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Abstract

We introduce in this paper a novel strategy for efficiently approximating the
Sinkhorn distance between two discrete measures. After identifying neglectable
components of the dual solution of the regularized Sinkhorn problem, we propose
to screen those components by directly setting them at that value before entering
the Sinkhorn problem. This allows us to solve a smaller Sinkhorn problem while
ensuring approximation with provable guarantees. More formally, the approach
is based on a new formulation of dual of Sinkhorn divergence problem and on
the KKT optimality conditions of this problem, which enable identification of
dual components to be screened. This new analysis leads to the SCREENKHORN
algorithm. We illustrate the efficiency of SCREENKHORN on complex tasks such
as dimensionality reduction and domain adaptation involving regularized optimal
transport.

1 Introduction

Computing optimal transport (OT) distances between pairs of probability measures or histograms,
such as the earth mover’s distance [39, 34] and Monge-Kantorovich or Wasserstein distance [38],
are currently generating an increasing attraction in different machine learning tasks [37, 28, 4, 22],
statistics [18, 32, 14, 6, 17], and computer vision [8, 34, 36], among other applications [27, 33]. In
many of these problems, OT exploits the geometric features of the objects at hand in the underlying
spaces to be leveraged in comparing probability measures. This effectively leads to improved
performance of methods that are oblivious to the geometry, for example the chi-squared distances or
the Kullback-Leibler divergence. Unfortunately, this advantage comes at the price of an enormous
computational cost of solving the OT problem, that can be prohibitive in large scale applications.
For instance, the OT between two histograms with supports of equal size n can be formulated as a
linear programming problem that requires generally super O(n2.5) [29] arithmetic operations, which
is problematic when n becomes larger.

A remedy to the heavy computation burden of OT lies in a prevalent approach referred to as regularized
OT [11] and operates by adding an entropic regularization penalty to the original problem. Such a
regularization guarantees a unique solution, since the objective function is strongly convex, and a
greater computational stability. More importantly, this regularized OT can be solved efficiently with
celebrated matrix scaling algorithms, such as Sinkhorn’s fixed point iteration method [35, 26, 23].
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Several works have considered further improvements in the resolution of this regularized OT problem.
A greedy version of Sinkhorn algorithm, called Greenkhorn [3], allows to select and update columns
and rows that most violate the polytope constraints. Another approach based on low-rank approxima-
tion of the cost matrix using the Nyström method induces the Nys-Sink algorithm [2]. Other classical
optimization algorithms have been considered for approximating the OT, for instance accelerated
gradient descent [40, 13, 30], quasi-Newton methods [7, 12] and stochastic gradient descent [20, 1].

In this paper, we propose a novel technique for accelerating the Sinkhorn algorithm when computing
regularized OT distance between discrete measures. Our idea is strongly related to a screening
strategy when solving a Lasso problem in sparse supervised learning [21]. Based on the fact that
a transport plan resulting from an OT problem is sparse or presents a large number of neglectable
values [7], our objective is to identify the dual variables of an approximate Sinkhorn problem, that are
smaller than a predefined threshold, and thus that can be safely removed before optimization while
not altering too much the solution of the problem. Within this global context, our contributions are
the following:

• From a methodological point of view, we propose a new formulation of the dual of the Sinkhorn
divergence problem by imposing variables to be larger than a threshold. This formulation allows
us to introduce sufficient conditions, computable beforehand, for a variable to strictly satisfy its
constraint, leading then to a “screened” version of the dual of Sinkhorn divergence.

• We provide some theoretical analysis of the solution of the “screened” Sinkhorn divergence,
showing that its objective value and the marginal constraint satisfaction are properly controlled as
the number of screened variables decreases.

• From an algorithmic standpoint, we use a constrained L-BFGS-B algorithm [31, 9] but provide a
careful analysis of the lower and upper bounds of the dual variables, resulting in a well-posed and
efficient algorithm denoted as SCREENKHORN.

• Our empirical analysis depicts how the approach behaves in a simple Sinkhorn divergence
computation context. When considered in complex machine learning pipelines, we show that
SCREENKHORN can lead to strong gain in efficiency while not compromising on accuracy.

The remainder of the paper is organized as follow. In Section 2 we briefly review the basic setup
of regularized discrete OT. Section 3 contains our main contribution, that is, the SCREENKHORN
algorithm. Section 4 is devoted to theoretical guarantees for marginal violations of SCREENKHORN.
In Section 5 we present numerical results for the proposed algorithm, compared with the state-of-art
Sinkhorn algorithm as implemented in [16]. The proofs of theoretical results are postponed to the
supplementary material as well as additional empirical results.

Notation. For any positive matrix T ∈ Rn×m, we define its entropy as H(T ) = −
∑
i,j Tij log(Tij).

Let r(T ) = T1m ∈ Rn and c(T ) = T>1n ∈ Rm denote the rows and columns sums of T
respectively. The coordinates ri(T ) and cj(T ) denote the i-th row sum and the j-th column sum of
T , respectively. The scalar product between two matrices denotes the usual inner product, that is
〈T,W 〉 = tr(T>W ) =

∑
i,j TijWij ,where T> is the transpose of T . We write 1 (resp. 0) the vector

having all coordinates equal to one (resp. zero). ∆(w) denotes the diag operator, such that if w ∈ Rn,
then ∆(w) = diag(w1, . . . , wn) ∈ Rn×n. For a set of indices L = {i1, . . . , ik} ⊆ {1, . . . , n}
satisfying i1 < · · · < ik, we denote the complementary set of L by L{ = {1, . . . , n}\L. We also
denote |L| the cardinality of L. Given a vector w ∈ Rn, we denote wL = (wi1 , . . . , wik)> ∈ Rk
and its complementary wL{ ∈ Rn−k. The notation is similar for matrices; given another subset
of indices S = {j1, . . . , jl} ⊆ {1, . . . ,m} with j1 < · · · < jl, and a matrix T ∈ Rn×m, we use
T(L,S), to denote the submatrix of T , namely the rows and columns of T(L,S) are indexed by L and
S respectively. When applied to matrices and vectors, � and � (Hadamard product and division)
and exponential notations refer to elementwise operators. Given two real numbers a and b, we write
a ∨ b = max(a, b) and a ∧ b = min(a, b).

2 Regularized discrete OT

We briefly expose in this section the setup of OT between two discrete measures. We then consider
the case when those distributions are only available through a finite number of samples, that is
µ =

∑n
i=1 µiδxi ∈ Σn and ν =

∑m
j=1 νiδyj ∈ Σm, where Σn is the probability simplex with n bins,
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namely the set of probability vectors in Rn+, i.e., Σn = {w ∈ Rn+ :
∑n
i=1 wi = 1}. We denote their

probabilistic couplings set as Π(µ, ν) = {P ∈ Rn×m+ , P1m = µ, P>1n = ν}.

Sinkhorn divergence. Computing OT distance between the two discrete measures µ and ν amounts
to solving a linear problem [25] given by

S(µ, ν) = min
P∈Π(µ,ν)

〈C,P 〉,

where P = (Pij) ∈ Rn×m is called the transportation plan, namely each entry Pij represents the
fraction of mass moving from xi to yj , and C = (Cij) ∈ Rn×m is a cost matrix comprised of
nonnegative elements and related to the energy needed to move a probability mass from xi to yj . The
entropic regularization of OT distances [11] relies on the addition of a penalty term as follows:

Sη(µ, ν) = min
P∈Π(µ,ν)

{〈C,P 〉 − ηH(P )}, (1)

where η > 0 is a regularization parameter. We refer to Sη(µ, ν) as the Sinkhorn divergence [11].

Dual of Sinkhorn divergence. Below we provide the derivation of the dual problem for the
regularized OT problem (1). Towards this end, we begin with writing its Lagrangian dual function:

L (P,w, z) = 〈C,P 〉+ η〈logP, P 〉+ 〈w,P1m − µ〉+ 〈z, P>1n − ν〉.
The dual of Sinkhorn divergence can be derived by solving minP∈Rn×m+

L (P,w, z). It is easy
to check that objective function P 7→ L (P,w, z) is strongly convex and differentiable. Hence,
one can solve the latter minimum by setting ∇PL (P,w, z) to 0n×m. Therefore, we get P ?ij =

exp
(
− 1

η (wi + zj + Cij)− 1
)
, for all i = 1, . . . , n and j = 1, . . . ,m. Plugging this solution, and

setting the change of variables u = −w/η− 1/2 and v = −z/η− 1/2, the dual problem is given by

min
u∈Rn,v∈Rm

{
Ψ(u, v) := 1>nB(u, v)1m − 〈u, µ〉 − 〈v, ν〉

}
, (2)

where B(u, v) := ∆(eu)K∆(ev) and K := e−C/η stands for the Gibbs kernel associated to the cost
matrix C. We refer to problem (2) as the dual of Sinkhorn divergence. Then, the optimal solution P ?

of the primal problem (1) takes the form P ? = ∆(eu
?

)K∆(ev
?

) where the couple (u?, v?) satisfies:

(u?, v?) = argmin
u∈Rn,v∈Rm

{Ψ(u, v)}.

Note that the matrices ∆(eu
?

) and ∆(ev
?

) are unique up to a constant factor [35]. Moreover, P ?
can be solved efficiently by iterative Bregman projections [5] referred to as Sinkhorn iterations, and
the method is referred to as SINKHORN algorithm which, recently, has been proven to achieve a
near-O(n2) complexity [3].

3 Screened dual of Sinkhorn divergence
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0.0020

0.0025
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Figure 1: Plots of (eu
?

, ev
?

)
with (u?, v?) is the pair solu-
tion of dual of Sinkhorn diver-
gence (2) and the thresholds
αu, αv .

Motivation. The key idea of our approach is motivated by the
so-called static screening test [21] in supervised learning, which is
a method able to safely identify inactive features, i.e., features that
have zero components in the solution vector. Then, these inactive
features can be removed from the optimization problem to reduce its
scale. Before diving into detailed algorithmic analysis, let us present
a brief illustration of how we adapt static screening test to the dual
of Sinkhorn divergence. Towards this end, we define the convex set
Crα ⊆ Rr, for r ∈ N and α > 0, by Crα = {w ∈ Rr : ewi ≥ α}.
In Figure 1, we plot (eu

?

, ev
?

) where (u?, v?) is the pair solution
of the dual of Sinkhorn divergence (2) in the particular case of:
n = m = 500, η = 1, µ = ν = 1

n1n, xi ∼ N ((0, 0)>, ( 1 0
0 1 )), yj ∼ N ((3, 3)>,

(
1 −0.8
−0.8 1

)
) and

the cost matrix C corresponds to the pairwise euclidean distance, i.e., Cij = ‖xi − yj‖2. We also
plot two lines corresponding to eu

? ≡ αu and ev
? ≡ αv for some αu > 0 and αv > 0, choosing

randomly and playing the role of thresholds to select indices to be discarded. If we are able to identify
these indices before solving the problem, they can be fixed at the thresholds and removed then from
the optimization procedure yielding an approximate solution.
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Static screening test. Based on this idea, we define a so-called approximate dual of Sinkhorn
divergence

min
u∈Cnε

κ
,v∈Cmεκ

{
Ψκ(u, v) := 1>nB(u, v)1m − 〈κu, µ〉 − 〈

v

κ
, ν〉
}
, (3)

which is simply a dual of Sinkhorn divergence with lower-bounded variables, where the bounds are
αu = εκ−1 and αv = εκ with ε > 0 and κ > 0 being fixed numeric constants which values will be
clear later. The new formulation (3) has the form of (κµ, ν/κ)-scaling problem under constraints on
the variables u and v. Those constraints make the problem significantly different from the standard
scaling-problems [24]. We further emphasize that κ plays a key role in our screening strategy. Indeed,
without κ, eu and ev can have inversely related scale that may lead in, for instance eu being too large
and ev being too small, situation in which the screening test would apply only to coefficients of eu or
ev and not for both of them. Moreover, it is clear that the approximate dual of Sinkhorn divergence
coincides with the dual of Sinkhorn divergence (2) when ε = 0 and κ = 1. Intuitively, our hope is
to gain efficiency in solving problem (3) compared to the original one in Equation (2) by avoiding
optimization of variables smaller than the threshold and by identifying those that make the constraints
active. More formally, the core of the static screening test aims at locating two subsets of indices
(I, J) in {1, . . . , n} × {1, . . . ,m} satisfying: eui > αu, and evj > αv, for all (i, j) ∈ I × J and
eui′ = αu, and evj′ = αv, for all (i′, j′) ∈ I{ × J{, namely (u, v) ∈ Cnαu × C

m
αv . The following

key result states sufficient conditions for identifying variables in I{ and J{.

Lemma 1. Let (u∗, v∗) be an optimal solution of problem (3). Define

Iε,κ =
{
i = 1, . . . , n : µi ≥

ε2

κ
ri(K)

}
, Jε,κ =

{
j = 1, . . . ,m : νj ≥ κε2cj(K)

}
(4)

Then one has eu
∗
i = εκ−1 and ev

∗
j = εκ for all i ∈ I{ε,κ and j ∈ J{

ε,κ.

Proof of Lemma 1 is postponed to the supplementary material. It is worth to note that first order
optimality conditions applied to (u∗, v∗) ensure that if eu

∗
i > εκ−1 then eu

∗
i (Kev

∗
)i = κµi and if

ev
∗
j > εκ then ev

∗
j (K>eu

∗
)j = κ−1νj , that correspond to the Sinkhorn marginal conditions [33] up

to the scaling factor κ.

Screening with a fixed number budget of points. The approximate dual of Sinkhorn divergence
is defined with respect to ε and κ. As those parameters are difficult to interpret, we exhibit their
relations with a fixed number budget of points from the supports of µ and ν. In the sequel, we denote
by nb ∈ {1, . . . , n} and mb ∈ {1, . . . ,m} the number of points that are going to be optimized in
problem (3), i.e, the points we cannot guarantee that eu

∗
i = εκ−1 and ev

∗
j = εκ .

250 500

0

5

10

ε

250 500

0.0

0.5

1.0
κ

Figure 2: Plots of ε and κ
as a function of number bud-
get of points for a screening
test with nb = mb and the
parameters µ, ν, η, C are set
as in Figure (1). (ε, κ) tends
to (0, 1) as (nb,mb) tends to
(n,m).

Let us define ξ ∈ Rn and ζ ∈ Rm to be the ordered decreasing vectors
of µ � r(K) and ν � c(K) respectively, that is ξ1 ≥ ξ2 ≥ · · · ≥ ξn
and ζ1 ≥ ζ2 ≥ · · · ≥ ζm. To keep only nb-budget and mb-budget of
points, the parameters κ and ε satisfy ε2κ−1 = ξnb and ε2κ = ζmb .
Hence

ε = (ξnbζmb)
1/4 and κ =

√
ζmb
ξnb

. (5)

This guarantees that |Iε,κ| = nb and |Jε,κ| = mb by construction. In
addition, (nb,mb) tends to the full number budget of points (n,m),
when the couple parameters (ε, κ) converges to (0, 1). In Figure 2,
we plot these convergences, and hence the objective in problem (3)
converges to the objective of dual of Sinkhorn divergence (2).

We are now in position to formulate the optimization problem related to the screened dual of Sinkhorn.
Indeed, using the above analyses, any solution (u∗, v∗) of problem (3) satisfies eu

∗
i ≥ εκ−1 and

ev
∗
j ≥ εκ for all (i, j) ∈ (Iε,κ × Jε,κ), and eu

∗
i = εκ−1 and ev

∗
j = εκ for all (i, j) ∈ (I{ε,κ × J{

ε,κ).
Hence, we can restrict the problem (3) to variables in Iε,κ and Jε,κ. This boils down to restricting the
constraints feasibility Cnε

κ
∩ Cmεκ to the screened domain defined by Usc ∩ Vsc,

Usc = {u ∈ Rnb : euIε,κ � ε

κ
1nb} and Vsc = {v ∈ Rmb : evJε,κ � εκ1mb}
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where the vector comparison � has to be understood elementwise. And, by replacing in Equation (3),
the variables belonging to (I{ε,κ × J{

ε,κ) by εκ−1 and εκ, we derive the screened dual of Sinkhorn
divergence problem as

min
u∈Usc,v∈Vsc

{Ψε,κ(u, v)} (6)

where

Ψε,κ(u, v) = (euIε,κ )>K(Iε,κ,Jε,κ)e
vJε,κ + εκ(euIε,κ )>K(Iε,κ,J{

ε,κ)1mb + εκ−11>nbK(I{ε,κ,Jε,κ)e
vJε,κ

− κµ>Iε,κuIε,κ − κ
−1ν>Jε,κvJε,κ + Ξ

with Ξ = ε2
∑
i∈I{ε,κ,j∈J{

ε,κ
Kij − κ log(εκ−1)

∑
i∈I{ε,κ

µi − κ−1 log(εκ)
∑
j∈J{

ε,κ
νj .

The above problem uses only the restricted parts K(Iε,κ,Jε,κ), K(Iε,κ,J{
ε,κ), and K(I{ε,κ,Jε,κ) of the

Gibbs kernel K for calculating the objective function Ψε,κ. Hence, a gradient descent scheme will
also need only those rows/columns of K. This is in contrast to Sinkhorn algorithm which performs
alternating updates of all rows and columns of K. In summary, SCREENKHORN consists of two steps:
the first one is a screening pre-processing providing the active sets Iε,κ, Jε,κ. The second one consists
in solving Equation (6) using a constrained L-BFGS-B [9] for the stacked variable θ = (uIε,κ , vJε,κ).
Pseudocode of our proposed algorithm is shown in Algorithm 1. Note that in practice, we initialize
the L-BFGS-B algorithm based on the output of a method, called RESTRICTED SINKHORN (see
Algorithm 2 in the supplementary), which is a Sinkhorn-like algorithm applied to the active dual
variables θ = (uIε,κ , vJε,κ). While simple and efficient, the solution of this RESTRICTED SINKHORN
algorithm does not satisfy the lower bound constraints of Problem (6) but provide a good candidate
solution. Also note that L-BFGS-B handles box constraints on variables, but it becomes more
efficient when these box bounds are carefully determined for problem (6). The following proposition
(proof in supplementary material) expresses these bounds that are pre-calculated in the initialization
step of SCREENKHORN.

Proposition 1. Let (usc, vsc) be an optimal pair solution of problem (6) andKmin = min
i∈Iε,κ,j∈Jε,κ

Kij .

Then, one has

ε

κ
∨

mini∈Iε,κ µi

ε(m−mb) + ε ∨ maxj∈Jε,κ νj
nεκKmin

mb

≤ eu
sc
i ≤ ε

κ
∨

maxi∈Iε,κ µi

mεKmin
, (7)

and

εκ ∨
minj∈Jε,κ νj

ε(n− nb) + ε ∨ κmaxi∈Iε,κ µi
mεKmin

nb
≤ ev

sc
j ≤ εκ ∨

maxj∈Jε,κ νj

nεKmin
(8)

for all i ∈ Iε,κ and j ∈ Jε,κ.

4 Theoretical analysis and guarantees

This section is devoted to establishing theoretical guarantees for SCREENKHORN algorithm. We first
define the screened marginals µsc = B(usc, vsc)1m and νsc = B(usc, vsc)>1n. Our first theoretical
result, Proposition 2, gives an upper bound of the screened marginal violations with respect to
`1-norm.
Proposition 2. Let (usc, vsc) be an optimal pair solution of problem (6). Then one has

‖µ− µsc‖21 = O
(
nbcκ + (n− nb)

(‖C‖∞
η

+
mb

√
nmcµνK

3/2
min

+
m−mb√
nmKmin

+ log
( √nm
mbc

5/2
µν

)))
(9)

and

‖ν − νsc‖21 = O
(
mbc 1

κ
+ (m−mb)

(‖C‖∞
η

+
nb

√
nmcµνK

3/2
min

+
n− nb√
nmKmin

+ log
( √nm
nbc

5/2
µν

)))
, (10)

where cz = z − log z − 1 for z > 0 and cµν = µ ∧ ν with µ = mini∈Iε,κ µi and ν = minj∈Jε,κ νj .
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Algorithm 1: SCREENKHORN(C, η, µ, ν, nb,mb)

Step 1: Screening pre-processing
1. ξ ← sort(µ� r(K)), ζ ← sort(ν � c(K)); //(decreasing order)
2. ε← (ξnbζmb)

1/4, κ←
√
ζmb/ξnb ;

3. Iε,κ ← {i = 1, . . . , n : µi ≥ ε2κ−1ri(K)}, Jε,κ ← {j = 1, . . . ,m : νj ≥ ε2κcj(K)};
4. µ← mini∈Iε,κ µi, µ̄← maxi∈Iε,κ µi, ν ← minj∈Jε,κ νi, ν̄ ← maxj∈Jε,κ νi;
5. u← log

(
ε
κ ∨

µ

ε(m−mb)+ε∨ ν̄
nεκKmin

mb

)
, ū← log

(
ε
κ ∨

µ̄
mεKmin

)
;

6. v ← log
(
εκ ∨ ν

ε(n−nb)+ε∨ κµ̄
mεKmin

nb

)
, v̄ ← log

(
εκ ∨ ν̄

nεKmin

)
;

7. θ̄ ← stack(ū1nb , v̄1mb), θ ← stack(u1nb , v1mb);

Step 2: L-BFGS-B solver on the screened variables
8. u(0) ← log(εκ−1)1nb , v

(0) ← log(εκ)1mb ;
9. û, v̂ ← RESTRICTED SINKHORN(u(0), u(0)), θ(0) ← stack(û, v̂);

10. θ ← L-BFGS-B(θ(0), θ, θ̄);

11. θu ← (θ1, . . . , θnb)
>, θv ← (θnb+1, . . . , θnb+mb)

>;

12. usci ← (θu)i if i ∈ Iε,κ and ui ← log(εκ−1) if i ∈ I{ε,κ;

13. vscj ← (θv)j if j ∈ Jε,κ and vj ← log(εκ) if j ∈ J{
ε,κ;

14. return B(usc, vsc).

Proof of Proposition 2 is presented in supplementary material and it is based on first order optimality
conditions for problem (6) and on a generalization of Pinsker inequality (see Lemma 2 in supplemen-
tary). Note that cκ and c 1

κ
tend to zeros as κ goes to one, which is the case when the number budget

of points (nb,mb) tends to the full one (n,m).

Our second theoretical result, Proposition 3, is an upper bound of the difference between objective
values of SCREENKHORN and dual of Sinkhorn divergence (2).

Proposition 3. Let (usc, vsc) be an optimal pair solution of problem (6) and (u?, v?) is the pair
solution of dual of Sinkhorn divergence (2). Then we have

Ψε,κ(usc, vsc)−Ψ(u?, v?) = O
(
R(‖µ− µsc‖1 + ‖ν − νsc‖1 + ωκ)

)
.

where R = ‖C‖∞
η + log

( (n∨m)2

nmc
7/2
µν

)
and ωκ = (1− κ)‖µsc‖1 + (κ−1 − 1)‖νsc‖1 + κ−1 − κ.

Proof of Proposition 3 is exposed in the supplementary material. Comparing to some other analysis
results of this quantity, see for instance Lemma 2 in [13] and Lemma 3.1 in [30], our bound involves
an additional term ωκ (with ω1 = 0), that tends to zero as the pair budget (nb,mb) goes to the
full number budget of points (n,m) (i.e., κ goes to 1). To better characterize ωκ, a control of the
`1-norms of the screened marginals µsc and νsc are given in Lemma 3 in the supplementary material.

5 Numerical experiments

In this section, we present some numerical analyses of our SCREENKHORN algorithm and show how
it behaves when integrated into some complex machine learning pipelines.

5.1 Setup

We have implemented our SCREENKHORN algorithm in Python and used the L-BFGS-B of Scipy. Re-
garding the machine-learning based comparison, we have based our code on the ones of Python Opti-
mal Transport toolbox (POT) [16] and just replaced the sinkhorn function call with a screenkhorn
one. We have considered the POT’s default SINKHORN stopping criterion parameters and for
SCREENKHORN, the L-BFGS-B algorithm is stopped when the largest component of the projected
gradient is smaller than 10−6, when the number of iterations or the number of objective function
evaluations reach 105. For all applications, we have set η = 1 unless otherwise specified.
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Figure 3: Empirical evaluation of SCREENKHORN vs SINKHORN for normalized cost matrix i.e.
‖C‖∞ = 1. (most-lefts): marginal violations in relation with the budget of points on n and m .
(center-right) ratio of computation times TSINKHORN

TSCREENKHORN
and, (right) relative divergence variation. The

results are averaged over 30 trials.

5.2 Analysing on toy problem

We compare SCREENKHORN to SINKHORN as implemented in POT toolbox1 on a synthetic example.
The dataset we use consists of source samples generated from a bi-dimensional gaussian mixture
and target samples following the same distribution but with different gaussian means. We consider
an unsupervised domain adaptation using optimal transport with entropic regularization. Several
settings are explored: different values of η, the regularization parameter, the allowed budget nbn = mb

m
ranging from 0.01 to 0.99, different values of n and m. We empirically measure marginal violations
as the norms ‖µ − µsc‖1 and ‖ν − νsc‖1, running time expressed as TSINKHORN

TSCREENKHORN
and the relative

divergence difference |〈C,P ?〉−〈C,P sc〉|/〈C,P ?〉 between SCREENKHORN and SINKHORN, where
P ? = ∆(eu

?

)K∆(ev
?

) and P sc = ∆(eu
sc
)K∆(ev

sc
). Figure 3 summarizes the observed behaviors

of both algorithms under these settings. We choose to only report results for n = m = 1000 as we
get similar findings for other values of n and m.

SCREENKHORN provides good approximation of the marginals µ and ν for “high” values of the
regularization parameter η (η > 1). The approximation quality diminishes for small η. As expected
‖µ− µsc‖1 and ‖ν − νsc‖1 converge towards zero when increasing the budget of points. Remarkably
marginal violations are almost negligible whatever the budget for high η. According to computation
gain, SCREENKHORN is almost 2 times faster than SINKHORN at high decimation factor n/nb (low
budget) while the reverse holds when n/nb gets close to 1. Computational benefit of SCREENKHORN
also depends on η with appropriate values η ≤ 1. Finally except for η = 0.1 SCREENKHORN achieves
a divergence 〈C,P 〉 close to the one of Sinkhorn showing that our static screening test provides a
reasonable approximation of the Sinkhorn divergence. As such, we believe that SCREENKHORN will
be practically useful in cases where modest accuracy on the divergence is sufficient. This may be the
case of a loss function for a gradient descent method (see next section).

5.3 Integrating SCREENKHORN into machine learning pipelines

Here, we analyse the impact of using SCREENKHORN instead of SINKHORN in a complex machine
learning pipeline. Our two applications are a dimensionality reduction technique, denoted as Wasser-
stein Discriminant Analysis (WDA), based on Wasserstein distance approximated through Sinkhorn
divergence [17] and a domain-adaptation using optimal transport mapping [10], named OTDA.

WDA aims at finding a linear projection which minimize the ratio of distance between intra-class
samples and distance inter-class samples, where the distance is understood in a Sinkhorn divergence
sense. We have used a toy problem involving Gaussian classes with 2 discriminative features
and 8 noisy features and the MNIST dataset. For the former problem, we aim at find the best
two-dimensional linear subspace in a WDA sense whereas for MNIST, we look for a subspace
of dimension 20 starting from the original 728 dimensions. Quality of the retrieved subspace are
evaluated using classification task based on a 1-nearest neighbour approach.

Figure 4 presents the average gain (over 30 trials) in computational time we get as the number of
examples evolve and for different decimation factors of the SCREENKHORN problem. Analysis of

1https://pot.readthedocs.io/en/stable/index.html
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Figure 4: Wasserstein Discriminant Analysis : running time gain for (left) a toy dataset and (right)
MNIST as a function of the number of examples and the data decimation factor in SCREENKHORN.

500 1000 1500 2000 2500 3000 3500 4000
Number of samples

4

6

8

10

Ru
nn

in
g 

Ti
m

e 
Ga

in

Screened OTDA on mnist

dec=1.5
dec=2
dec=5
dec=10
dec=20
dec=50
dec=100

500 1000 1500 2000 2500 3000 3500 4000
Number of samples

4

6

8

10

12

Ru
nn

in
g 

Ti
m

e 
Ga

in

Screened OTDA on mnist

dec=1.5
dec=2
dec=5
dec=10
dec=20
dec=50
dec=100

Figure 5: OT Domain adaptation : running time gain for MNIST as a function of the number of
examples and the data decimation factor in SCREENKHORN. Group-lasso hyperparameter values
(left) 1. (right) 10.

the quality of the subspace have been deported to the supplementary material (see Figure 7), but we
can remark a small loss of performance of SCREENKHORN for the toy problem, while for MNIST,
accuracies are equivalent regardless of the decimation factor. We can note that the minimal gains are
respectively 2 and 4.5 for the toy and MNIST problem whereas the maximal gain for 4000 samples
is slightly larger than an order of magnitude.

For the OT based domain adaptation problem, we have considered the OTDA with ` 1
2 ,1

group-lasso
regularizer that helps in exploiting available labels in the source domain. The problem is solved using
a majorization-minimization approach for handling the non-convexity of the problem. Hence, at each
iteration, a SINKHORN/SCREENKHORN has to be computed and the number of iteration is sensitive to
the regularizer strength. As a domain-adaptation problem, we have used a MNIST to USPS problem
in which features have been computed from the first layers of a domain adversarial neural networks
[19] before full convergence of the networks (so as to leave room for OT adaptation). Figure 5 reports
the gain in running time for 2 different values of the group-lasso regularizer hyperparameter, while
the curves of performances are reported in the supplementary material. We can note that for all the
SCREENKHORN with different decimation factors, the gain in computation goes from a factor of 4 to
12, without any loss of the accuracy performance.

6 Conclusion

The paper introduces a novel efficient approximation of the Sinkhorn divergence based on a screening
strategy. Screening some of the Sinkhorn dual variables has been made possible by defining a novel
constrained dual problem and by carefully analyzing its optimality conditions. From the latter, we
derived some sufficient conditions depending on the ground cost matrix, that some dual variables are
smaller than a given threshold. Hence, we need just to solve a restricted dual Sinkhorn problem using
an off-the-shelf L-BFGS-B algorithm. We also provide some theoretical guarantees of the quality
of the approximation with respect to the number of variables that have been screened. Numerical
experiments show the behaviour of our SCREENKHORN algorithm and computational time gain it
can achieve when integrated in some complex machine learning pipelines.
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7 Supplementary material

7.1 Proof of Lemma 1

Since the objective function Ψκ is convex with respect to (u, v), the set of optima of problem (3) is non empty.
Introducing two dual variables λ ∈ Rn+ and β ∈ Rm+ for each constraint, the Lagrangian of problem (3) reads as

L (u, v, λ, β) =
ε

κ
〈λ,1n〉+ εκ〈β,1m〉+ 1>nB(u, v)1m − 〈κu, µ〉 − 〈

v

κ
, ν〉 − 〈λ, eu〉 − 〈β, ev〉

First order conditions then yield that the Lagrangian multiplicators solutions λ∗ and β∗ satisfy

∇uL (u∗, v∗, λ∗, β∗) = eu
∗
� (Kev

∗
− λ∗)− κµ = 0n,

and∇vL (u∗, v∗, λ∗, β∗) = ev
∗
� (K>eu

∗
− β)− ν

κ
= 0m

which leads to

λ∗ = Kev
∗
− κµ� eu

∗
and β∗ = K>eu

∗
− ν � κev

∗

For all i = 1, . . . , n we have that eu
∗
i ≥ ε

κ
. Further, the condition on the dual variable λ∗i > 0 ensures that

eu
∗
i = ε

κ
and hence i ∈ I{ε,κ. We have that λ∗i > 0 is equivalent to eu

∗
i ri(K)ev

∗
j > κµi which is satisfied when

ε2ri(K) > κµi. In a symmetric way we can prove the same statement for ev
∗
j .

7.2 Proof of Proposition 1

We prove only the first statement (7) and similarly we can prove the second one (8). For all i ∈ Iε,κ, we have
eu

sc
i > ε

κ
or eu

sc
i = ε

κ
. In one hand, if eu

sc
i > ε

κ
then according to the optimality conditions λsc

i = 0, which
implies eu

sc
i
∑m
j=1Kije

vsc
j = κµi. In another hand, we have

eu
sc
i min

i,j
Kij

m∑
j=1

ev
sc
j ≤ eu

sc
i

m∑
j=1

Kije
vsc
j = κµi.

We further observe that
∑m
j=1 e

vsc
j =

∑
j∈Jε,κ e

vsc
j +

∑
j∈J{

ε,κ
ev

sc
j ≥ εκ|Jε,κ|+ εκ|J{

ε,κ| = εκm. Then

max
i∈Iε,κ

eu
sc
i ≤ ε

κ
∨

maxi∈Iε,κ µi

mεKmin
.

Analogously, one can obtain for all j ∈ Jε,κ

max
j∈Jε,κ

ev
sc
j ≤ εκ ∨

maxj∈Jε,κ νj

nεKmin
. (11)

Now, since Kij ≤ 1, we have

eu
sc
i

m∑
j=1

ev
sc
j ≥ eu

sc
i

m∑
j=1

Kije
vsc
j = κµi.

Using (11), we get
m∑
j=1

ev
sc
j =

∑
j∈Jε,κ

ev
sc
j +

∑
j∈J{

ε,κ

ev
sc
j ≤ εκ|J{

ε,κ|+ εκ ∨
maxj∈Jε,κ νj

nεKmin
|Jε,κ|.

Therefore,

min
i∈Iε,κ

eu
sc
i ≥ ε

κ
∨

κminIε,κ µi

εκ(m−mb) + εκ ∨ maxj∈Jε,κ νj
nεKmin

mb

.

7.3 Proof of Proposition 2

We define the distance function % : R+ ×R+ 7→ [0,∞] by %(a, b) = b− a+ a log(a
b
). While % is not a metric,

it is easy to see that % is not nonnegative and satisfies %(a, b) = 0 iff a = b. The violations are computed through
the following function:

d%(γ, β) =

n∑
i=1

%(γi, βi), for γ, β ∈ Rn+.

Note that if γ, β are two vectors of positive entries, d%(γ, β) will return some measurement on how far they are
from each other. The next Lemma is from [1] (see Lemma 7 herein).
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Lemma 2. For any γ, β ∈ Rn+, the following generalized Pinsker inequality holds

‖γ − β‖1 ≤
√

7(‖γ‖1 ∧ ‖β‖1)d%(γ, β).

The optimality conditions for (usc, vsc) entails

µsc
i =

{
eu

sc
i
∑m
j=1Kije

vsc
j , if i ∈ Iε,κ,

ε
κ

∑m
j=1Kije

vsc
j , if i ∈ I{ε,κ

=

{
κµi, if i ∈ Iε,κ,
ε
κ

∑m
j=1Kije

vsc
j , if i ∈ I{ε,κ,

(12)

and

νsc
j =

{
ev

sc
j
∑n
i=1Kije

usc
i , if j ∈ Jε,κ,

εκ
∑n
i=1Kije

usc
i , if j ∈ J{

ε,κ

=

{
νj
κ
, if j ∈ Jε,κ,

εκ
∑n
i=1Kije

usc
i , if j ∈ J{

ε,κ.
(13)

By (12), we have

d%(µ, µ
sc) =

n∑
i=1

µsc
i − µi + µi log

( µi
µsc
i

)
=
∑
i∈Iε,κ

(κ− 1)µi − µi log(κ) +
∑
i∈I{ε,κ

ε

κ

m∑
j=1

Kije
vsc
j − µi + µi log

( µi
ε
κ

∑m
j=1Kije

vsc
j

)

=
∑
i∈Iε,κ

(κ− log(κ)− 1)µi +
∑
i∈I{ε,κ

ε

κ

m∑
j=1

Kije
vsc
j − µi + µi log

( µi
ε
κ

∑m
j=1Kije

vsc
j

)
.

Now by (8), we have in one hand∑
i∈I{ε,κ

ε

κ

m∑
j=1

Kije
vsc
j =

∑
i∈I{ε,κ

ε

κ

( ∑
j∈Jε,κ

Kije
vsc
j + εκ

∑
j∈J{

ε,κ

Kij

)
≤
∑
i∈I{ε,κ

ε

κ

(
mb max

i,j
Kij

maxj∈Jε,κ νj

nεKmin
+ (m−mb)εκmax

i,j
Kij

)
≤ (n− nb)

(mb maxj νj
nκKmin

+ (m−mb)ε
2
)
.

On the other hand, we get

ε

κ

m∑
j=1

Kije
vsc
j =

ε

κ

( ∑
j∈Jε,κ

Kije
vsc
j + εκ

∑
j∈J{

ε,κ

Kij

)

≥ mbKmin

mε2Kmin minj∈Jε,κ νj

κ((n− nb)mε2Kmin +mε2Kmin + nbκmaxi∈Iε,κ µi)

+ ε2(m−mb)Kmin

≥
mmbε

2(Kmin)2 minj∈Jε,κ νj

κ((n− nb)mε2Kmin +mε2Kmin + nbκmaxi∈Iε,κ µi)

+ ε2(m−mb)Kmin

≥
mmbε

2K2
min minj∈Jε,κ νj

κ((n− nb)mε2Kmin +mε2Kmin + nbκmaxi∈Iε,κ µi)
.

Then
1

ε
κ

∑m
j=1Kije

vsc
j
≤
κ((n− nb)mε2Kmin +mε2Kmin + nbκmaxi∈Iε,κ µi)

mmbε2K2
min minj∈Jε,κ νj

≤ κ(n− nb + 1)

mbKmin minj∈Jε,κ νj
+

nbκ
2 maxi∈Iε,κ µi

mmbε2K2
min minj∈Jε,κ νj

.

It entails ∑
i∈I{ε,κ

ε

κ

m∑
j=1

Kije
vsc
j − µi + µi log

( µi
ε
κ

∑m
j=1Kije

vsc
j

)

≤ (n− nb)
(

mb

nκKmin
+ (m−mb)ε

2 −min
i
µi

+ max
i
µi log

(κ(n− nb + 1) maxi µi
mbKmin minj∈Jε,κ νj

+
nbκ

2(maxi µi)
2

mmbε2K2
min minj∈Jε,κ νj

))
.
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Therefore

d%(µ, µ
sc) ≤ nbcκ max

i
µi + (n− nb)

(
mb maxj νj
nκKmin

+ (m−mb)ε
2 −min

i
µi

+ max
i
µi log

(κ(n− nb + 1) maxi µi
mbKmin minj∈Jε,κ νj

+
nbκ

2(maxi µi)
2

mmbε2K2
min minj∈Jε,κ νj

)
.

Finally, by Lemma 2 we obtain

‖µ− µsc‖21 ≤nbcκ max
i
µi + 7(n− nb)

(
mb maxj νj
nκKmin

+ (m−mb)ε
2 −min

i
µi

+ max
i
µi log

(κ(n− nb + 1) maxi µi
mbKmin minj∈Jε,κ νj

+
nbκ

2(maxi µi)
2

mmbε2K2
min minj∈Jε,κ νj

)
.

Following the same lines as above, we also have

‖ν − νsc‖21 ≤mbc 1
κ

max
i
µi + 7(m−mb)

(
nbκmaxi µi
mKmin

+ (n− nb)ε2 −min
j
νj

+ max
j
νj log

( (m−mb + 1) maxj νj
nbκKmin mini∈Iε,κ µi

+
mb(maxj νj)

2

nnbε2κ2K2
min mini∈Iε,κ µi

)
.

To get the closed forms (9) and (10), we used the following facts:
Remark 1. We have log(1/Kr

min) = r‖C‖∞/η, for every r ∈ N. Using (5), we further de-
rive: ε = O((mnK2

min)−1/4), κ = O(
√
m/(ncµνKmin)), κ−1 = O(

√
n/(mKmincµν), (κ/ε)2 =

O(m3/2/
√
nKmin(cµν)3/2), and (εκ)−2 = O(n3/2/

√
mKminc

3/2
µν ).

7.4 Proof of Proposition 3

We first define K̃ a rearrangement of K with respect to the active sets Iε,κ and Jε,κas follows:

K̃ =

[
K(Iε,κ,Jε,κ) K(Iε,κ,J{

ε,κ)

K(I{ε,κ,Jε,κ)
K(I{ε,κ,J

{
ε,κ)

]
.

Setting .
µ = (µ>Iε,κ , µ

>
I{ε,κ

)>, .
ν = (ν>Jε,κ , ν

>
J{
ε,κ

)> and for each vectors u ∈ Rn and v ∈ Rm we set .
u =

(u>Iε,κ , u
>
I{ε,κ

)> and .
v = (v>Jε,κ , v

>
J{
ε,κ

)>. We then have

Ψε,κ(u, v) = 1>n K̃(
.
u,

.
v)1m − κ .

µ>
.
u− κ−1 .

ν>
.
v,

and
Ψ(u, v) = 1>n K̃(

.
u,

.
v)1m − .

µ>
.
u− .

ν>
.
v,

where
B̃(

.
u,

.
v) = ∆(e

.
u)K̃∆(e

.
v).

Let us consider the convex function
(û, v̂) 7→ 〈1n, B̃(

.̂
u,

.̂
v)1m〉 − 〈κ

.̂
u, B̃(

.
usc,

.
vsc)1m〉 − 〈κ−1

.̂
v, B̃(

.
usc,

.
vsc)>1n〉.

Gradient inequality of any convex function g at point xo reads as g(xo) ≥ g(x) + 〈∇g(x), xo − x〉, for all x ∈
dom(g). Applying the latter fact to the above function at point (u?, v?) we obtain

〈1n, B̃(
.
usc,

.
vsc)1m〉 − 〈κ .

usc, B̃(
.
usc,

.
vsc)1m〉 − 〈κ−1 .

vsc, B̃(
.
usc,

.
vsc)>1n〉

−
(
〈1n, B̃(

.
u?,

.
v?)1m〉 − 〈κ .

u?, B̃(
.
usc,

.
vsc)1m〉 − 〈κ−1 .

v?, B̃(
.
usc,

.
vsc)>1n〉

)
≤ 〈 .usc − .

u?, (1− κ)B̃(
.
usc,

.
vsc)1m〉+ 〈 .vsc − .

v?, (1− κ−1)B̃(
.
usc,

.
vsc)>1n〉.

Moreover,

Ψε,κ(usc, vsc)−Ψ(u?, v?) = 〈1n, B̃(
.
usc,

.
vsc)1m〉 − 〈κ .

usc, B̃(
.
usc,

.
vsc)1m〉 − 〈κ−1 .

vsc, B̃(
.
usc,

.
vsc)1>n 〉

−
(
〈1n, B̃(

.
u?,

.
v?)1m〉 − 〈 .u?, B̃(

.
usc,

.
vsc)1m〉 − 〈 .v?, B̃(

.
usc,

.
vsc)>1n〉

)
+ 〈κ .

usc − .
u?, B̃(

.
usc,

.
vsc)1m − .

µ〉+ 〈κ−1 .
vsc − .

v?, B̃(
.
usc,

.
vsc)>1n − .

ν〉.
Hence,

Ψε,κ(usc, vsc)−Ψ(u?, v?)+
(
〈1n, B̃(

.
u?,

.
v?)1m〉

− 〈 .u?, B̃(
.
usc,

.
vsc)1m〉 − 〈 .v?, B̃(

.
usc,

.
vsc)>1n〉

)
− 〈κ .

usc − .
u?, B̃(

.
usc,

.
vsc)1m − .

µ〉 − 〈κ−1 .
vsc − .

v?, B̃(
.
usc,

.
vsc)>1n − .

ν〉

≤ 〈 .usc − .
u?, (1− κ)B̃(

.
usc,

.
vsc)1m〉+ 〈 .vsc − .

v?, (1− κ−1)B̃(
.
usc,

.
vsc)>1n〉

+
(
〈1n, B̃(

.
u?,

.
v?)1m〉 − 〈κ .

u?, B̃(
.
usc,

.
vsc)1m〉 − 〈κ−1 .

v?, B̃(
.
usc,

.
vsc)>1n〉

)
.
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Then,

Ψε,κ(usc, vsc)−Ψ(u?, v?) ≤ 〈 .usc − .
u?, (1− κ)B̃(

.
usc,

.
vsc)1m〉+ 〈 .vsc − .

v?, (1− κ−1)B̃(
.
usc,

.
vsc)>1n〉

+
(
〈1n, B̃(

.
u?,

.
v?)1m〉 − 〈κ .

u?, B̃(
.
usc,

.
vsc)1m〉 − 〈κ−1 .

v?, B̃(
.
usc,

.
vsc)>1n〉

)
+ 〈κ .

usc − .
u?, B̃(

.
usc,

.
vsc)1m − .

µ〉+ 〈κ−1 .
vsc − .

v?, B̃(
.
usc,

.
vsc)>1n − .

ν〉

−
(
〈1n, B̃(

.
u?,

.
v?)1m〉 − 〈 .u?, B̃(

.
usc,

.
vsc)1m〉 − 〈 .v?, B̃(

.
usc,

.
vsc)>1n〉

)
,

which yields

Ψε,κ(usc, vsc)−Ψ(u?, v?) ≤ 〈κ .
usc − .

u?, B̃(
.
usc,

.
vsc)1m − .

µ〉+ 〈κ−1 .
vsc − .

v?, B̃(
.
usc,

.
vsc)>1n − .

ν〉

+ (1− κ)〈 .usc, B̃(
.
usc,

.
vsc)1m〉+ (1− κ−1)〈 .vsc, B̃(

.
usc,

.
vsc)>1n〉.

Applying Holder’s inequality gives

Ψε,κ(usc, vsc)−Ψ(u?, v?) ≤ ‖κ .
usc − .

u?‖∞‖B̃(
.
usc,

.
vsc)1m − .

µ‖1 + ‖κ−1 .
vsc − .

v?‖∞‖B̃(
.
usc,

.
vsc)>1n − .

ν‖1
+ (1− κ)〈 .usc, B̃(

.
usc,

.
vsc)1m〉+ (1− κ−1)〈 .vsc, B̃(

.
usc,

.
vsc)>1n〉

≤
(
‖ .usc − .

u?‖∞ + (1− κ)‖ .usc‖∞
)
‖B̃(

.
usc,

.
vsc)1m − .

µ‖1
+
(
‖ .vsc − .

v?‖∞ + (κ−1 − 1)‖ .vsc‖∞
)
‖B̃(

.
usc,

.
vsc)>1n − .

ν‖1
+ (1− κ)〈 .usc, B̃(

.
usc,

.
vsc)1m〉+ (κ−1 − 1)〈 .vsc, B̃(

.
usc,

.
vsc)>1n〉

where, in the last inequality, we use the facts that ‖κ .
usc − .

u?‖∞ ≤ ‖ .usc − .
u?‖∞ + (1 − κ)‖ .usc‖∞ and

‖κ−1 .
vsc − .

v?‖∞ ≤ ‖ .vsc − .
v?‖∞ + (κ−1 − 1)‖ .vsc‖∞. Moreover, note that{

‖ .usc − .
u?‖∞ = ‖usc − u?‖∞,

‖ .vsc − .
v?‖∞ = ‖vsc − v?‖∞,

and

{
‖B̃(

.
usc,

.
vsc)1m − .

µ‖1 = ‖B(usc, vsc)1m − µ‖1 = ‖µsc − µ‖1,
‖B̃(

.
usc,

.
vsc)>1n − .

ν‖1 = ‖B(usc, vsc)>1n − ν‖1 = ‖νsc − ν‖1.

Then

Ψε,κ(usc, vsc)−Ψ(u?, v?) ≤
(
‖usc − u?‖∞ + (1− κ)‖usc‖∞

)
‖µsc − µ‖1

+
(
‖vsc − v?‖∞ + (κ−1 − 1)‖vsc‖∞

)
‖νsc − ν‖1

+ (1− κ)〈usc, µsc〉+ (κ−1 − 1)〈vsc, νsc〉
≤
(
‖usc − u?‖∞ + (1− κ)‖usc‖∞

)
‖µsc − µ‖1

+
(
‖vsc − v?‖∞ + (κ−1 − 1)‖vsc‖∞

)
‖νsc − ν‖1 (14)

+ (1− κ)‖usc‖∞‖µsc‖1 + (1− κ−1)‖vsc‖∞‖νsc‖1.

Next, we bound the two terms ‖usc − u?‖∞ and ‖vsc − v?‖∞. If r ∈ I{ε,κ, then we have

|(usc)r − u?r | =
∣∣∣∣ log

(∑m
j=1Krje

v?j∑m
j=1

κµr
mε

)∣∣∣∣
(?)

≤
∣∣∣∣ log

(
max

1≤i≤m

Krje
v?j

κµr
mε

)∣∣∣∣
≤
∣∣ max
1≤j≤m

(v?j − log(
κµr
mε

)
∣∣

≤ ‖v? − log(
κµr
mε

)‖∞

≤ ‖v? − vsc‖∞ + log(
mε2

cµν
).

where the inequality (?) comes from the fact that
∑n
j=1 aj∑n
j=1 bj

≤ max1≤j≤n
aj
bj
, ∀aj , bj > 0. Now, if r ∈ Iε,κ, we

get

|usc
r − u?r | =

∣∣∣∣ log

(
κ
∑m
j=1Krje

v?j∑m
j=1Krje(v

sc)j

)∣∣∣∣ ≤ ∣∣∣∣ log

( ∑m
j=1Krje

v?j∑m
j=1Krje(v

sc)j

)∣∣∣∣ (?)

≤ ‖vsc − v?‖∞.
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If s ∈ J{
ε,κ then

|vsc
s − v?s | =

∣∣∣∣ log(εκ)− log(
νs∑n

i=1Kiseu
?
i

)

∣∣∣∣
≤
∣∣∣∣ log

(
max
1≤i≤n

Kise
u?i

νs
nκε

)∣∣∣∣
(?)

≤
∣∣ max
1≤i≤n

(u?i − log(
νs
nκε

)
∣∣

≤ ‖u? − log(
νs
nκε

)‖∞

≤ ‖u? − usc‖∞ + log(
nε2

cµν
).

If s ∈ Jε,κ then

|vsc
s − v?s | =

∣∣∣∣ log

(
κ
∑m
i=1Krie

u?i∑m
i=1Krie(u

sc)i

)∣∣∣∣ ≤ ∣∣∣∣ log

(
κ
∑m
i=1Krie

v?j∑m
i=1Krie(u

sc)i

)∣∣∣∣ (?)

≤ ‖usc − u?‖∞.

Therefore, we obtain the followoing bound:

max{‖u? − usc‖∞, ‖v? − vsc‖∞} ≤ max
{
‖u?‖∞ + ‖usc‖∞ + log(

nε2

cµν
), ‖v?‖∞ + ‖vsc‖∞ + log(

mε2

cµν
)
}

≤ 2
(
‖u?‖∞ + ‖v?‖∞ + ‖usc‖∞ + ‖vsc‖∞ + log

( (n ∨m)ε2

cµν

))
.

(15)

Now, Lemma 3.2 in [30] provides an upper bound for the `∞ of the optimal solution pair (u?, v?) of problem (2)
as follows: ‖u?‖∞ ≤ A and ‖v?‖∞ ≤ A, where

A =
‖C‖∞
η

+ log
(n ∨m
c2µν

)
. (16)

Plugging (15) and (16) in (14), we obtain

Ψε,κ(usc, vsc)−Ψ(u?, v?) ≤ 2
(
A+ ‖usc‖∞ + ‖vsc‖∞ + log

( (n ∨m)ε2

cµν
)
)(
‖µsc − µ‖1 + ‖νsc − ν‖1

)
+ (1− κ)

(
‖usc‖∞‖µsc‖1 + ‖µsc − µ‖1

)
(17)

+ (κ−1 − 1)
(
‖vsc‖∞‖νsc‖1 + ‖νsc − ν‖1

)
.

By Proposition 1, we have

‖usc‖∞ ≤ log
( ε
κ
∨ 1

mεKmin

)
and ‖vsc‖∞ ≤ log

(
εκ ∨ 1

nεKmin

)
and hence by Remark 1,

‖usc‖∞ = O
(

log(n1/4/(mKmin)3/4c1/4µν )
)

and ‖usc‖∞ = O
(

log(m1/4/(nKmin)3/4c1/4µν )
)
.

Acknowledging that log(1/K2
min) = 2‖C‖∞/η, we have

A+ ‖usc‖∞ + ‖vsc‖∞ + log
( (n ∨m)ε2

cµν
)
)

= O
(‖C‖∞

η
+ log

( (n ∨m)2

nmc
7/2
µν

))
.

Letting Ωκ := (1−κ)
(
‖usc‖∞‖µsc‖1 +‖µsc−µ‖1

)
+ (κ−1−1)

(
‖vsc‖∞‖νsc‖1 +‖νsc−ν‖1

)
. We have that

Ωκ = O
((‖C‖∞

η
+ log

( 1

(nm)3/4c
1/2
µν

))(
(1− κ)(‖µsc‖1 + ‖µsc − µ‖1

)
+ (κ−1 − 1)(‖νsc‖1 + ‖νsc − ν‖1)

))
= O

((‖C‖∞
η

+ log
( (n ∨m)2

nmc
7/2
µν

))(
(1− κ)‖µsc‖1 + (κ−1 − 1)‖νsc‖1 + κ−1 − κ

))
.

Hence, we arrive at

Ψε,κ(usc, vsc)−Ψ(u?, v?) = O
(
R(‖µ− µsc‖1 + ‖ν − νsc‖1 + ωκ)

)
.

�

Note that ωκ tends to zero as (nb,mb) tends to (n,m) (i.e., κ→ 1). To more characterize ωκ, the following
lemma expresses an upper bound with respect to `1-norm of µscand νsc.
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Lemma 3. Let (usc, vsc) be an optimal solution of problem (6). Then one has

‖µsc‖1 = O
( nb

√
m√

nKmincµν
+ (n− nb)

( mb

√
nmcµνK

3/2
min

+
m−mb√
nmKmin

))
, (18)

and

‖νsc‖1 = O
( mb

√
n√

mKmincµν
+ (m−mb)

( nb
√
nmcµνK

3/2
min

+
n− nb√
nmKmin

))
. (19)

Proof. Using inequality (8), we obtain

‖µsc‖1 =
∑
i∈Iε,κ

µsc
i +

∑
i∈I{ε,κ

µsc
i

(12)
= κ‖µsc

Iε,κ‖1 +
ε

κ

∑
i∈I{

( ∑
j∈Jε,κ

Kije
vsc
j + εκ

∑
j∈J{

ε,κ

Kij

)
(8)
≤ κ‖µsc

Iε,κ‖1 + (n− nb)
(mb maxj∈Jε,κ νj

nκKmin
+ (m−mb)ε

2
)
.

Using Remark 1, we get the desired closed form in (18). Similarly, we can prove the same statement for
‖νsc‖1.

7.5 Additional experimental results

Experimental setup. All computations have been run on each single core of an Intel Xeon E5-2630
processor clocked at 2.4 GHz in a Linux machine with 144 Gb of memory.

On the use of a constrained L-BFGS-B solver. It is worth to note that standard Sinkhorn’s alternating
minimization cannot be applied for the constrained screened dual problem (6). This appears more clearly
while writing its optimality conditions (see Equations (12) and (13) ). We resort to a L-BFGS-B algorithm
to solve the constrained convex optimization problem on the screened variables (6), but any other efficient
solver (e.g., proximal based method or Newton method) could be used. The choice of the starting point for
the L-BFGS-B algorithm is given by the solution of the RESTRICTED SINKHORN method (see Algorithm 2),
which is a Sinkhorn-like algorithm applied to the active dual variables. While simple and efficient the solution
of this RESTRICTED SINKHORN algorithm does not satisfy the lower bound constraints of Problem (6). We
further note that, as for the SINKHORN algorithm, our SCREENKHORN algorithm can be accelerated using a
GPU implementation2 of the L-BFGS-B algorithm [15].

Algorithm 2: RESTRICTED SINKHORN

1. set: f̄u = εκ c(KIε,κ,J{
ε,κ

), f̄v = εκ−1 r(KI{ε,κ,Jε,κ
);

2. for t = 1, 2, 3 do
f

(t)
v ← K>Iε,κ,Jε,κu+ f̄v;

v(t) ← νJε,κ

κf
(t)
v

;

f
(t)
u ← KIε,κ,Jε,κv + f̄u;

u(t) ← κµIε,κ

f
(t)
u

;

u← u(t), v ← v(t);
3. return (u(t), v(t))

Comparison with other solvers. We have considered experiments with GREENKHORN algorithm [3] but
the implementation in POT library and our Python version of Matlab Altschuler’s Greenkhorn code3 were not
competitive with SINKHORN. Hence, for both versions, SCREENKHORN is more competitive than GREENKHORN.
The computation time gain reaches an order of 30 when comparing our method with GREENKHORN while
SCREENKHORN is almost 2 times faster than SINKHORN.

2https://github.com/nepluno/lbfgsb-gpu
3https://github.com/JasonAltschuler/OptimalTransportNIPS17
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Figure 6: TGREENKHORN

TSCREENKHORN
: Running time gain for the toy problem (see Section 5.2) as a function of the

data decimation factor in SCREENKHORN, for different settings of the regularization parameter η.
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Figure 7: Accuracy of a 1-nearest-neighbour after WDA for the (left) toy problem and, (right) MNIST).
We note a slight loss of performance for the toy problem, whereas for MNIST, all approaches yield
the same performance.
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Figure 8: (top-left) Accuracy and (bottom-right) computational time gain on the toy dataset for
η = 0.1 and 1-nearest-neighbour. (bottom) accuracy and gain but for a 5-nearest-neighbour. We
can note that a slight loss of performances occur for larger training set sizes especially for 1-nearest-
neighbour. Computational gains increase with the dataset size and are on average of the order of
magnitude.
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Figure 9: OT Domain Adaptation on a 3-class Gaussian toy problem. (top-left) Examples of source
and target samples. (top-right) Evolution of the accuracy of a 1-nearest-neighbour classifier with
respect to the number of samples. (bottom-left) Running time of the SINKHORN and SCREENKHORN
for different decimation factors. (bottom-right). Gain in computation time. This toy problem is a
problem in which classes are overlapping and distance between samples are rather limited. According
to our analysis, this may be a situation in which SCREENKHORN may result in smaller computational
gain. We can remark that with respect to the accuracy SCREENKHORN with decimation factors up to
10 are competitive with SINKHORN, although a slight loss of performance. Regarding computational
time, for this example, small decimation factors does not result in gain. However for above 5-factor
decimation, the gain goes from 2 to 10 depending on the number of samples.
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Figure 10: OT Domain adaptation MNIST to USPS : (top) Accuracy and (bottom) running time
of SINKHORN and SCREENKHORN for hyperparameter of the `p,1 regularizer (left) λ = 1 and
(right) λ = 10. Note that this value impacts the ground cost of each Sinkhorn problem involved
in the iterative algorithm. The accuracy panels also report the performance of a 1-NN when no-
adaptation is performed. We remark that the strenght of the class-based regularization has influence
on the performance of SCREENKHORN given a decimation factor. For small value on the left,
SCREENKHORN slightly performs better than SINKHORN, while for large value, some decimation
factors leads to loss of performances. Regarding, running time, we can note that SINKHORN is far
less efficient than SCREENKHORN with an order of magnitude for intermediate number of samples.
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Figure 11: OT Domain adaptation MNIST to USPS : (left) Accuracy and (right) running time of
SINKHORN and SCREENKHORN for the best performing (on average of 10 trials) hyperparameter `p,1
chosen among the set {0.1, 1, 5, 10}. We can note that in this situation, there is not loss of accuracy
while our SCREENKHORN is still about an order of magnitude more efficient than Sinkhorn.
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