity along vertical middle line is shown in Fig. 2(b). It can be observed

that all results are in good agreement with the exact solution after 20 FTT.

The numerical dissipation increases with decreasing HRR parameter σ where

σ = 0.0 means that the off-equilibrium distribution function is completely

reconstructed by the finite difference scheme.

The typical density fields obtained using different HRR parameter σ

values after 20 FTT are presented in Fig. 3. It is found that the isotropic

evolution is well preserved in the simulations except when σ = 0.0. The

history of the maximum of the amplitude A of the density disturbance nor-

malized by its initial value

A =
1−min(ρ)

1− ρ0
(46)

is reported in Fig. 3(d). The damping rate induced by numerical dissipation

is quite small. Considering both the robustness and the accuracy, the HRR

parameter σ = 0.5 appears to be a good trade-off for the simulation of

inviscid compressible flows.

Simulations displayed in Fig. 2 were repeated varying the grid resolution

Nx × Nx, with Nx = (25, 50, 100, 200, 400). The resulting profiles, reported

in Figs. 4(a) and 4(b), illustrate well the grid convergence, as well as the

method robustness. Further investigation of the L2 norm of these profiles,

illustrated in Fig. 4(c), shows that the convergence is second order in space,

a classical characteristic of LB models [3].
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(a) σ = 0.5, t = 20T (b) σ = 0.0, t = 20T

(c) σ = 1.0, t = 20T

0 10 20 30 40 50

0.8

0.85

0.9

0.95

1

1.05

t/T

A

(d) Damping of the density spot with time

Figure 3: (a,b,c) Density contours after 20 periods, as obtained using different values for

HRR parameter σ, on a 200× 200 grid.

(d) Evolution of A (46) at the center of the vortex, as obtained on a 200×200 grid: σ = 0

(◦) σ = 0.5 (△), σ = 0.7 (▽), and on a 400 × 400 grid with σ = 0.5 (×. Dashed lines are

the exponential fits of the form A(t) = e−t/Re∗ (48), as reported in Tab. 1.
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Figure 4: Convergence study on the isentropic vortex convection, as in Fig. 2, repeated

on Nx ×Nx grids with varying Nx.
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Stability at low grid resolutions is ensured by numerical viscosity, which

we shall now assess. As an approximated method, we propose to compare

the classical vorticity ω decay in incompressible fluid at rest [43–45]

∂ω

∂t
=

∇ω
Re

, (47)

where Re is the Reynolds number, leading to an exponential decay of the

maximum vorticity in the vortex as e−t/Re.

Continuity in stationary compressible flows being translated in a diver-

gence free momentum ρu field rather than divergence free velocity field u,

it is reasonable to approximate A (46) as

A(t) ≈ e−t/Re∗ , (48)

where Re∗ corresponds to a Reynolds number associated to a numerical

viscosity ν∗. The corresponding non-dimensional values, corresponding to

a reference non-dimensional length of 3 (the approximate vortex diameter)

and the reference non-dimensional velocity of u∞ = 0.5 are reported in

Table 1. As expected, ν∗, given here in non-dimensional unit, decreases

Resolution σ Re∗ ν∗ × 105

200× 200 0 1998 75

200× 200 0.5 5665 26

200× 200 0.7 10910 14

400× 400 0.5 43726 3.4

Table 1: Approximated numerical viscosity for the isentropic vortex convection.

both with increasing resolution and increasing σ. For further illustration,

the fits obtained by using the parameters of Tab. 1 are reported in dashed

lines in Fig. 3(d).
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4.2. Two-dimensional acoustic pulse

4.2.1. Isothermal acoustic pulse

Next, the compressible LB model is assessed considering benchmark

problems dealing with propagation of acoustic waves, more precisely the

advection of an acoustic pulse by a uniform flow. A two dimensional Gaus-

sian acoustic pulse with free-stream velocity U0 = 0.0 and U0 = 1.0, i.e.

at free-stream Mach number Ma = 0 and Ma = 1, is considered in this

section. The initial acoustic Gaussian pulse, is given by [46]

ρ = 1 + 0.01exp(−kr2), p = 1 + 0.01exp(−kr2), u = U0, v = 0 (49)

where r =
[

(x− xc)
2 + (y − yc)

2
]1/2

is the distance from the pulse center

(xc, yc) = (0, 0). The perturbation parameter is given by k = ln2/b2, and

b = 2 is the half-width of Gaussian function. A square computational do-

main with size [−20, 20] × [−20, 20] is used, along with a 400 × 400 grid.

Periodic boundary conditions are implemented in all directions. In order to

implement the simulation of isothermal acoustics to match reference analyti-

cal solutions, the entropy equation is not solved in this case and temperature

is prescribed as a constant value.

The time step is δt = δx/
√
T0 with reference temperature T0 = 25.0. An

approximate inviscid condition is implemented setting the dynamic viscosity

to µ = 10−15, which results in a relaxation time τ ≈ 0.5. Following the

results of the previous test case, the HRR weighting parameter is set equal

to σ = 0.5.

The pressure fields obtained by the LB method for the two Mach numbers

at time t = 10 are shown in Fig. 5 and 6. Furthermore, the fluctuating

velocity and pressure profiles along the horizontal centerline at time t =

10 are compared to analytical solutions given in [46] in Fig. 7. A very
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(a) U0 = 0 (b) U0 = 1

Figure 5: Contours of pressure obtained by the LB method on acoustic pulse advection

at time t = 10.

(a) U0 = 0 (b) U0 = 1

Figure 6: Contours of velocities obtained by the LB method on acoustic pulse advection

at time t = 10.
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Figure 7: Comparison of profiles along horizontal middle line.(line: LBM results, symbols:

analytical solution)

satisfactory agreement is observed in all cases, demonstrating the capability

of the present method to deal with such flows.

Comparison of the computational cost of the athermal model used in

this section (e.g. without FV solver) and the proposed model shows a 75–25

cpu partition between the LB and FV solver, indicating a minimal cost of

the hybrid formulation.

4.2.2. Non-isothermal Gaussian pulse

Next, we consider a thermal acoustic wave traveling in radial direction

including temperature evolution. The aim of this test case is to verify the

correct propagation speed of sound waves and coupling between velocity,

pressure and temperature. The initial condition is given by:

ρ = 1.0, p = 1 + exp(−kr2), u = 0, v = 0 (50)

where r =
[

(x− xc)
2 + (y − yc)

2
]1/2

is the distance from the pulse center

(xc, yc) = (0, 0). The perturbation parameter is taken equal to k = 40.

The computational domain size is [−2, 2]× [−2, 2], with periodic boundary
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conditions. The computation of the reference solution was performed using

a second order TVD finite volume scheme with the Osher type flux on a

radial grid consisting of 104 cells [47, 48].
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Figure 8: Comparison of profiles along horizontal middle line.(line: present LBM, point:

reference solution)

Figure 8 displays the profiles of pressure, horizontal velocity, density

and temperature obtained by the proposed LB model using HRR parameter

σ = 1.0, 0.7 and 0.5 at time tend = 1.0. A very good agreement with the

reference solution is recovered, showing the capability of the present method

to capture thermodynamic couplings and nonlinear wave propagation.
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4.3. Compressible laminar flow over flat plate

At last, we investigate the capability of the method to handle viscous

effects addressing another typical benchmark, namely the laminar flow over

a flat plate at free-stream Mach number Ma = 0.3 and Ma = 0.87. The

compressible laminar flow over flat plate has been studied extensively, both

analytically and numerically [49, 50]. Here, a computational domain with

size −0.25 ≤ x ≤ 1, 0 ≤ y ≤ 0.25 is set up considering a flow at high speed

subsonic u∞ past a thin plate of length L(as illustrated in Fig. 9). The

boundary condition(BC) is set as the follows:

• Symmetry BC on y = 0, 0.25 ≤ x < 0

• No-slip wall BC on y = 0, 0 ≤ x ≤ 1, adiabatic BC for Ma = 0.3

while isothermal BC for Ma = 0.87.

• Subsonic outflow on y = 0.25 with pressure p = 1/γ.

• Subsonic inflow on x = 0 with density ρ = 1, and velocity (u, v) =

(u∞, 0).

• Subsonic outflow on x = 1 with pressure p = 1/γ.

Figure 9: Sketch of the computational configuration. The darker sub-domain is used below

for plotting results near the leading edge.
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Figure 10: Contours of pressure, temperature, horizontal and vertical velocity obtained

by the LB method on laminar flow over flat plate at Ma = 0.3 and Ma = 0.87
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The Reynolds number is taken equal to 105, leading to a steady laminar

solution. A uniform dynamic viscosity is adopted at Ma = 0.3 while a

variable viscosity following ρµ = ρ∞µ∞ is used at Ma = 0.87. The entropy

based energy equation is solved with Prandtl number equal to 0.72 forMa =

0.3 and equal to 1.0 forMa = 0.87. The values of Pr and viscosity are chosen

to match those of reference similarity solutions of compressible boundary

layer [51].

In simulation atMa = 0.3, the computational grid is made of 1000×200

grid points. The spacing size is δx = 6.25 × 10−4 and the time step δt is

set to δx/6 corresponding to a CFL number close to 0.13. At Ma = 0.87,

the computational grid has 2000 × 400 grid points. The spacing size is

δx = 3.125 × 10−4 and the time step δt is set to δx/8 with a reference

temperature T0 equals 64. The HRR parameter is set equal to σ = 0.9 in

all simulations.

Figure 10 displays the contours of density and horizontal velocity ob-

tained by the present LB model at Ma = 0.3 and Ma = 0.87 in the vicinity

of the plate trailing edge. It is observed that the flow is well captured by

the present LB method.

Figure 11 shows the profiles of density, temperature and horizontal veloc-

ity obtained by the present LB model. In the figure, η is the dimensionless

coordinate with Illingworth transform which is defined as [51]

η =
Ue√
2x

∫ y

0
ρdy

where Ue is velocity at outer edge and Cw = 1 under condition of ρµ =

ρ∞µ∞. An excellent agreement between the computed velocity fields and

reference solution is observed both at Ma = 0.3 and Ma = 0.87. The skin

friction predicted by the LB method on laminar flow over flat plate is also
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well matched with Blasius solution. The maximum deviation of predicted

skin friction at Mach number of 0.87 is 1.6%.

In Fig. 11, the analytical solution of temperature profile for compressible

flow over flat plate is given by [51]

T

Te
= 1 +

γ − 1

2
Ma2e(1−

u2

U2
e

)

where Te is temperature at outer edge. The reference solution of density

is calculated by equation of state under free stream pressure. In can be

observed that the excellent agreement on both temperature and density

between the results obtained by the present LB method and the reference

solution is observed Ma = 0.87. The coupling between fluid flow and heat

transfer including viscous heat dissipation are well captured by the present

LB model.

5. Conclusions

A thermal lattice Boltzmann model has been developed on standard

lattices for the simulation of smooth subsonic to sonic compressible flows. It

relies on an extension of the Hybrid Recursive Regularized LB model already

proposed for low-Mach number flows.

The model is easy to implement and parallelize: both the LB and FV

stencils are limited to nearest neighbors. This also leads to a cpu cost par-

tition close to 75–25 between the LB–FV solvers, indicating high potential

regarding the cpu savings associated to the use of such model compared to

classical methods.

In simulation of an isentropic vortex convection, a two dimensional acous-

tic pulse and non-isothermal Gaussian pulse, the influence of the HRR

31



weighting parameter σ has been intensively investigated. Numerical simula-

tions demonstrate that the defect of Galilean invariance is effectively elimi-

nated by σ > 0.5 in the inviscid regime. Especially, the non-hydrodynamic

oscillation is suppressed by hybrid regularization using σ = 0.5 in simula-

tion of non-isothermal Gaussian pulse. Excellent agreement has also been

obtained for the simulation of a compressible laminar flow over flat plate at

Mach number of 0.3 and 0.87, with results matching the Blasius solution.

The low dissipation obtained with the presented model allows to envision

acoustic applications in transonic flows, e.g. by accounting for the bulk

viscosity.

Acknowledgements

This work was supported by the French project CLIMB, with the finan-

cial support of BPIFrance (Grant P3543-24000), in the framework of the pro-

gram “Investissement d’Avenir: Calcul Intensif et Simulation Numérique”.

This work was granted access to the HPC resources of Aix-Marseille Uni-
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Appendix A. Chapman-Enskog Analysis

To derive macroscopic equations, the density distribution function fi is

expanded around the feqi distributions as follows:

fi = f
(0)
i + ǫf

(1)
i + ǫ2f

(2)
i + · · · (A.1)
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with
∑

i

f
(n)
i = 0,

∑

i

ciαf
(n)
i = 0, n > 0 (A.2)

By matching the scales of ǫ1, ǫ2 we have

ǫ1 : (
∂

∂t1
+ ciα

∂

∂x1α
)feqi +

f
(1)
i

τ
= ψ

(0)
i (A.3)

ǫ2 :
∂feqi
∂t2

+ (
∂

∂t1
+ ciα

∂

∂x1α
)f

(1)
i +

f
(2)
i

τ
= 0 (A.4)

Considering that the equilibrium density distribution function satisfies the

velocity moment condition, one can sum Eq.(A.3)and Eq.(A.4) in the ve-

locity phase space. The t1 and t2 order of the continuity equation and

momentum equation can be derived as

∂ρ

∂t1
+

∂

∂x1α
(ρuα) = 0 (A.5)

∂

∂t1
(ρuα) +

∂

∂x1β
(ρuαuβ + pδαβ) = 0 (A.6)

∂ρ

∂t2
= 0 (A.7)

∂

∂t2
(ρuα) +

∂

∂x1β
(
∑

i

ciαciβf
(1)
i ) = 0 (A.8)

Incorporating pressure equation in convective scale as follow

∂p

∂t1
+

∂

∂x1γ
(puγ) + k̃p

∂uγ
∂x1γ

= 0 (A.9)

where k̃ = γ−1, γ is heat specific ratio but subscript of tensors. Combining

Eq. (A.5) with Eq. (A.6), one can obtain

∂

∂t1
(ρuαuβ + pδαβ) =

∂

∂x1γ
ρuαuβuγ − uα

∂p

∂x1β
− uβ

∂p

∂x1α

− ∂

∂x1γ
(puγδαβ)− k̃p

∂uγ
∂x1γ

δαβ (A.10)
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Considering the correcting term ψi given as

ψi = − wi

2c4s
Hiαβ

∂

∂xγ
Ψαβγ ,

∑

i

ciαciβψi = − ∂

∂xγ
Ψαβγ (A.11)

and rewriting f
(1)
i in the Eq.(A.8) with Eq.(A.3), one obtains

∑

i

ciαciβf
(1)
i = −τ

∑

i

ciαciβ [(
∂

∂t1
+ ciγ

∂

∂x1γ
)feqi − ψ

(0)
i ]

= −τ [ ∂
∂t1

(ρuαuβ + pδαβ) +
∂

∂xγ
Ψαβγ

+
∂

∂x1γ
(p[uδ]αβγ + ρuαuβuγ −Ψαβγ)]

= −τp[ ∂uβ
∂x1α

+
∂uα
∂x1β

− k̃
∂uγ
∂x1γ

δαβ ] (A.12)

The following equations can be finally obtained:

∂ρ

∂t
+

∂

∂xα
(ρuα) = 0 (A.13)

∂

∂t
(ρuα) +

∂

∂xβ
(ρuαuβ + pδαβ) =

∂

∂xβ
[µ(

∂uβ
∂xα

+
∂uα
∂xβ

− k̃
∂uγ
∂xγ

δαβ)] (A.14)

Appendix B. The correction term for D3Q19 lattice set

The D3Q19 lattice set, 3 dimensions with 19 velocities, is given by,

ciα =



























(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1− 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7− 18

(B.1)

and the corresponding weights are

wi =



























1
3 i = 0

1
18 i = 1− 6

1
36 i = 7− 18

(B.2)
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Considering equilibrium distribution function Eq. 12, the deviation terms

can be calculated as follow

Ψαβγ = p[uδ]αβγ + ρuαuβuγ −
18
∑

i=0

ciαciβciγf
eq
i (B.3)

The following deviation terms of D3Q19 are obtained with θ = p/(ρc2s)

Ψxxx = (ρuxuxux + 3pux)−
18
∑

i=0

cixcixcixf
eq
i = ρux(θ − 1 + u2x), (B.4a)

Ψxxy = (ρuxuxuy + puy)−
18
∑

i=0

cixcixciyf
eq
i =

1

6
ρuy(θ − 1 + 3u2z), (B.4b)

Ψxyz = (ρuxuyuz)−
18
∑

i=0

cixciycizf
eq
i = ρuxuyuz, (B.4c)

The deviation terms of Ψxyy, Ψyyy etc. can be computed in similarity. Thus

the correcting term in D3Q19 lattice set is constructed as follows

ψi =
wi

2c4s

{

Hixx[
∂

∂x
Ψxxx +

∂

∂y
Ψxxy +

∂

∂z
Ψxxz]

+Hiyy[
∂

∂x
Ψyyx +

∂

∂y
Ψyyy +

∂

∂z
Ψyyz]

+Hizz[
∂

∂x
Ψzzx +

∂

∂y
Ψzzy +

∂

∂z
Ψzzz]

+2Hixy[
∂

∂x
Ψxyx +

∂

∂y
Ψxyy +

∂

∂z
Ψxyz]

+2Hixz[
∂

∂x
Ψxzx +

∂

∂y
Ψxzy +

∂

∂z
Ψxzz]

+2Hiyz[
∂

∂x
Ψyzx +

∂

∂y
Ψyzy +

∂

∂z
Ψyzz]

}

(B.5)

It is worth noting that only Ψxxx, Ψyyy, Ψzzz is non-zero in D3Q27 lattice

set, which exhibit a much simpler correcting term compared with in D3Q19

lattice set. Besides the correcting term of D2Q9 lattice set is the projection

of D3Q27 lattice into two-dimensions.
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