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Abstract
A large number of ex situ sampling techniques have been used traditionally to investigate the impact and fate of pollutants 
in soil, sediment and waters. However, the distribution and form of chemical species present are often altered prior analysis, 
due to the alterations during sampling and transfer to the laboratory. Alternatively, a robust in situ passive sampling tech-
nique, diffusive gradients in thin films (DGT), has been developed for the measurement of labile concentrations, species 
and distribution of various solutes in soil, sediment and waters. Here we review the recent developments in DGT device 
configurations and components, e.g., binding agents, diffusive phases and filter membranes. We highlight new configurations 
for effectively reducing the measurement errors and the disturbance of environmental media. We discuss DGT applications 
for the analysis of soil, sediment and water, such as evaluation of bioavailability and toxicity, measurement of nutrients and 
organic substances, and assessment of relationships between multiple solutes. We also present the coupling of DGT with 
other in situ measurement techniques such as dialysis samplers (Peeper), diffusive equilibrium in thin films (DET) and planar 
optodes (PO).
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Introduction

With industrial development and urbanization, increasing 
levels of discharge of environmental pollutants such as heavy 
metals, nutrients and organics, not only result in severe envi-
ronmental problems, but also pose a great risk to human 
health (Henner et al. 1999; Dsikowitzky and Schwarzbauer 
2014; Heim and Schwarzbauer 2013; Li et al. 2017). A large 
number of ex situ active sampling techniques have been used 
to investigate the impacts and fates of compounds in soils, 
sediments and water, such as direct sampling, centrifuga-
tion and filtration, and displacement (Henner et al. 1997; 
Gimbert et al. 2005; Wang et al. 2015). However, the dis-
tribution and form of the chemical species present are often 
altered prior to analysis, due to the processes involved in 
sampling and transfer to the laboratory. Traditional sampling 
and extraction techniques give access to the total extractable 
analyte concentrations, which usually include some biologi-
cally unavailable fractions of inert organic species and large 
colloids (Divis et al. 2005). However, full assessment of 
the potential risk of a target analyte requires analysis of the 
labile fraction rather than total analyte concentrations (de 
Paiva Magalhães et al. 2015; Divis et al. 2005; Fernandez-
Gomez et al. 2011). It is crucial to understand the complex 
interaction of biogeochemical processes responsible for spe-
ciation and distribution of analytes, as well as the resupply 
kinetics from solid phase to solution phase in sediments or 
soils (Wu and Wang 2017).

In situ passive sampling techniques are considered an 
ideal alternative method to these conventional sampling 
techniques, with many advantages including low environ-
mental disturbance, having low cost and time requirements, 
and avoiding the need for active media transport (Chen 
2015; Zarrouk et al. 2013). Diffusive gradients in thin films 
(DGT) is an in situ passive sampling techniques commonly 
used in environmental chemistry, which has been applied to 
the detection of elements and compounds in natural environ-
ments, including water, sediment and soil. This technique 
uses a specially designed passive sampler that typically 
houses a binding layer and diffusive layer. Labile fractions, 
including free ions, labile complexes which can dissociate 
and mobile fractions released from solids, diffuse through 

diffusive layer and are then rapidly and irreversibly assimi-
lated by the binding layer. Therefore, a diffusive gradient is 
established within the diffusive layer, between the internal 
medium and the binding layer interface (Fig. 1) (Ernstberger 
et al. 2002; Sun et al. 2013). Based on Fick’s first law of dif-
fusion, the time-weighted average concentration (CDGT) of 
labile species during the deployment time (t) can be obtained 
using DGT, according to Eq. (1) (Davison and Zhang 1994):

where Δg is the diffusion layer thickness; � is the diffusive 
boundary layer thickness, which calculated based on previ-
ously reported methods (Davison and Zhang 2012; Galceran 
and Puy 2015; Scally et al. 2003); A is the exposed surface 
area of the DGT device; M is the accumulated mass of ana-
lyte in the binding gel; D is the analyte diffusion coefficient 
in the diffusive layer, determined by diffusion cell or DGT 
time-series deployment methods (Ding et al. 2016c; Pan 
et al. 2015; Zhang and Davison 1999).

Furthermore, DGT induced fluxes in sediments or soils 
(DIFS) modeling was developed to investigate the kinetics 
resupply of solutes to porewater from soil/sediment sol-
ids (Harper et al. 1998, 2000; Sochaczewski et al. 2007). 
Resupply mechanisms were described and evaluated using 
the resupply parameter from solid phase to solution phase R 
(CDGT/CSOL), the distribution coefficient between solid and 
porewater Kd (CS/CSOL), the solid phase adsorption rate con-
stant k1, the desorption rate constant k−1 and the response 
time TC needed for the perturbed system to reach a 63% equi-
librium level. DGT and DIFS therefore pose a significant 
advantage as compared to traditional measurement methods, 
as they can reflect the mobility, bioavailability and resupply 
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Fig. 1   Diffusive gradients in thin-film (DGT) device and mechanisms



kinetics of solutes in environmental media (Gu et al. 2017; 
Naylor et al. 2006; Xu et al. 2018).

The DGT technique was developed in 1994 by William 
Davison and Hao Zhang with use for the determination of 
trace metals in water most common, during the early stages 
of development (Davison and Zhang 1994; Zhang and Davi-
son 1995). Since then, the DGT technique has been modified 
and expanded to allow measurement of a significant num-
ber of elements and compounds, including multiple met-
als (Altier et al. 2016; Gao et al. 2009; Gimpel et al. 2003; 
Yabuki et al. 2014), nutrients (Cai et al. 2017; Menzies et al. 
2005), organic chemicals/compounds (Chen et al. 2012a, 
2013; Dong et al. 2014), radioactive elements (Drozdzak 
et al. 2015; Leermakers et al. 2009), oxyanions (Stockdale 
et al. 2008, 2010) and rare earth elements (Yuan et al. 2018). 
The simultaneous measurement of metals and oxyanions via 
DGT also provides an opportunity for analysis of the com-
plex relationships between various elements (Mason et al. 
2005; Panther et al. 2013; Wang et al. 2017a). Furthermore, 
the combination of DGT with other techniques has provided 
novel insight into different aspects of biogeochemical pro-
cesses at high resolution, such as dialysis samplers (Peeper) 
(Xu et al. 2012a), diffusive equilibrium in thin films (DET) 
(Gao et al. 2007; Pradit et al. 2013) and planar optodes (PO) 
(Hoefer et al. 2017; Lehto et al. 2017). Obtaining a two-
dimensional (2D) sub-mm high-resolution distribution of 
analytes in heterogeneous environments, such as sediments 
and the rhizosphere, is possible using laser ablation induc-
tively coupled plasma mass spectrometry (LA-ICP-MS) 
(Stockdale et al. 2010; Warnken et al. 2004b) or computer 
imaging densitometry (CID) (Ding et al. 2013; Teasdale 
et al. 1999).

This study provides a comprehensive review of DGT 
development in recent years, including: device components, 
improved device configurations, and their application in 
soils, sediments and water. Moreover, the advantages and 
challenges of DGT technique are discussed.

Devices and components of diffusive 
gradients in thin films

To date, two types of DGT samplers have been reported, 
solid binding phase devices and liquid binding phase 
devices, with both types having different holder configu-
rations. Solid binding phase devices consist of four types, 
including the piston-type and dual-mode devices used for 
analysis of solutions and dry soils (Luo et al. 2014; Pan et al. 
2015), and the traditional and new flat-type probes used for 
analysis of sediments and flooded soils (Ding et al. 2016b; 
Wu et al. 2014; Zhang et al. 2002). DGT devices typically 
contain a binding layer which rapidly and irreversibly accu-
mulates the solute species, a diffusive gel layer which allows 

solute species to pass through, a protective filter membrane 
which prevents adherence of particles to gels, and a front 
plate with a window which clips to the backing plate and 
holds all the layers firmly together. Recently, the improve-
ments in traditional DGT device construction, as well as the 
developments in liquid binding phase device, have signifi-
cantly expanded the potential applications.

DGT configuration

Measurement in solutions and dry soils

The piston-type device incorporates two components: the 
DGT piston and DGT cap (Fig. 2a). The binding gel, diffu-
sive gel and filter membrane were sequentially laid together 
on the DGT piston and fixed by the DGT cap (exposure area: 
3.14 cm2), and the surface of the filter membrane is exposed 
to waters or soils during measurements. The typical piston-
type device can be deployed into soils by hand pressing after 
the soil is moistened (Luo et al. 2010; Oporto et al. 2008; 
Santner et al. 2010; Zhang et al. 2004). The density of the 
soil, different thicknesses of soil layers, and the diffusive 
characteristics of target analytes may be potentially altered 
during pressing, which may result in measurement errors 
(Ding et al. 2016b).

In order to reduce the potential artificial interference for 
DGT measurement in soils, Ding et al. (2016b) developed 
the dual-mode DGT device, which has two different forms 
(Fig. 2b), with installation of the core on the top of the base 
for the measurement in water, or with the core inserted into 
the base to form an open cavity for measurements in soil. 
The deployment setup of dual-mode device differs signifi-
cantly for soil measurements, as compared with piston-type 
device. Soil samples filled up to the open cavity with a 
height of 10 mm (i.e., the thickness of the soil layer is uni-
fied to 10 mm) after soils have been moistened, with devices 
then gently shaken by hand, to ensure complete and homoge-
neous contact between the DGT exposure surface and soils. 
The accuracy and variability of dual-mode and piston-type 
DGT devices were evaluated by determining the amounts 
of P, As, Cd and Pd with each device. Results indicated 
that accumulated masses established by both devices were 
significantly similar with correlation coefficients R2 of 0.99 
or 1.00. In addition, total measurement variability decreased 
from 5.57% in the piston-type DGT, to 3.37% in dual-mode 
DGT measurements (reduced by 42%).

Measurement in sediment and flooded soils

The flat-type probe is composed of a flat base with raised 
bottom edge for accommodation of the binding gel, diffusive 
gel and filter membrane, fixed by windowed frame (expo-
sure area: 27 cm2) (Fig. 3a), which is vertically deployed in 



sediments or soils. Due to raised bottom edge, the typical 
flat-type probe can cause larger particles from the top layer 
of sediments to be transported down the sample profile and 
deeper layers during the insertion process (Santner et al. 
2015). Additionally, the gap formed between the surface of 
flat-type probe and sediments due to raised bottom edge has 
been found to induce increased exchange in the overlying 
water (Ding et al. 2016b).

Furthermore, the flat-type probe for sediment measure-
ments have been improved, with the significant differences 
being the removal of the raised bottom edge, as well as 
ensuring the window frame is flat at the front and has a 
beveled back (Fig. 3b). The performances of new and tradi-
tional flat-type DGT were compared for S(II) measurement, 
combining with ZrO–AgI binding gel and CID technique, 
The similar S(II) distribution trends were observed with both 

Fig. 2   Structure of the piston-type diffusive gradients in thin-film 
(DGT) device (a) and the dual-mode DGT device (b). a 1, the cap; 
2, the piston and 3 their assembled form in the traditional holder sys-
tem; b 1, the “O-shape” ring; 2, the recessed base of the DGT core 
in the new holder and 3, the hollow base (open cavity) for accom-

modation of the DGT core; 4 and 6 are the two different assembled 
forms of the DGT core and the open cavity for measurements in water 
and soil, respectively; 5 and 7 are the sectional drawing of 4 and 6, 
respectively (Ding et  al. 2016b). Reprinted with permission from 
Ding et al., Copyright (2016b), The Royal Society of Chemistry

Fig. 3   Structure of the tradi-
tional flat-type diffusive gradi-
ents in thin-film (DGT) device 
(a) and the new flat-type DGT 
device (b): 1, the flat base; 2, 
the flat base and 3, their assem-
bled form for the two types 
of probes, respectively; 4 is a 
cutaway view of the bottom of 
3 loaded with binding gel, dif-
fusive gel and a filter membrane 
(Ding et al. 2016b). Reprinted 
with permission from Ding 
et al., Copyright (2016b), The 
Royal Society of Chemistry



devices from the 2D distribution of S(II). However, the new 
flat-type probe without a raised bottom edge, induces much 
less disturbance of solid particulates and overlying water 
from sediment surfaces, reducing transfer into the deeper 
layers during deployment, as compared to the traditional 
design. The penetration depths of dissolved sulfide and 
sulfide-enriched sands in sediments have been reduced to 
33% and 20% of those measured using the traditional holder. 
Because the seepage of oxic overlying water into the sedi-
ment has been effectively inhibited using new holder, the 
distribution of sulfide with low concentration appeared at 
a much shallower depth (2.5 mm vs. 6 mm). The improved 
dual-mode DGT and new flat-type DGT devices have been 
successfully used for the measurement of various solutes in 
soils and sediments (Lin et al. 2017a; Xu et al. 2017; Zhang 
et al. 2017a).

Liquid binding phase device

The liquid binding phase device has mainly been applied 
to the measurement of solutes in water and soils, with a 
configuration similar to piston-type devices. As shown in 
Fig. 4, the typical liquid binding phase device is composed 
of two parts: the base with a reservoir for the placement of 
the binding phase solution; and the cap with a 29.5-mm open 
window which can be clipped onto the base (Liu et al. 2016; 
Wu et al. 2017). In order to avoid leakage of the liquid bind-
ing solution, a silica rubber spacer was fitted onto the base 
before the dialysis membrane was placed on the top of the 
spacer. As compared with solid binding phase DGT, liquid 
binding phase DGT provides excellent contact between the 
polymer solution and diffusive layer, overcoming fragility 
and swelling problems associated with solid gel. In addi-
tion, liquid binding phase DGT require simpler analytical 
procedures which directly measure analyte concentrations 
from polymer solution without complex elution steps (Chen 

et al. 2011; Fan et al. 2009b). However, the measurement 
using this type of DGT cannot reflect the spatial change of 
the analyte in environmental medium, due to that the binding 
agent is mobile in the binding solution.

In summary, the development of DGT configuration, 
including new solid and liquid binding phase devices, has 
expanded the application of this technique and reduced the 
disturbances on environmental media and induced measure-
ment errors.

Binding agents

A large number of studies have suggested that labile spe-
cies concentrations measured by different binding phases 
for same target analyte vary significantly (Ding et al. 2010b; 
Panther et al. 2011; Zhang et al. 2018a). Moreover, labile 
species concentrations are dependent on the binding strength 
and capability of the binding agent, providing possibility 
of using different DGT devices to determine the speciation 
and bioavailability of solutes, by choosing various suitable 
binding agents (Fan et al. 2013; Li et al. 2005a). To date, 
two different binding phases have been developed, including 
solid binding phases and liquid binding phases. Tables 1 and 
2 summarize various solid binding agents and liquid bind-
ing agents, respectively, as well as their target analytes and 
applied conditions. 

Single solid binding agents

Single solid binding phases are prepared by impregnating 
single binding agents (e.g., resin) into polyacrylamide or 
agarose gels (Guan et al. 2017; Zhang et al. 2004; Zheng 
et al. 2015). In addition, some ion exchange membranes are 
directly used as single solid binding phases for measuring 
metals with DGT (Li et al. 2002, 2006).

Chelex-100 resin is the most widely used solid binding 
adsorbent and has been applied for the measurement of trace 
metals in sediments, soils and waters (Divis et al. 2007; 
Song et al. 2018a; Zhang et al. 1998b). The most notable 
advantage of Chelex-100 resin is that it can determine a 
large number of metals, to date, the Chelex-100 is typically 
used to measure cationic metals with DGT, including Fe, 
Mn, Cd, Co, Cu, Ni, Pb, Zn and Al (Garmo et al. 2003; Leer-
makers et al. 2016; Song et al. 2018b; Turner et al. 2012; 
Wu et al. 2011). Other available materials have also been 
reported for the determination of metals, such as adsorbent 
suspended particulate reagent-iminodiacetate (SPR-IDA) 
and activated carbon (Davison et al. 1997; Lucas et al. 2012, 
2014). SPR-IDA and activated carbon DGT can measure 
fewer analytes than Chelex-100 but activated carbon DGT 
can be applied for Au and bisphenols (BPs) measurement 
over a wide range of pH and ionic strength conditions (Guan 
et al. 2017; Lucas et al. 2012; Warnken et al. 2004a). Both 

Fig. 4   The construction of diffusive gradients in thin-film (DGT) 
devices for liquid binding phase systems, comprised of a base with 
reservoir, for the placement of the binding phase solution and a cap 
with a 29.5-mm open window which can be clipped onto the base 
(Liu et al. 2016). NP nanoparticles. Reprinted with permission from 
Liu et al., Copyright (2016), Elsevier. N



Table 1   Binding agents for preparation of solid binding phases in diffusive gradients in thin films (DGT)

Solid binding agents Target analytes Analytical techniques Applied condition References

Chelex-100 Zn, Cd, Co, Ni, Cu, Al, Pb, 
Cr, Mn, Fe, As, Hg, U

ICP-MSb, ICP-AESc

LA-ICP-MS
pH: 5.0–8.5;
I: 0.01 mM–0.75 M 

NaNO3

Divis et al. (2007), Gao et al. 
(2009), Leermakers et al. 
2016), Song et al. (2018a), 
Wu et al. 2011)

SPR-IDAa Co, Ni, Cu, Zn, Cd, Pb LA-ICP-MSd pH: 4.0–8.0 Davison et al. (1997), Gao and 
Lehto (2012), Warnken et al. 
(2004a, b)

Activated carbon Au, As, Sb, bisphenols (BPs) ICP-MS, HPLCe pH: 2.0–9.5
I: 0.001–0.5 M NaCl

Lucas et al. (2012, 2014), 
Zheng et al. (2015)

Saccharomyces cerevisiae Cd, Pb, MeHg CV-AFS, ICP-OESf pH: 4.5–8.5I: ≥ 0.005 M 
NaNO3

Menegário et al. (2010), 
Pescim et al. (2012), Tafurt-
Cardona et al. (2015)

Amberlite IRA 910 As, V HG-AFSg pH: 3–9
I: 0.001–0.05 M NaNO3

Rolisola et al. (2014), Luko 
et al. (2017)

Whatman P81 membrane Cd, Cu, Pb, Zn, Co, Ni, Mn, 
Ba, Hg, U species

FAASh, ICP–MS pH: 4–9 Colaço et al. (2014), de 
Oliveira et al. (2012), Larner 
and Seen (2005), Pedrobom 
et al. (2017)

Whatman DE 81 membrane Cr, U species ICP-OES, ICP-MS pH: 4–9
I: 0.01–0. 5 M NaNO3

Li et al. (2006), Suárez et al. 
(2016)

AgI S CIDi DeVries and Wang (2003), 
Teasdale et al. (1999), Wid-
erlund and Davison (2007)

Ferrihydrite As, Mo, Sb, V, W, Se, P ICP-SFMSj Osterlund et al. (2010), Price 
et al. (2013), Zhang et al. 
(1998a)

Metsorb As, V, Sb, Mo, W, Se, P, U, 
Glyphosate and Aminome-
thyl Phosphonic Acid

ICP-MS pH: 4.0–8.3;
I: 10−3–0.7 M NaNO3

Bennett et al. (2010), 
Drozdzak et al. (2015), Fau-
velle et al. (2015), Panther 
et al. (2010, 2013), Price 
et al. (2013)

Zr-oxide P, As, Cr, Mo, Sb, Se, V, W ICP-MS, CID pH: 3–10
I: 0.01–750 mM NaNO3

Ding et al. (2010b, 2011, 
2016c), Guan et al. (2015), 
Sun et al. 2014)

MnO2 Ra ICP-MS Gao et al. (2010), Leermakers 
et al. (2016)

Spheron-Thiol Hg HPLC–ICP-MSk Cattani et al. (2008), Doceka-
lova and Divis (2005), 
Fernandez-Gomez et al. 
(2011)

Tulsion® CH-95 Hg, MeHg CVA-FSl pH: 4.10–10.03/4.10–
8.10

I: 0.1 mM–1 M NaCl

Ren et al. (2018a)

3-mercaptopropyl function-
alized silica gel

MeHg, MMHg GC-ICP-MSm

GC-Py-AFSn
Clarisse et al. (2009, 2012), 

Fernandez-Gomez et al. 
(2014), Liu et al. (2012)

Chelex–Metsorb Mn, Co, Zn, Ni, Cu, Cd, Pb, 
V, As, Mo, Sb, W, P

ICP-MS pH: 5.03–8.05
I: 0.001–0.7 M

Arsic et al. (2018), Panther 
et al. (2014)

Chelex–Ferrihydrite Zn. Pb, Cd, Cu, Mn, Mo, 
P, As

ICP-MS pH: 3–8
I: 0.001–0.01 M NaCl

Huynh et al. (2012), Mason 
et al. (2005)

AgI–Ferrihydrite P, V, As, Mo, Sb, W and U LA-ICP-MS Stockdale et al. (2010)
ZrO–AgI P, S, As CID, HG-AFSo pH: 4–9;

I: 0.01–750 mM NaCl
Ding et al. (2012), Xu et al. 

(2017)
ZrO–SPR-IDA P, As, Co, Cu, Mn, and Zn LA-ICP-MS pH 4–8

I: 1–100 mM NaNO3

Kreuzeder et al. (2013)



Table 1   (continued)

Solid binding agents Target analytes Analytical techniques Applied condition References

ZrO–Chelex Fe, Mn, Co, Ni, Cu, Zn, Pb, 
Cd, P, As, Cr, Mo, Sb, Se, 
V, W

CID, ICP-MS pH: 5–9
I: 1–750 or 2/3–750 mM 

NaNO3

Ding et al. (2016a), Wang 
et al. (2016, 2017a)

Micro-sized zeolite NH4
+–N ICP-AES pH: 3–8

I: 0.001–10 mM NaNO3

Feng et al. (2015)

Microlite PrCH cation 
exchange resin

NH4
+–N Automated colorimet-

ric method
pH: 3.5–8.5
I: ~ 0.012 M NaCl

Huang et al. (2016c)

Purolite A520E anion 
exchange resin

NO3–N Automated colorimet-
ric method

pH: 3.5–8.5
I: 0.0001–0.008 M NaCl

Huang et al. (2016a)

AMI-7001 anion exchange 
membrane

NO3–N Automated colorimet-
ric methods

pH: 3.5–8.5
I: 0.0001–0.014 M NaCl

Huang et al. (2016d)

CMI-7000 cation exchange 
membranes

NH4
+–N Automated colorimet-

ric methods
pH: 3.5–8.5
I: 0.0003–0.012 M NaCl

Huang et al. (2016d)

SIR-100-HP NO3–N Flow injection 
analysis

pH: 3–8
I: 0–0.018 M Na2SO4

Cai et al. (2017)

XAD-18 resin Antibiotics/drugs/perfluoro-
alkyl substances (PFASs)/
endocrine disrupting 
chemicals

HPLC–UVp RRLC–
MS/MSq

pH: 6–9/4–9
I: 0.001–0.1 M NaCl

Chen et al. (2012a, 2013, 
2018c), Guan et al. (2018), 
Guo et al. 2017a)

XDA-1 resin Antibiotics/endocrine dis-
rupting chemicals (EDCs)

UPLC-MS/MSr pH: 7–9
I: 0.5/0.4–0.8 M NaCl

Xie et al. (2018a, b)

Oasis® HLB or Oasis® MAX Anionic pesticides/endocrine 
disrupting chemicals/polar 
organic contaminants

HPLC-TOFs pH: 3–8
I: 0.01–1 M NaNO3

Challis et al. (2016), Chen 
et al. (2018c), Guibal et al. 
(2017)

Bondesil® C8 silica particles Organotin compounds PTV-LVI-GC/MSt pH: 4–9
I: 0.01–1 M, NaCl

Cole et al. (2018)

Hydrophilic–lipophilic-
balanced

Household and personal care 
products (HPCPs)

LC-MS/MSu pH: 3.5–9.5
I: 0.001–0.1 M NaCl

Chen et al. (2017b)

a Suspended particulate reagent-iminodiacetate (SPR-IDA)
b Inductively coupled plasma mass spectrometry (ICP-MS)
c Inductively coupled plasma atomic emission spectrometry (ICP-AES)
d Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
e High-performance liquid chromatography (HPLC)
f Inductively coupled plasma optical emission spectroscopy (ICP-OES)
g Hydride generation-atomic fluorescence spectrometry (HG-AFS)
h Flame atomic absorption spectroscopy (FAAS)
I Computer imaging densitometry (CID)
j Inductively coupled plasma sector-field mass spectrometry (ICP-SFMS)
k High-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC–ICP-MS)
l Cold vapor atomic fluorescence spectrometry (CVA-FS)
m Gas chromatography coupled inductively coupled plasma mass spectrometry (GC-ICP-MS)
n Gas chromatography coupled to atomic fluorescence spectrometry via a pyrolytic reactor (GC-Py-AFS)
o Hydride generation coupled with AFS (HG-AFS)
p High-performance liquid chromatography ultraviolet (HPLC–UV)
q Rapid resolution liquid chromatography-tandem mass spectrometry (RRLC–MS/MS)
r Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)
s High-performance liquid chromatography time-of-flight (HPLC-TOF)
t Pressure temperature vaporization-large volume injection gas chromatography-mass spectrometry (PTV-LVI-GC/MS)
u Liquid chromatography-tandem mass spectrometry (LC-MS/MS)



SPR-IDA (bead size 0.2 µm) and ground Chelex-100 resin 
(bead size ~ 10 µm) allow obtaining high-resolution imag-
ing of trace metals in sediments and soils in combination 
with the analysis of LA-ICP-MS (Zhou et al. 2018). Taking 
the expensive prices and limited binding capacity of SPR-
IDA into consideration, the ground Chelex-100 resin can 
become a promising binding material for high-resolution 2D 
imaging analysis. Menegário et al. (2010) fixed baker’s yeast 
(Saccharomyces cerevisiae) in agarose gel to form a DGT 
binding phase, and the labile Cd(II) measured by this type 
of DGT showed excellent agreements with that of Chelex 
DGT. This type of DGT has been developed for measuring 
Pb and MeHg in seawaters and freshwaters (Pescim et al. 
2012; Tafurt-Cardona et al. 2015). Rolisola et al. (2014) 
and Luko et al. (2017) immobilized Amberlite IRA 910 into 
polyacrylamide gel to form a DGT binding phase capable 
of measuring As(III) and V, and the DGT performance was 
independent of pH 5–9 and pH 3–9 for the two analytes, 
respectively.

In addition, several binding materials have been devel-
oped for the measurement of Hg species. Spheron-Thiol res-
ins were developed to determine Hg(II) and MeHg, show-
ing a stronger affinity for mercury species than Chelex-100 
(Docekalova and Divis 2005; Fernandez-Gomez et al. 2011). 
Three-mercaptopropyl functionalized silica (Clarisse et al. 
2012; Fernandez-Gomez et  al. 2015), the ion exchange 

resin Duolite GT73 and Ambersep GT74 as well as the 
novel functionalized macroporous cross-linked polystyrene 
(Tulsion® CH-95) can measure several mercury species (Pel-
cova et al. 2014, 2015; Ren et al. 2018a). Further, we found 
the Tulsion® CH-95 binding agent has higher adsorption 
capacity and elution efficiency for Hg(II) and MeHg than 
other adsorbents (Ren et al. 2018a).

The use of ion exchange membranes as DGT binding 
phases has advantages of excellent mechanical strength, 
flexibility, reuse and easy preparation, in comparison with 
other types of binding phases (Huang et al. 2016d; Li et al. 
2002, 2005a). Li et al. (2002) utilized commercially avail-
able solid cellulose phosphate membranes (Whatman P81) 
as DGT binding phase to determine Cu and Cd, and this type 
of DGT has been extended to measurement of other metals, 
such as Cd, Cu, Pb, Zn, Co, Ni, Mn, Ba, Hg and U species 
(Colaço et al. 2014; de Oliveira et al. 2012; Larner and Seen 
2005; Mengistu et al. 2012; Pedrobom et al. 2017). In addi-
tion, the Whatman DE 81 with amino functional groups has 
been applied for the measurement of U species and Cr(VI) 
in waters (Li et al. 2006; Pedrobom et al. 2017; Suárez et al. 
2016).

Titanium dioxide-based adsorbent (Metsorb), iron oxyhy-
droxide-based adsorbents (Ferrihydrite) and zirconium oxide 
(Zr-oxide)-based adsorbents have been employed to meas-
ure anionic analytes. Metsorb DGT, Ferrihydrite DGT and 

Table 2   Binding agents used for preparation of the liquid binding phase in diffusive gradients in thin films (DGT)

a Flame atomic absorption spectroscopy (FAAS)
b Inductively coupled plasma mass spectrometry (ICP-MS)
c Inductively coupled plasma optical emission spectrophotometry (ICP-OES)
d Ammonium molybdate spectrophotometry (AMS)

Liquid binding phase Target analyte Analytical techniques Applied condition References

Poly(4-styrenesulfonate) Cu, Cd, Co, Ni FAASaICP-MSb pH: 4–8
Not suitable for high ionic 

strength

Chen et al. (2012b), Li et al. 
(2003, 2005b)

Polyvinyl alcohol Cu FAAS pH: 5.6–8.6
I: 10−4–0.7 M NaNO3

Fan et al. (2009a)

Polyacrylate Cu, Cd FAAS pH: 4–8
Not suitable for high ionic 

strength

Fan et al. (2009b)

Polymer-bound Schiff base Cu, Cd, Pb FAAS pH: 4–8.5
I: 10−4–0.1 M NaNO3

Fan et al. (2013)

Poly (ethyleneimine) Cu, Cd Pb FAAS pH: 4–8
I: 10−4–0.1 M NaNO3

Sui et al. (2013)

Thiol-modified carbon nanoparti-
cle (SH-CNP)

Hg ICP-MS pH: neutral value
I: 0.001–0.5 M NaNO3

Wu et al. (2017)

Fe3O4 NPs As/P ICP-MS
ICP-OESc

pH: 4.5–9/3–10
I: 0.001–0.5 M NaNO3

Liu et al. (2016), Zhang et al. 
2018a)

Polyquaternary ammonium salt 
(PQAS)

P AMSd pH: 3–10
I: 10−4–1 M NaNO3

Chen et al. ( 2014b)

Zr-based metal–organic frame-
works

P pH: 6.5–8.5
I: 10−5–0.1 M NaNO3

Qin et al. (2018)



Zr-oxide DGT can measure similar anionic analytes includ-
ing As, Mo, Sb, V, W, Se, P in a similar range of pH (Ding 
et al. 2016c; Osterlund et al. 2010; Panther et al. 2010, 2013; 
Zhang et al. 2017a, b). Compared with Ferrihydrite, the 
capacity of Metsorb DGT was higher, with superior results 
found when deployment times were greater than 1 day or 
in seawater deployment. Both Metsorb and Ferrihydrite 
DGTs were found to be independent of Cl− and SO4

− for 
the measurement of dissolved reactive phosphorous (DRP) 
in water, whereas Ferrihydrite DGT was more susceptible 
to the effects of HCO3

− (Mason et al. 2008; Panther et al. 
2011). A high phosphate binding capacity was observed for 
Zr-oxide DGT, up to 223 µg P cm−2, which was significantly 
higher than Ferrihydrite DGT (6.94 µg P cm−2), Metsorb 
DGT (12.7 µg P cm−2) (Ding et al. 2010b). The capacities 
of Zr-oxide DGT for oxyanions are ~ 29 to > 2397-fold that 
of Metasorb and approximately 7.5 to 232-fold that of Ferri-
hydrite DGT in freshwater and seawater, respectively (Ding 
et al. 2016c). Teasdale et al. (1999) initially developed a new 
DGT method for 2D measurement of S(II), based on the use 
of AgI as DGT binding phase. S(II) reacts specifically with 
the pale yellow AgI to form black Ag2S substance. There-
fore, the accumulation amount of S(II) can be quantitatively 
related to the grayscale intensity of the gel surface measured 
by the computer imaging density (CID) (Robertson et al. 
2008; Teasdale et al. 1999).

Recently, DGT methods have been widely developed to 
measure the inorganic nutrient P (Ding et al. 2010b; Price 
et al. 2013; Zhang et al. 1998a), while there were relatively 
few reports about N. Feng et al. (2015) determined NH4–N 
concentrations using DGT, based on the use of a novel bind-
ing material containing micro-sized zeolite in natural waters, 
effective between pH 3–8 and 0.001–10 mM ionic strengths. 
Huang et al. (2016a, c) used Purolite A520E anion exchange 
resin and Microlite PrCH cation exchange resin and as DGT 
binding agents for measurement of NO3–N and NH4–N 
in freshwaters, respectively, with neither A520E DGT or 
PrCH DGT affected in the pH range of 3.5–8.5. Huang 
et al. (2016d) also used AMI-7001 and CMI-7000 cation 
exchange membranes as binding layers for DGT measure-
ments of NO3–N and NH4–N in freshwaters, respectively. 
They have the advantages of easy preparation, low detection 
limits and the use of non-toxic chemicals (i.e., acrylamide) 
in comparison with the uses of A520E and PrCH, enable the 
two DGTs more promising for measurement of N. Moreover, 
a novel styrene divinylbenzene-based absorbent with amine 
functional groups (SIR-100-HP) has been developed for the 
measurement of NO3–N in soils, with performance found 
to be effective at a pH range of 3–8 and ionic strengths of 
0–0.018 M (Cai et al. 2017).

The binding agents used for the measurement of metals, 
oxyanions and nutrients have been considerably developed, 
while there is a tendency for the development of DGT in 

measurement of organic compounds. XAD-18 resin is to 
date, the most commonly used adsorbent for measuring 
antibiotics and it has been developed to simultaneously 
several drugs and perfluoroalkyl substances (PFASs) in 
water and soil (Chen et al. 2014a, 2015a; Guan et al. 2018; 
Guo et al. 2017a). Some studies have proven that XAD-18 
DGT is effective in situ tools to monitor multiple antibiot-
ics and illicit drugs in the wide range of pH 4–9, with ionic 
strengths of 0.001–0.1 M NaCl (Chen et al. 2015b; Zhang 
et al. 2018b). In addition, Xie et al. (2018a, b) used the novel 
XAD-1 resin as a binding phase for the determination of 
antibiotics and endocrine disrupting chemicals (EDCs) in 
seawater. Compared with XAD-18 resin, the XAD-1 resin 
was suitable for application in high ionic strength environ-
ments (0.4–0.8 M), such as seawater. Activated charcoal 
DGT has also been employed for the simultaneous determi-
nation of bisphenols in water and soil, with performance not 
affected by pH within the range of 5–8, or ionic strengths 
between 0.001 and 0.5 M (Guan et al. 2017; Zheng et al. 
2015). Ren et al. (2018b) developed a novel binding phase 
using porous carbon material (PCM) as binding agent for 
measuring 20 antibiotics in water samples, and its meas-
urement was independent of pH 4.2–8.4 and ionic strength 
0.001–0.5 M NaCl. Guibal et al. (2017) utilized both Oasis® 
HLB and Oasis® MAX sorbent in DGT devices, to monitor 
anionic pesticides in rivers, with accuracies better than 30% 
found under the conditions of pH 3–8 and ionic strength 
0.01–1 M NaNO3. The application of hydrophilic–lipo-
philic-balanced (HLB) binding agents has been reported 
for the measurement of household and personal care prod-
ucts (HPCPs) in waters, being effective in the pH range of 
3.5–9.5, and ionic strengths of 0.001–0.1 M, with dissolved 
organic matter levels of 0–20 mg L−1 (Chen et al. 2017b). 
Chen et al. (2018c) further compared the performances 
of three different resins [HLB, XAD18 and Strata-XL-A 
(SXLA)] for measuring endocrine disrupting chemicals, 
showing that the measurements with HLB and XAD18 DGT 
were more stable than that of SXLA-DGT, with the tolerant 
pH range of 3.5–9.5 and ionic strength of 0.001–0.5 M. The 
use of DGT for measurement of organometallics have been 
optimized, with Cole et al. (2018) using Bondesil® C8 silica 
particles as DGT sorbents for measurement of five organotin 
compounds in sediment, with performances effective within 
a range of pH 4–9 and ionic strength of 0.01–1 M NaCl.

Hybrid solid binding agents

Both direct and indirect interactions occur between different 
analyte species in biogeochemical processes. Consequently, 
in order to further understand potential coupled relation-
ships, the hybrid DGT incorporating different adsorbents 
in a single gel has been developed. The concentrations of 
Zn, Pb, Cd, Cu, Mn, Mo, P and As in water and soil, were 



determined using mixed binding layer (MBL) DGT, con-
sisting of Ferrihydrite and Chelex-100 (Ferrihydrite–Chelex 
DGT) (Huynh et al. 2012; Mason et al. 2005). The added 
Chelex-100 does not interfere with the absorption capac-
ity of Ferrihydrite for As and P, although the coating of 
Ferrihydrite on to the surface of Chelex-100 can affect the 
capacity of Chelex-100 to absorb trace metals. In particular, 
Ferrihydrite–Chelex DGT cannot be used to measure Fe. 
The simultaneous measurement of six labile cations (Mn, 
Co, Ni, Cu, Cd, and Pb) and six oxyanions (V, As, Mo, Sb, 
W, and P) was performed using Metsorb–Chelex DGT both 
in freshwater and seawater (Arsic et al. 2018; Panther et al. 
2014). Both the diffusion coefficients and the measure-
ment concentrations of cations and oxyanions agreed well 
with Metsorb–Chelex DGT, compared with Metsorb DGT 
and Chelex DGT, respectively. Both the number of analyte 
species measured and the accuracy were higher with Met-
sorb–Chelex DGT than Ferrihydrite–Chelex DGT.

In addition, AgI–Ferrihydrite DGT (for simultaneous 
measurement of S and oxyanion), and ZrO–AgI (for As, 
S and P measurement) have been developed in combina-
tion with some high-resolution analyte techniques, such as 
computer imaging densitometry (CID) (Ding et al. 2012; 
Stockdale et al. 2008, 2010; Xu et al. 2017). ZrO–SPR-IDA 
DGT was developed for 2D imaging of P, As, Co, Cu, Mn, 
and Zn distributions in combination with LA-ICP-MS, by 
embedding Zr-oxide and SPR-IDA into an ether-based ure-
thane polymer hydrogel (Kreuzeder et al. 2013). Further-
more, Wang et al. (2016, 2017a) obtained the concentrations 
and distributions for eight cations (Fe, Mn, Co, Ni, Cu, Zn, 
Pb, and Cd) and eight anions (P, As, Cr, Mo, Sb, Se, V, 
and W) in water and sediments, using ZrO–Chelex DGT. 
ZrO–Chelex DGT was shown to have high capacities for all 
analytes, and although the capacity for As was lower than 
Zr-oxide DGT, it still exhibits significantly better responses 
than other reported DGT (Sun et al. 2014).

The main disadvantage of MBL DGT is the limited bind-
ing capacity, due to having a single layer of mixed gel and 
therefore reduced amounts of adsorbents, as well as the 
mutual interference between different adsorbents (Huynh 
et al. 2012). It is to note, that adding increased concentra-
tion of binding agents into mixed gels were demonstrated to 
be useful for elevating the binding capacity of MBL DGT 
(Wang et al. 2017a).

Liquid binding agents

Liquid binding phases are typically polymer solutions con-
taining functional groups, with recent applications including 
homogeneous suspension solutions with nano-particulates, 
the homogeneous liquid binding phase with nano-particu-
lates offers the advantages of a large surface area, rich in 
functional group, with high mobility (Liu et al. 2016).

The use of poly (4-styrenesulfonate) (PSS) and sodium 
polyacrylate (PA) as the liquid binding phase for DGT, have 
been developed for the measurement of Cu and Cd (Fan 
et al. 2009b; Li et al. 2003), but PSS DGT is not suitable for 
long-term deployment under high ionic strength condition 
(Li et al. 2003, 2005b). Several metals (Cu, Cd, Co and Ni) 
have also been measured simultaneously using PSS-E6 and 
PSS-7E4 DGTs (Chen et al. 2012b), respectively. The results 
showed that the use of large molecular weight PSS-E6 was 
more suitable than PSS-7E4 due to lower pretreatment 
depletion rate, and lower cost and pollution. In addition, pol-
ymer-bound Schiff base (Py-PEI) and poly (ethyleneimine) 
(PEI) were employed as DGT liquid binding agents for the 
measurement of labile Cu, Cd and Pb (Fan et al. 2013; Sui 
et al. 2013). Py-PEI DGT has higher uptake percentages 
for metals than PA DGT and PSS DGT. Labile Hg species 
were determined using thiol-modified carbon nanoparticle 
(SH-CNP) suspensions as the DGT liquid binding agent, 
with performance effective in ionic strength of independ-
ence of 0.001–0.5 M NaNO3, as well as other interfering 
ionic Cd, Cr, Cu and Pb (Wu et al. 2017). In addition, Fe3O4 
nanoparticle aqueous suspensions (Fe3O4NPs) have been 
applied as liquid binding phases in DGT measurement of 
DRP concentrations and As species (Liu et al. 2016; Zhang 
et al. 2018a). Furthermore, polyquaternary ammonium salt 
(PQAS) aqueous solutions have also been applied as the 
liquid binding phase in DGT systems, to monitor the concen-
tration of DRP in water, with effective performance within 
pH range of 3–10 and at ionic strengths of 10−4–1 M (Chen 
et al. 2014b). Qin et al. (2018) used Zr-based metal–organic 
frameworks (MOFs, UiO-66) as liquid binding agent for 
DGT measurement of P (UiO-66 DGT), and good agree-
ments were obtained between the concentrations measured 
by DGT and in waters (CDGT/Csol: 0.9–1.1). The capacities 
of different DGTs in measurement of P are in the order of 
Zr-oxide DGT (223 µg P cm−2) > UiO-66 DGT (20.8 μg P 
cm−2) > Fe3O4NPs DGT (15.4 μg P cm−2) > Metsorb DGT 
(12.7 μg P cm−2) > PQAS DGT (9.9 μg P cm−2) > Ferrihy-
drite DGT (6.94 µg P cm−2) (Qin et al. 2018; Zhang et al. 
2018a).

In summary, a large number of binding agents have been 
developed, and their uses have made DGT to be a commonly 
used sampling technique for measurement of a wide range 
of analytes.

Diffusive phase

A series of materials have been applied as the diffusive gel 
in DGT (Table 3), including agarose cross-linked poly-
acrylamide (APA) gel (Shiva et al. 2017; Zhang and Davi-
son 1995), agarose gel (Colaço et al. 2012; Docekalova 
and Divis 2005; Wang et al. 2016), dialysis membranes (Li 
et al. 2003), nylon membranes (Panther et al. 2008) and 



paper-based diffusion layer, such as 3MM chromatographic 
paper (de Almeida et al. 2012; de Oliveira et al. 2012) as 
well as chromatography paper grade 1 Chr and 17 Chr 
(Larner and Seen 2005).

APA gel is the most widely used diffusive layer and has 
been employed for the measurement of various cations and 
anions, with advantage of retaining stability in the range 
of pH 2–9 after hydrogel (Osterlund et al. 2010; Wu et al. 
2014). Nevertheless, some studies have shown that the inter-
actions between APA gel functional groups and target ana-
lytes, can result in inaccurate measurements, such as with 
Hg (Divis et al. 2005; Pelcova et al. 2015; Tafurt-Cardona 
et al. 2015), Cu (Garmo et al. 2008b), NH4

+ (Huang et al. 
2016c), and some organics (Guan et al. 2017). APA gel pos-
sesses positive charge, therefore electrostatic interactions 
can interfere with metal diffusion at low ionic strengths 
according to the Donnan potential (Warnken et al. 2005). In 
addition, APA gel has relatively poor mechanical resistance, 
poor reproducibility and sophisticated preparation processes 
(Fan et al. 2013). An alternative diffusive material agarose 
gel, had been applied for the measurement of almost all DGT 

analytes, such as various cations, anions, organic pollutants, 
Hg and NH4

+, as well as many analytes which cannot be 
measured with APA gel (Chen et al. 2012a; Divis et al. 2005; 
Huang et al. 2016d; Tafurt-Cardona et al. 2015; Wang et al. 
2016); and Table 4 summarizes some reported diffusion 
coefficients of these species in agarose gel. The main bind-
ing sites on agarose gel are negative charges, which have 
attractive and repulsive interactions with cations and ani-
ons, respectively. Compared with the APA gel, the agarose 
gel (typically containing 1.5% agarose) is more stable in 
gel thickness, showing no swelling on hydration (APA gel 
showed 3.2-fold swelling) (> 99%) (Wang et al. 2016). It 
was also found that the thickness of agarose gel remained 
stable after hydration and storage under 4–40 °C, 0–1.0 M 
ionic strength, and 2–11 pH conditions, with the storage time 
extending to 300 days.

The reported diffusion coefficients for cations and anions 
in APA gel and agarose gel determined by diffusion cells 
(Dcell) and DGT time-series deployment methods (DDGT), 
respectively, are presented in Table 5. The results indicated 
a considerable variation of the diffusion coefficients in APA 

Table 3   Types and characteristics of diffusive gels used in diffusive gradients in thin films (DGT)

Diffusive gel Pore size Thickness Moisture content Analytes References

APA gel > 5 nm Typically 0.8 mm > 95% Oxyanions (including PO3−

4
 ), 

trace metals except of Hg 
and NH4

+, and organic pol-
lutants

Chen et al. (2011), Wang et al. 
(2016), Zhang and Davison 
(1999)

Agarose gel > 20 nm Typically 0.8 mm > 99% Various cations and anions, 
organic pollutants, Hg, 
NH4

+, and the analytes 
capable and incapable of 
measurements with the APA 
gel

Divis et al. (2005), Wang et al. 
(2016)

Dialysis membrane < 5 nm 50–85 μm – Cu, Cd, Co, Ni and As Chen et al. (2012b), Li et al. 
(2003, 2005b)

Nylon membrane 0.22 μm 0.18 mm – 4-chlorophenol (4-CP) Dong et al. (2014)
3MM chromatography paper 0.46 mm Various cations de Almeida et al. (2012), de 

Oliveira et al. (2012)

Table 4   Some reported 
diffusion coefficients for Hg 
species, NH4–N and some 
organic species in agarose gel 
(D ± standard deviations; × 10−6 
cm2 s−1, 25 °C)

Element D References

Hg 9.07 ± 0.23/7.65 ± 0.60 Pelcova et al. (2014), Ren et al. (2018a)
MeHg 9.06 ± 0.30/9.94 ± 0.49 Pelcova et al. (2014), Ren et al. (2018a)
NH4–N 15.2/17.1 Feng et al. (2015), Huang et al. (2016c)
BPA/BPB/BPF 5.03/2.64/4.44 Zheng et al. (2015)
HPCPs 3.36–7.30 Chen et al. (2017b)
Anionic pesticides 2.7–4.6 (22 °C) Guibal et al. (2017)
17β-estradiol (E2) 4.65 ± 0.37 Guo et al. (2017b)
Methcathinone/ephedrine 7.60/6.62 Zhang et al. (2018b)
Ketamine/methamphetamine/

amphetamine
8.13 ± 0.12/8.55 ± 0.14/7.72 

± 0.18 (22 °C)
Guo et al. (2017a)



gel for the same analytes, even that the detection was per-
formed in similar measurement conditions, using the same 
methods or by the same persons. Except for Cu, the errors 
(RSD%) of all other elements exceed 5%, and the errors of 
8 elements even exceed 10%. These different reports have 
caused confusion to the users in calculation of DGT con-
centration and the difficulty in comparing the measuring 
results in different studies. The errors should be caused by 
differences in raw materials and production batches in prepa-
ration of the diffusion gel and binding gel. The diffusion 
coefficients measured by diffusion cells and DGT time-series 
deployment methods are also different, and the DDGT are 
slightly higher than Dcell (Table 5). The reason is likely the 
presence of a diffusive boundary layer on each side of the 
diffusion gel in diffusion cell, even under fast stirring rate 
condition (Shiva et al. 2015). The measurement conditions 
of DGT time-series deployment method are closer to that 
of DGT deployment, compared to diffusion cell method. In 
addition, the diffusion coefficients for analytes in agarose gel 
are higher than that in APA gel, possibly due to the larger 

pore size of agarose gel (> 20 nm) than APA gel (> 5 nm) 
(Zhang and Davison 1995).

Dialysis membranes and nylon membranes have widely 
been employed in liquid binding phase DGT for the meas-
urement of heavy metals. No strong interactions exist 
between metals and dialysis membranes; therefore dialysis 
membranes do not concentrate Cd and Cu ions from solu-
tions in a wide range of ionic concentrations (Li et al. 2003). 
Moreover, the diffusive boundary layer is not significant 
when using dialysis membranes as compared with APA 
hydrogel or agarose gel, even in poorly mixed waters. The 
nylon membrane presents excellent mechanical strength and 
flexibility and has been developed to determine 4-chlorophe-
nol (4-CP) concentration; due to it is inertness with organic 
compounds (Dong et al. 2014).

In addition, ultra-thin diffusion layer has been applied for 
DGT measurements, such as the use of a 0.01-mm Nucle-
pore membrane or a 0.1-mm Durapore® PVDF membrane 
(Ding et al. 2016a; Lehto et al. 2012). It is of note that 
the measured C

DGT
 level was significantly lower than the 

pore water concentration when using a thin diffusion layer 

Table 5   Diffusion coefficients 
for some elements in agarose 
cross-linked polyacrylamide 
(APA) gel and agarose gel 
(1.5%) determined using 
diffusion cells Dcell and 
diffusive gradients in thin-film 
(DGT) time-series deployment 
methods DDGT, respectively 
(D ± standard deviations; × 10−6 
cm2 s−1, 25 °C)

a Conditions: 0.01 M NaNO3, pH 4.01(Panther et al. 2014)
b 0.01 M NaNO3, pH 4.00 (Shiva et al. 2015)
c 0.01 M NaNO3, pH 7.1 (Panther et al. 2013)
d 0.01 M NaNO3, pH 6.4 (Osterlund et al. 2010)
e 0.01 M NaNO3/0.004 M Mg(NO3)2, pH 6.06, using Chelex–Metsorb DGT (Panther et al. 2014)
f 0.01 M NaNO3/0.004 M Mg(NO3)2, pH 6.06, using Chelex DGT for anions and Metsorb DGT for cations
g 0.01 M NaNO3/0.004 M Mg(NO3)2, pH 4.01, using Chelex–Metsorb DGT (Shiva et al. 2015)
h pH = 5.90, using Chelex DGT (Garmo et al. 2003)
i 0.01 M NaNO3, pH 7.1; using Metsorb DGT (Panther et al. 2013)
j 0.01 M NaNO3, pH 6.2, using ferrihydrite DGT (Osterlund et al. 2010)
k Obtained from DGT Research Ltd.
l Relative standard error (RSD%) of the diffusion coefficients in APA gel using the data of a–k, with the 
error > 10% marked in bold
m The analyte diffusion coefficients in agarose gel 0.01 M NaNO3, pH 5.50 for cations, Ph 6 for anions, 
using ZrO–Chelex DGT, obtained from EasySensor Ltd.

Analyte Agarose cross-linked polyacrylamide gel Agarose gel

Da
cell Db

cell Dc
cell Dd

cell De
DGT Df

DGT Dg
DGT Dh

DGT Di
DGT Dj

DGT Dk RSDl (%) Dm

As 5.26 5.36 5.54 5.21 6.02 8.13 5.96 6.78 5.54 6.09 14.9 6.38
Mo 5.18 5.58 6.28 5.96 6.33 6.43 7.24 6.81 5.70 5.94 9.9 6.53
Sb 4.90 5.50 6.04 5.55 6.22 6.16 6.74 6.86 5.25 6.23 10.7 6.59
V 3.75 3.88 7.14 6.72 7.98 8.13 8.92 8.02 6.69 5.85 26.3 5.91
W 6.22 4.28 6.89 5.45 6.88 7.06 6.50 6.26 5.82 5.77 13.7 6.54
Cd 5.52 5.36 5.56 5.72 5.56 5.50 8.03 16.1 8.41
Co 5.17 5.03 5.29 5.38 5.88 5.80 6.08 7.2 6.89
Cu 5.75 5.27 5.61 5.47 5.34 5.50 5.50 2.9 6.56
Mn 4.88 4.95 4.68 4.44 5.11 6.40 6.00 13.8 6.90
Ni 5.21 5.13 5.13 5.29 5.65 6.00 5.50 6.0 6.69
Pb 7.75 6.80 8.03 8.17 7.70 9.40 6.70 11.7 8.64
Zn 5.47 5.39 6.22 6.37 5.78 4.60 5.50 10.5 7.47



(10–100 µm thicknesses). Therefore, to avoid erroneous 
date-interpretation, DGT-measured result should be inter-
preted as the time-averaged flux FDGT (Teasdale et al. 1999; 
Widerlund et al. 2012):

Compared with the conventional 0.80 mm thickness APA 
gel and agarose diffusive gel, ultra-thin diffusion layers can 
reduce the diffusion distance, diffusion time and vertical 
diffusion of analytes in diffusive layer. Therefore, they are 
suitable for investigating the distribution of mobile chemi-
cal species in soils and sediments at extremely high spatial 
resolutions.

In summary, the considerable variation in diffusion coef-
ficients in APA gel is worthy of concern. The uses of agarose 
gel and ultra-thin membrane have improved the performance 
of DGT in expanding the range of analytes and increasing 
the spatial resolution. Particularly, the agarose gel can be 
used as a promising standard diffusive layer in DGT meas-
urements of various inorganic and organic analytes.

Filter membrane

Filter membranes (usually 0.45 μm pore sizes) have been 
applied as protective layer, preventing some large particles 
from contaminating or damaging diffusive gels outer sur-
face. Polyvinylidene fluoride (PVDF) membranes, cellulose 
nitrate membranes (CN), cellulose acetate membrane and 
hydrophilic polyethersulfone filter membranes (PES) are 
commonly used as DGT filter membrane (Desaulty et al. 
2017; Kalkhajeh et al. 2018; Rolisola et al. 2014; Wang et al. 
2016; Yabuki et al. 2014). Scally et al. (2006) reported the 
diffusion coefficients obtained by diffusion gels plus filter 
membranes were higher than those determined by the diffu-
sion gel alone. Wang et al. (2016) further demonstrated that 
different filter membranes had a significant effect on the dif-
fusion rates of anions and cations, showing the ranked order 
of diffusion rates to be: agarose < agarose plus PVDF < aga-
rose plus PES < agarose plus CN. Compared the agarose gel, 
the larger pore size of filter membrane may be a reason for 
the increased diffusion rates. Some studies have indicated 
that different filter membranes have different affinities for 
solutes; and therefore, different filter membranes could result 
in alteration of diffusion coefficients (Garmo et al. 2008a, b; 
Weltje et al. 2003). In addition, the filter membrane thick-
ness can also affect diffusion coefficients, while this aspect 
is rarely considered in DGT research.

A long deployment time is typically required for DGT 
deployment when measuring trace metals and other ana-
lytes with low concentrations in natural waters. However, the 
biofilm attachment on the surface of filter membrane after 
long deployment time could alter the diffusional properties 
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of the DGT device (Li et al. 2005a). To overcome this prob-
lem, Pichette et al. (2007) utilized antibiotics, copper and 
silver to pretreat the filter membrane, respectively. The 
results showed that copper and silver could prevent algal 
colonization within 14 days after DGT deployment. Pichette 
et al. (2009) also suggested an optimized deployment time 
of 4 days, since good measurement results and reduced bio-
film effects were obtained. Other treatment methods have 
been applied, including the uses of additional polycarbonate 
membrane on the surface of DGT devices to limit biofilm 
growth (Uher et al. 2012), corrected diffusion coefficient 
to revise the DGT measurement (Feng et al. 2016). For the 
liquid binding phase, the dialysis membrane can be replaced 
by a fresh membrane regularly, which can reduce the bio-
fouling effects without disturbing the liquid binding phase 
(Li et al. 2005a).

DGT deployment and sample analysis

In general, DGT measurement needs to undergo four set-
ups, including diffusive and binding gels preparation, DGT 
assembly and storage, DGT deployment and retrieval, and 
sample analysis and date treatment. For assembly of the 
DGT device, the binding gel is placed on DGT base bot-
tom, which is covered in order by a diffusion gel and a filter 
membrane and fixed in the DGT holder. The DGT device 
is generally sealed in a clean plastic bag contains a small 
volume of 0.01 M NaCl/NaNO3 solution, to keep a humid 
and ionic strength condition. Prior to deployment in anoxic 
soils and sediments, the loaded DGT device must be put into 
certain concentration of NaCl/NaNO3 solution, with nitro-
gen gas filled into the solution for at least 16 h to remove the 
oxygen in the probe. This avoids oxygenation of the sedi-
ments or soils and the changes in the lability of solutes dur-
ing deployment.

DGT deployment in sediments

The flat-type probe is usually deployed in flooded soils and 
sediments (Fig. 3). In laboratory, the flat-type probe can be 
inserted vertically and slowly into the sediment in a core 
or other containers by hands, with 2–4 cm length left in 
the overlying water (the probe has a totally 15 cm effec-
tive length). When applying in the field, some researchers 
have inserted the flat-type probes into sediments by diver or 
lander (Brodersen et al. 2017). The lander has relatively big 
volume and needs additional equipment (camera) to iden-
tify the sediment–water interface (SWI). Ding et al. (2015) 
developed a man-pack, small volume releasing device. The 
probe can be inserted into the sediment vertically utilizing 
the gravity of releasing device. After that, the device can be 
retrieved from the water column, leaving the DGT probe in 
the sediment. The releasing device can be applied in shallow 



water bodies (< 10 m depth of water). Ding et al. (2015) fur-
ther developed a new method to identify the sediment–water 
interface after retrieval of the DGT probe. The back of the 
flat-type probe is attached by a sheet of sponge. There are 
numerous small holes on the surface of the sponge where 
the sediment particles will be squeezed in when inserting 
the probe, giving a clear mark of the sediment–water inter-
face position on the sponge. Meanwhile, a sheet of plastic 
membrane is fixed on the top of the device prior to deploy-
ment. Once the probe is pulled out from the sediment, the 
plastic membrane will immediately cover both the front and 
back sides of the probe. This measure can preserve the sedi-
ment–water interface mark from water flow impact during 
pulling out the probe. The deployment of flat-type DGT and 
sample analysis is summarized in Fig. 5.

DGT deployment in soils

Dryland soil must be moisturized prior to DGT deployment, 
but the water content has not been standardized in the litera-
ture (Kalkhajeh et al. 2018; Luo et al. 2014). Some research-
ers adjusted the water content at a high level (over 90% of 
the maximum water holding capacity) (Guan et al. 2016; 
Gao et al. 2017; Kalkhajeh et al. 2018; Zhang et al. 2004). 
This may result in anoxic condition in soils and cause the 
bias of the measurement from the field. Other researchers 
adjusted the water content to around 70% of the maximum 
water holding capacity (Zhang et al. 2017a). This content 
approaches the level in the field dryland soils, while the 
deployment operation can be preceded smoothly under most 
cases. The water content can be increased step-by-step on 

Fig. 5   Operational procedures 
for in situ deployment of the 
flat-type diffusive gradients in 
thin-film (DGT) device in sedi-
ment and treatment for analysis

Flat-type DGT deployment and treatment

In laboratory In filed

Inserting deoxygenated DGT device in 
sediment

Retaining DGT device 2-4cm in laying 
water

Fixing deoxygenated DGT in a releasing 
device, attaching rope to DGT and releasing 

device

The DGT is inserted into the sediment under 
the gravity of releasing device

Then, the releasing device is slowly taken 
out using the rope, DGT device remains in 

sediment.

Marking the DGT location, deploying 24h, 
and recording water temperature and water 

depth

Deploying 24h and recording water 
temperature.

Retrieving DGT probe, marking the sediment-water interface, cleaning the 
exposed surface, and taking out the binding gel

Cutting the binding gel into 1-5mm×20mm slice, transferring each segment 
into centrifuge vial to elute

Transferring the eluent into sample bottles and dilute to certain volume for 
analysis

Measuring analytes by ICP-MS, ICP-OES or GFAAS, and calculating the 
concentrations and fluxes of analytes



a 5% interval if it is difficult to operate the deployment for 
some types of soils containing high content of organic mat-
ter or calcite. Adjustment of the water content is tradition-
ally made using a glass rod by hands. It is tedious if a large 
number of samples are treated. Another good method is that 
using an electric non-metallic stirrer to mix the soil sam-
ple after addition of deionized water (www.easys​ensor​.net). 
This method can significantly save in labor, while the mixing 
efficiency can be greatly improved comparing to the use by 
hands. After adjustment of the water content, the soil sample 
is incubated at a certain temperature for 48 h for sufficiently 
moist prior to DGT deployment. For flooded soils, the 
DGT device can be directly deployed with the soils without 
adjustment of the water content. They can also be dried after 
sample collection and treated according to the procedure 
of dryland soil. It is of note, that air drying of flooded soil 
should be avoided prior to DGT deployment because that the 
properties of the soil may be changed (Zhang et al. 2017a).

The deployment procedure is different between using the 
piston-type and cavity-type (dual-mode) DGT device. For 
the use of piston-type DGT device, the device is deployed 
into wetted soil sample by hand pressing,a good contact 
should be ensured between the filter membrane and soil 
sample. For the use of cavity-type DGT device, the wet-
ted soil sample is filled up to the open cavity of the device 
directly, and the device is gently shaken to ensure good 
contact between the filter membrane and soil sample. Then, 
DGT device is transferred to semi-closed zip lock bag pre-
filled with a small amount of deionized water for 24 h. The 
deployment of DGT and sample analysis in soil is summa-
rized in Fig. 6.

DGT deployment in waters

The piston-type DGT device can be deployed in freshwa-
ter, seawater, and wastewaters for obtaining time-averaged 
concentrations of solutes, including organic chemicals/
compounds, nutrients and multiple cations and anions (Guo 
et al. 2017a, b; Huang et al. 2016c; Wang et al. 2016; Xie 
et al. 2018a). The piston-type DGT device has been in situ 
deployed in water by several ways. The DGT devices can be 
attached to a buoy with fishing line (Pichette et al. 2007); 
multiple devices can be fixed into a polyhedral structure (the 
device exposure windows outward) (Guo et al. 2017a; Zheng 
et al. 2015); the devices can be fixed on plastic mesh strips 
or in the middle of two plexiglass plate (Lucas et al. 2014; 
Uher et al. 2017).

Many studies used a constant thickness diffusion layer to 
directly measure the time-averaged concentrations of sol-
utes in water (Gimpel et al. 2003; Zheng et al. 2015). How-
ever, a thin solution layer is adjacent on the surface of DGT 
device to form a diffusive boundary layer when the device 
is deployed in water, which can affect the solute diffusive 

rate (Warnken et al. 2006; Zhang et al. 1998a). The diffusive 
boundary layer thickness (δ) in water can be calculated by 
simultaneously using various thicknesses of diffusive gel 
layer (Garmo et al. 2006; Scally et al. 2006; Zhang et al. 
1998a):

where ∆g is the thickness of diffusive layer; CDGT is the 
solute concentration measured by DGT; A is the exposed 
surface area of the DGT device; M is the accumulated mass 
of analyte in the binding gel; D is the analyte diffusion coef-
ficient in the diffusive layer; t is the deployment time.

Davison and Zhang (2012) have reviewed that the thick-
ness of diffusive boundary layer is typically ~ 0.2 mm in 
well-stirred solutions, and varies from 0.26 mm in fast-
flowing waters, 0.31 mm in lake epilimnion, to 0.39 mm 
in stagnant pond. Huang et al. (2016b) recently found that 
the thickness of diffusive boundary layer in some pond and 
wetland sites are approximately 100% of the standard DGT 
diffusive layer thickness (Δg = 0.09 cm). Therefore, a sub-
stantial error will be introduced in DGT concentration cal-
culation if ignoring the diffusive boundary layer thickness.

Analysis of DGT sample

The DGT samples from the use of liquid binding phases can 
be determined directly without elution step. In comparison, 
the sample analysis from the use of solid binding phases 
generally requires an elution step. The elution agencies vary 
with the types of binding gels. The elution steps of common 
used binding gels are summarized in Table 6.

For sample analysis, the eluent containing target analytes 
can be determined by multiple analysis methods, such as 
inductively coupled plasma mass spectrometry (ICP-MS), 
inductively coupled plasma optical emission spectrophotom-
etry (ICP-OES) or graphite flame atomic absorption spec-
troscopy (GFAAS). For the measurements in sediments and 
flooded soils, the 1D solute profile distributions with the 
use of flat-type DGT probes can be obtained by section-
elution-analysis procedure. Several cutting tools have been 
applied for the section of the binding gel, including Teflon 
coated razor blade (Zhang et al. 2002), Plexiglass gel cut-
ter (Gao et al. 2006) and multi-bladed ceramic cutter (Ding 
et al. 2015). Compared with other cutting tools, the use 
of multi-bladed ceramic cutter not only greatly increases 
the sample treatment efficiency, but also avoids the risk of 
metal contamination during the cutting. Furthermore, the 
spatial resolution of the cutting can be varied from 1.0 mm 
to 5.0 mm through adjusting the interval between the adja-
cent single ceramic blades.
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In addition, some high-resolution techniques have been 
developed to obtain 2D solute distributions at sub-mm 
resolution, including 2D slicing-elution-microcolorimetric 
method for the determination of P (Ding et al. 2011, 2012), 
the staining technique coupled with computer imaging den-
sitometry (CID) for the measurement of S(II), P and Cr(VI) 
(Ding et al. 2013; Teasdale et al. 1999; Yao et al. 2016), 
as well as laser ablation inductively coupled plasma mass 
spectrometry (LA-ICP-MS) for the determination of cations 
and anions (Kreuzeder et al. 2013; Stockdale et al. 2010; 
Warnken et al. 2004b). The CID technique is established 

based on a relationship between the solute accumulation 
mass and the grayscale intensity, which simplifies the analy-
sis procedures, improves the analysis efficiency and spatial 
resolution compared with traditional section-elution-analysis 
method. In comparison, the LA-ICP-MS requires a sophis-
ticated instrument, complex analytical and expensive cost.

Fig. 6   Operational procedures 
for piston-type and dual-mode 
diffusive gradients in thin-film 
(DGT) deployment and treat-
ment

The soil is wetted to certain maximum 
water holding capacity, incubated 48h;
then raised the capacity, incubated 48h

Deoxygenated DGT device is carefully 
placed on soil surface by hand

Deploying DGT device for 24h under 
constant temperature

The soil is wetted to 70% maximum 
water holding capacity, incubated 48h

Adding moistened soil to open cavity, 
gently shaken to ensure good contact 

between filter membrane and soil

Transferring DGT device to 
semi-closed zip lock bag pre-filled with 

a small amount of deionized water 

Deploying DGT device for 24h under 
constant temperature

DGT deployment and treatment

Removing the soil, cleaning the DGT 
device with deionized water, and 

taking out the binding gel

Retrieving DGT device, cleaning 
device surface with deionized water, 

and taking out the binding gel

Transferring the binding gel into centrifuge vial, and 
adding eluent to elute the analytes

Transferring the eluent into sample bottles and rinsing 
the centrifuge vial for analysis

Piston-type DGT

Ensuring good contact between filter 
membrane and soil

Measuring analytes by ICP-MS, ICP-OES or GFAAS, 
calculating the concentrations and fluxes of analytes

Dual-mode DGT



Application of the diffusive gradients in thin 
films

The measurement of concentration, speciation and distribu-
tion of analytes in soil, sediment and water using DGT, has 
been widely developed, since DGT was initially developed 
for the measurement of Zn concentrations in environmental 
water (Davison and Zhang 1994). A large number of studies 
have demonstrated the superiority of DGT for the measure-
ment of species distribution and bioavailability, concentra-
tions of nutrients and organics, and multiple elements, com-
pared with other traditional chemical extractions methods 
(Dai et al. 2018; Uher et al. 2017). Moreover, the research 
progresses in chemical fractionation, speciation and bioa-
vailability of analytes using DGT measurement and analysis, 
have been discussed in detail in the literature (Davison 2016; 
Menegario et al. 2017; Zhang and Davison 2015). Here, we 
review the recent advances in the application of DGT to the 
analysis of soil, sediment and water environments.

Evaluation of bioavailability and toxicity

Currently, DGT techniques have been successfully applied 
for assessing the bioavailability and toxicity of solutes in 
soils and sediments. Zhang et al. (2014) provided an over-
view of the DGT assessment of P bioavailability in sedi-
ments and soils; therefore, this review focused on the recent 
development of DGT for assessing bioavailability and tox-
icity of metals. The bioavailability of As in different soil 
types were evaluated, comparing DGT and other traditional 
techniques (Dai et al. 2018; Zhang et al. 2017a), and the 
results indicated that the concentration of As measured 
by DGT exhibited a better correlation with the concen-
tration absorbed by plants than those measured by other 
conventional extraction methods. Song et al. (2018a) dem-
onstrated the potential application of DGT techniques for 

evaluating the bioavailability of heavy metals in sediments 
of land–freshwater interfaces, compared with the sequen-
tial extraction method. A significant positive correlation 
was observed between CDGT and exchangeable and weak 
acid soluble fraction of Cd, as well as a significant negative 
correlation between CDGT and residual Cd fraction, which 
confirmed the DGT technique is a suitable method to assess 
the bioavailability of metals.

Plant uptake mechanisms for metals were explored 
using DGT, with results suggesting that the uptake of Ni by 
(Raphanus sativus) was controlled by diffusion and plant 
limiting uptake mechanisms, while the uptake of Cd was 
mainly controlled by plant limiting uptake mechanisms 
(Luo et al. 2014). Peng et al. (2017) further used DGT to 
prove that the distribution and bioavailability of Se and 
plant uptake processes were associated with plant species, 
growth cycles and differences in soil fractions. Song et al. 
(2018b) predicted the level of metal bioaccumulation and 
bioavailability in river sediments using DGT, and the accu-
racy of results was verified by comparing the DGT-measured 
results, to the results of direct sediment analysis and plant 
sample analysis, respectively. The strong correlation in bio-
accumulation concentrations of Cr, Cu, Zn, and Cd and the 
DGT measurements, suggests that DGT can be an effective 
tool for the assessment of metal bioaccumulation and bio-
availability in plants. However, a weak correlation for As, as 
well as negative correlation observed between Ni and both 
measured concentrations by DGT and measured levels in 
plant tissues. This may because that the DGT measurement 
is limited to a thin layer (a few millimeters thickness) from 
the surface of the DGT device, while plant uptake covers a 
much larger volume of soils in the field (Tian et al. 2018; 
Williams et al. 2012). Therefore, the uptake and accumu-
lation mechanisms of metals in plants need to be further 
explored in combination with other analysis techniques.

Table 6   Elution steps for some commonly used binding gels

Binding gel types Elution steps References

Chelex-100 1 M or 2 M HNO3 for 24 h to extract any metals Song et al. (2018a), Zhang and Davison (1995)
Ferrihydrite 1.4 M HNO3 and 0.1 M HF or 1 M HNO3 for 24 h to extract anions Osterlund et al. (2010), Panther et al. (2013)
Metsorb 1 M NaOH or the mixture of 1 M NaOH and 1 M H2O2 for 24 h to extract 

anions
Bennett et al. (2010), Panther et al. (2013)

Zr-oxide The mixture of 0.2 M NaOH and 0.5 M H2O2 for 3–5 h to extract anions 
at 4 °C

Ding et al. (2016c)

Chelex–Metsorb First 1 M HNO3 for 24 h to extract cations, then wash the binding gel 
surface by deionized water, followed by elution in 1 M NaOH for 24 h 
to extract anions

Panther et al. (2014)

Chelex–Ferrihydrite 3 M HNO3 for 24 h to extract for any analytes Huynh et al. (2012)
ZrO–Chelex First 1 M HNO3 for 16 h to extract cations, then add deionized water to 

rinse for 2 h, finally mixture of 0.2 M NaOH and 0.5 M H2O2 for 3–5 h 
to extract anions at 4 °C

Wang et al. (2017a)



DGT has been proved to be a useful monitoring tool to 
reflect the accumulation extent of toxic elements in living 
organisms (Luider et al. 2004; Tusseau-Vuillemin et al. 
2004). Gu et al. (2017) mimicked the biological responses 
of Eisenia fetida to Cd in soils using DGT. The results indi-
cated that DGT measurement results can be more powerful 
for prediction of the accumulation of Cd in Eisenia fetida, as 
well as the induced adverse effects in comparison with total 
Cd concentration in soils. He et al. (2018) utilized DGT to 
predict trace metal bioavailability to chironomids (C. ten-
tans) in sediments, and strong correlations were obtained 
between DGT-measured metal fluxes in the surficial sedi-
ment and metal bioaccumulation in C. tentans. Therefore, 
DGT-measured fluxes provide new surrogate to assess bio-
available fraction of toxic element accumulation in benthic 
invertebrates in sediments. In addition, Philipps et al. (2018) 
verified the performance of the DGT for predicting the Cu 
bioaccumulation in fish in waters containing low concentra-
tions of natural organic matter.

Measurement of time‑averaged concentrations

An important application of DGT is to measure DGT-labile 
concentrations of nutrients, metal(loid)s and organics in 
environment. Menegario et al. (2017) have summarized 
and discussed this application by focusing on metal(loid)s 
in waters. Therefore, this review paid attention to nutrients 
and organics. The high level of agreement has been observed 
between the NH4–N concentrations obtained by DGT and 
those measured in bulk solution (CDGT: CSOL = 0.922 ± 0.0
70–1.030 ± 0.060) (Feng et al. 2015). Huang et al. (2016a, 
b) compared labile concentrations determined by DGT and
grab sample for NH4–N and NO3–N concentrations in fresh-
water, respectively. Results showed CDGT: CSOL = 0.83–1.3 
for NH4–N, and CDGT: CSOL = 1.03–1.04 for NO3–N. Huang 
et al. (2017) further measured dissolved inorganic nitrogen 
(PrCH resin for NH4–N and A520E resin for NO3–N) and 
phosphorus (Metsorb for PO4–P) simultaneously in freshwa-
ter using a hybrid DGT. The ratio CDGT/CSOL was 0.83–1.3 
for NH4–N, NO3–N and PO4–P, which demonstrated a high 
level of measurement accuracy for the new DGT. In addi-
tion, Cai et al. (2017) have applied DGT techniques to the 
determination of NO3–N concentrations in soil, showing 
excellent agreement with pore water concentrations. Moreo-
ver, the heterogeneity of NO3–N distribution in soil can be 
clearly observed from 2D distribution plots.

The toxicity and potential risk of organics are of wide 
global concern; therefore numerous studies have applied 
DGT techniques to the in situ measurement of organics 
in various environments (Cizmas et al. 2015). Chen et al. 
(2013, 2014a, 2015a, b) used XAD-18 as a DGT sorbent for 
the in situ sampling of multiple antibiotics in water and soil, 
combined with the DIFS model to investigate the supply 

kinetics of antibiotics from soil solid phase into solution. 
Estrogenic activity was measured by XAD-18 DGT and con-
ventional grab sampling, with good agreement between con-
ventional sampling methods and DGT sampling results (Guo 
et al. 2017b). However, the DGT method provided the addi-
tional benefits of being in situ technique and more efficient 
in terms of cost, time, and labor. Moreover, XAD-18 DGT 
has been employed to measure the concentration of illicit 
drugs in wastewater and rivers, showing no significant dif-
ference in detected concentrations between DGT and active 
sampling methods; although the concentrations obtained by 
DGT were slightly lower than with active sampling (Guo 
et al. 2017b; Zhang et al. 2018b). Xie et al. (2018a) found 
that antibiotics concentrations in seawater were significantly 
different using XAD-1 DGT and active sampling. This dif-
ference may be due to the fact that active sampling missed 
the effects of discharge, tide and dilution. The ratio of EDCs 
concentrations obtained by XDA-1 DGT and direct sam-
pling in seawater, were all between 0.8 and 1.2, which dem-
onstrates that XDA-1 DGT is suitable for in situ measure-
ment of EDCs in seawater (Xie et al. 2018b). In addition, 
the concentration of household and personal care product 
(HPCP) compounds in water, were measured using DGT, 
in comparison with auto and grab sampling methods (Chen 
et al. 2017b). Results suggested that concentrations of most 
HPCPs obtained by DGT are similar to those measured by 
auto sampling; however, they were not always consistent 
with the results of grab sampling, due to the grab sampling 
method ignoring some peak, point source, rain or discharge 
events.

Dong et al. (2014) used a novel molecularly imprinted 
polymer (MIP) as the binding agent for DGT sampling of 
4-chlorophenol (4-CP) in water, with performances of MIP 
DGT tested. The concentration of free form 4-chlorophe-
nol obtained by MIP DGT decreased with the increasing 
concentration of dissolved organic carbon due to electro-
static interaction between 4-chlorophenol dissolved organic 
carbons. The concentrations of bisphenols (BPs) bisphenol 
A (BPA), bisphenol B (BPB) and bisphenol F (BPF) were 
measured in water and soils (Guan et al. 2017; Zheng et al. 
2015). After 7 days of deployment, the BPs concentrations 
in water obtained by DGT were in good agreement with 
active sampling results. Results also showed almost all free 
4-chlorophenol was sampled by DGT with a CDGT: CSOL 
ratio of around 1.01 ± 0.05 in synthetic solutions, while 
only 39.1% of the total concentration of 4-chlorophenol 
was collected by DGT in intermediate untreated industrial 
wastewater, due to the high concentrations of iron oxyhy-
droxide colloids and organic matter in the wastewater. It is 
worth noting that the toxicity of organometallics tended to 
be higher than inorganic metals, therefore accurate meas-
urement of organometallics is critical. Fernandez-Gomez 
et al. (2015) measured and predicted the concentration and 



bioavailability of MeHg in water using thiol-functionalized 
resin gel DGT, confirming the DOM can enhance the MeHg 
photodegradation process. DGT based on silica-bound sor-
bents was successfully employed for the measurement of 
five organotin compounds in sediments (Cole et al. 2018). 
The obtained 1D profile distributions demonstrated spatial 
distribution heterogeneity for five organotin compounds, 
with DGT fluxes ranging between 4.3 × 10−8 and 1.6 × 10−5 
ng cm2 s−1 in sediments.

Investigation of coupled relationship 
between different elements

DGT simultaneously determinates the concentrations of 
multiple metals and oxyanions and has been recently used 
to further understand the potentially coupled relation-
ships between different elements. Wu et al. (2014) used 
Chelex-100 DGT to measure 14 metals (Fe, Mn, Cd, Co, Cu, 
Ni, Pb, Zn, Al, As, Sr, V, Cr and Sb) at the sediment–water 
interface (SWI). The coupled relationships between metals 
were observed, such as the similarities in concentration dis-
tributions between Cd, Co, V, Sb, Cu, Pb, As, Sr, Cr, Al and 
Fe, as well as Ni, As, Sr, Zn and Mn. Wang et al. (2017a) 
simultaneously measured eight cations (Fe, Mn, Co, Ni, Cu, 
Zn, Cd and Pb) and eight oxyanions (P, V, Cr, As, Se, Mo, Sb 
and W) in sediments using ZrO–Chelex DGT. Similar dis-
tributions were observed between six elemental groups: Fe, 
Mn, P, and As (1), Co and Ni (2), Zn and Pb (3), V and Cr 
(4), Se and Mo (5), and Sb and W (6). The coupled relation-
ship and co-remobilization observed between trace metals 
and Fe/Mn was verified using DGT, where the redox cycle 
of Fe/Mn played an important role in the distribution and 
speciation of some trace elements (Parker et al. 2017). Nay-
lor et al. (2004, 2006) simultaneously measured sulfide with 
Fe, Cu, Mn, Ni and Zn concentrations using DGT–CID tech-
niques in marine sediments, while the simultaneous release 
of sulfide with Fe, Mn, Ni and Zn has been observed from 
distribution imaging. The coupled relationship between P 
and Fe(II) was observed at a millimeter scale by ZrO–Chelex 
DGT, with the mechanism identified for Fe-redox controlled 
P release from Fe-bound P in sediments (Ding et al. 2016a; 
Wu and Wang 2017; Xu et al. 2013). The phenomenon of 
simultaneous release of DRP and dissolved sulfide from the 
SWI was initially established by combining ZrO–AgI DGT 
and CID technique (Ding et al. 2012). Furthermore, the 2D 
distribution of DRP and dissolved sulfide, as well as the 
corresponding Fe(II) distribution, provided high-resolution 
information on the mechanism of microbial iron reduction 
(MIR) dominated sulfate reduction and Fe-coupled P mobi-
lization, using ZrO–Chelex DGT, and AgI DGT, combined 
with CID analysis techniques (Ma et al. 2017).

Combined use of DGT with DIFS

DIFS models were applied to describe the resupply capac-
ity from solid phase to solution phase, when analytes were 
transferred to or consumed by DGT. The principles of DIFS 
and calculation methods have been well established, and 
DIFS has been widely applied in soil and sediment analy-
sis, to investigate resupply processes (Harper et al. 1998, 
2000; Sochaczewski et al. 2007). Zhang et al. (2017a) com-
pared the As availability and release capacity from solids to 
soil solutions by DGT–DIFS in different soil types, show-
ing greater availability of As in flooded soils, with higher 
values of R, K

d
 , k1, k−1 and lower TC values than dry soils. 

The resupply capacities of three BPs (BPA, BPB and BPF) 
from soil solids to solutions were evaluated, with K

d
 values 

obtained by DIFS indicating that most BPs in soils could 
participate in labile exchange (Guan et al. 2017). Gao et al. 
(2018) predicted the Ni mobilization and release capacity 
from solid phases in riparian reservoir soil by DGT–DIFS. 
The small R (< 0.25) and obviously high Kb suggested a 
slow rate of resupply of Ni from the solid phase. The lower 
Ni resupply capacity may be caused by the adsorption of 
Fe/Mn oxides and organic matter, according to the positive 
correlations between Ni concentrations and Fe, Mn and 
TOC concentrations. Xu et al. (2018) combined DGT and 
DIFS model to evaluate the dynamic release mechanism of 
Zn in the riparian soils. The results showed that labile Zn 
can irreversibly and rapidly release into soil solution from 
solid phase, indicating the release and pollution risk of Zn 
in riparian reservoir soils.

In addition, DIFS models can be applied to the prediction 
of resupply capacities from sediment solids to porewater. 
Chen et al. (2018a) studied the P resupply kinetics from 
sediment solids to porewater using DIFS, after dredging 
for 6 years. Simulation results indicated that the P release 
capacity decreased after sediment dredging in April, due 
to increased R, Kd and k1 values. Moreover, DIFS was used 
to evaluate the resupply capacities of P in sediments after 
aluminum sulfate (ALS) and lanthanum modified ben-
tonite amendment, respectively (Lin et al. 2017a; Wang 
et al. 2017b). Both the increase in Kd and k1, as well as the 
decrease in TC, suggested that release of P from sediment 
solids was difficult after amendment. Lin et al. (2017b) com-
bined with DGT and DIFS to demonstrate that ALS could 
also effectively immobilize As in sediments. Kd and k1 con-
sistently increased, indicating the As release capacity from 
sediment solids was reduced by ALS amendment. Moreover, 
the transfer, uptake and bioavailability of P, Cu, Cd, Pb, and 
Zn were assessed in the macrophyte rhizosphere in sedi-
ments using DGT and DIFS (Wang et al. 2018; Wu et al. 
2018). It verified that the diffusion and resupply characteris-
tics of metals at the rhizosphere interface were controlled by 
multiple factors, including the solid phase resupply capacity 



and the labile pool size in the sediments. Furthermore, the 
observed depletion of labile P pool size in rhizosphere sedi-
ments indicated the essential role of macrophyte in control-
ling the release of P from sediments.

Combined use of DGT with DET

The combination of DGT and other in situ passive sampling 
techniques has become a recent focus in DGT research and 
development. The diffusive equilibrium in thin films (DET), 
contained only the diffusive gel and the membrane, with a 
similar device setup to DGT, relying on the diffusion equilib-
rium established between DET gel and pore water (Davison 
et al. 1991; Ding et al. 2010a; Harper et al. 1997). DET 
measured the total dissolved species concentration, while 
DGT obtained information on labile species concentration; 
therefore, the concentrations acquired from DET were often 
higher than DGT (Gao et al. 2006, 2007).

The reported application of combined DGT and DET 
systems, have involved insertion of both devices in sedi-
ments in a back-to-back manner (Gao et al. 2012; Gregusova 
and Docekal 2013; Lesven et al. 2008). The 1D distribution 
profiles of Fe, Mn, Co, Cd, Cu and Zn in sediment have 
also been obtained using back-to-back DGT and DET probes 
(Yang et al. 2012). The concentration distributions of Fe, 
Mn and Co were in good agreement for both DGT and DET 
measurement. In addition, the ratio R: DGT/DET or DGT/
centrifugation was applied to assess the supply capacity 
from the solid phase into solution, showing that Mn and 
Fe were more readily released from the solid phase. Vari-
ous coupling relationships have been observed between Fe 
and As, Co, Ni and Mn, using the DGT and DET technique 
(Pradit et al. 2013). The maximum concentration of Cu, Zn, 
Cd and Pb detected at the SWI, was probably the result of 
organic matter degradation and similar results were also 
observed by Yang et al. (2012). The As concentration in 
soil porewater was measured using direct sampling, DGT 
and DET (Garnier et al. 2015). Results suggested that pro-
file distributions obtained by all three sampling methods 
were similar in magnitude and pattern of concentrations. In 
addition, Menezes-Blackburn et al. (2016) established the P 
mobility and resupply capacity in soil, using DGT and DET 
combined with the DIFS model, showing that DGT induced 
inorganic P flux, occurred mainly from soil solids resupply.

In addition, DGT and DET have also been combined into 
a single device. Briefly, the DET–DGT probe consisted of 
three layers: the membrane filter, the DET gel as a diffusive 
gel and a DGT binding gel (Robertson et al. 2008, 2009). 
The relationship between Fe(II) and S(II), P, as well as the 
high-resolution (sub-mm) 2D imaging of the distributions 
of these species in seagrass sediments, were obtained using 
the hybrid probes (Pages et al. 2011). The heterogeneity 
distributions of Fe(II) and S(II), P, as well as the coupled 

relationships between Fe(II) and P, as well as Fe(II) and S(II) 
were observed from 2D distribution images. Furthermore, 
Cesbron et al. (2014) developed a hyperspectral imaging 
method combined with a DET–DGT probe for the meas-
urement of S(II), Fe(II) and DRP, at a sub-mm resolution 
in sediments, with iron and sulfide interactions in deeper 
sediment profiles. Moreover, the co-distribution of dissolved 
Fe(II) and DRP was obtained, providing evidence for Fe-
coupled mobilization of P, with Pages et al. (2014) further 
confirming the results using a DET–DGT probe.

Pages et al. (2012) used a DET–DGT probe to measure 
S(II) and Fe(II) at high-resolution (sub-mm) and P and 
NH4

+ at low-resolution (mm), in the rhizosphere of Zos-
tera capricorni under both light and dark conditions. Under 
light conditions, low S(II) and Fe(II) concentrations were 
observed around the rhizosphere; in contrast, high Fe(II) was 
observed in the near-surface sediment and high S(II) con-
centrations in the deep sediment. In addition, the effects of 
photosynthetic activity and radial oxygen loss (ROL) on the 
regulation of plant uptake of P and NH4

+ were demonstrated. 
Arsic et al. (2018) compared the speciation and distributions 
of Fe, As and Sb under oxic and anoxic conditions using 
a DET–DGT probe. Results suggested that Fe(II), As(III) 
and As(V) were more mobile under anoxic conditions, while 
Sb(III) and Sb(V) were released into water from sediments 
under oxic conditions. In addition, a decoupling relationship 
was observed between the Fe(II) cycle and Sb mobilization, 
which indicated that other processes may play a more impor-
tant role in Sb mobilization, such as sulfur and/or organic 
carbon mechanisms.

Combined use of DGT with dialysis sampler (Peeper)

Dialysis sampler (Peeper) systems are an in situ passive sam-
pling technique, that rely on a diffusive equilibrium between 
porewater and the Peeper sampler, which is similar to DET 
in principle (Azcue et al. 1996). Peeper probe measures 
the concentration of total dissolved species; however, the 
significant difference with DET was the sampling medium 
for Peeper, which was a solution instead of a hydrogel. The 
Peeper sampler incorporates two fractions: with a chamber 
containing equilibrium solution and a dialysis membrane 
covered chamber. A high-resolution Peeper (HR-Peeper) 
sampler commonly has a total length of 15 cm with 75 cham-
bers on a base plate (18 mm (length) × 1 mm (width) × 1 mm 
(height)) and a volume in each chamber of about 15 µL, with 
each pair of two adjacent chambers separated vertically by 
a 1-mm-thick wall, allowing a vertical resolution of 2 mm. 
Xu et al. (2012b) used a Peeper device to collect pore water 
samples for the simultaneous analysis of DRP and soluble 
Fe. The HR-Peeper was further developed to enable meas-
urement of more analytes, enlarging the chamber column 
and decreasing the vertical resolution to 4 or 5 mm (Fig. 7) 



(Ding et al. 2018b). Moreover, the combination of DGT and 
HR-Peeper devices provides insight into biogeochemical 
processes for P (Ding et al. 2018a; Lin et al. 2017a).

Chen et al. (2015c, 2016a, b) investigated the effects of 
different levels of bioturbation on P release and kinetics in 
sediments, with the relationship between Fe(II) and P mobi-
lization investigated using HR-Peeper and DGT at a millime-
ter resolution. Results suggest that macrozoobenthos biotur-
bation resulted in a decrease in the concentrations of soluble/
labile P in sediments, with labile P concentrations being 
much lower around the worm burrow. In contrast, bivalve 
bioturbation increased the concentrations of soluble/labile 
P. These different results may be caused by different bio-
logical types. Macrozoobenthos induced an increase in DO 
in worm borrows, causing Fe(II) to be oxidized to Fe(III) 
oxyhydroxides, which increased the adsorption for P and 
further inhibited P release. However, bivalve bioturbation 
shortened the O2 penetration depth and caused the deple-
tion of O2 in sediments, resulting in the reduction of Fe(III) 
oxyhydroxides and an increase in soluble/labile Fe(II), as 
well as P release from sediment. The effects of elevated P in 
water on the release of heavy metals from sediments were 
investigated in a microcosm experiment, using DGT and 
HR-Peeper (Chen et al. 2017a). Results showed that DGT-
labile metal concentrations decreased from the 10th to 20th 
days and dissolved metal concentrations decreased on the 
20th day of incubation with elevated phosphorus levels in 
the water, due to the metal-P precipitate; on the 40th day, 
the degree of decrease in DGT-labile metals was reduced. 
In addition, Sun et al. (2017) combined the DGT and HR-
Peeper technique, with the DIFS model to investigate the 
competitive effect of P on As mobility in sediments. Results 
indicated that soluble/labile P and As increased, while the 

soluble/labile Fe(II) fraction decreased with rising P content 
in water, due to competitive effects of P and As. DIFS simu-
lation results showed an increased As resupply capacity from 
the solid phase to pore water, with elevated P concentrations 
in water.

Using DGT and Peeper systems, the mechanisms of P 
release during algal blooms were investigated on an hourly 
scale (Chen et al. 2018b). Both the occurrence of algal 
blooms and their decomposition were found to increase the 
concentration of SRP in porewater. During algal blooms, 
increasing soluble Fe(II) concentrations were the main 
reason for the release of SRP, suggesting Fe-redox cycling 
controlled P mobilization. Furthermore, Ding et al. (2018b) 
verified the same Fe–P coupling mechanism in sediments, 
providing further insights into the contribution of internal 
P loading to N limitation. During the pre-bloom and bloom 
period, TP concentrations increased and significantly nega-
tively correlated with sediment SRP flux and water column 
TN/TP concentrations, which demonstrates the contribu-
tion of internal P to N limitation. Liu et al. (2018) studied 
the effects of temperature on the release of P using DGT 
and Peeper, which simultaneously determined labile P/Fe 
and soluble P/Fe concentrations at different temperatures. 
Results showed that concentrations of DGT-labile P and 
SRP increased with rising temperatures, which may be 
caused by the increase in the microbial reduction of Fe(III) 
oxyhydroxides and algal degradation. Xing et al. (2018) uti-
lized DGT to measure DGT-labile P and HR-Peeper tech-
niques to measure soluble Fe(II), SRP in the rhizosphere. 
Exploring further plant uptake mechanisms for P in sedi-
ments, it was established that root-mediated radial O2 loss 
processes caused the formation of Fe plaques on the root 
surface, with Fe plaques absorbing and accumulating P from 

Fig. 7   Schematic representa-
tion of the high-resolution (HR) 
Peeper device, a 1, the flat base 
to support the Peeper champers 
(2); 3 and 4 the window and 
fixed strip to fix the Peeper 
champers and dialysis mem-
brane; b 1 and 2, the side and 
front of HR-Peeper device



sediments and porewater adjacent to the roots. Finally, the 
root excreted oxalic acid and other LMWOAs, which were 
found to increase the release of P in Fe plaques and absorp-
tion by the root. Similar mechanisms of plant-mediated P 
uptake have been obtained by combining DGT and PO tech-
niques (Brodersen et al. 2017).

Combined use of DGT with planar optode

Some changes in physicochemical parameters, such as pH 
and O2, are associated with changes in metal species dynam-
ics and distributions. Nevertheless, sophisticated experimen-
tal setups and complex data analysis processes have provided 
only a limited understanding of these processes. Planar 
optode (PO) is a robust 2D imaging technique that has been 
widely applied for the measurement of pH, O2, pCO2 and 
temperature in sediments and soils (Moßhammer et al. 2016; 
Santner et al. 2015). Both DGT and planar optode are in situ 
measurement techniques that can provide high-resolution 
information on analyte fluxes and distributions (Davison and 
Zhang 1994; Glud et al. 1996). Hoefer et al. (2015) studied 
the effects of sulfur (S0) application on metal solubility in 
the rhizosphere of Salix smithiana, with the 2D distribution 
of Mn, Zn and Cd fluxes obtained by DGT–LA-ICP-MS and 
the O2 2D distribution by planar optode imaging. Results 
indicated that S0 oxidation caused depletion of O2 and local 
acidification along single roots, inducing an increase in Mn, 
Zn and Cd solubility at the root–soil interface. To inves-
tigate seagrass-derived phosphorus and Fe(II) solubiliza-
tion, Brodersen et al. (2017) utilized DGT–LA-ICP-MS 
for assessment of the 2D distribution of Fe(II) and Ca2+, 
DGT–CID for 2D distribution of sulfide and phosphate and 
planar optode for 2D distribution of O2 and pH, demon-
strating the relationship between nutrient mobilization and 
radial O2 loss. Kreuzeder et al. (2018) combined the DGT 
and planar optode techniques to study the biogeochemistry 
of P and metals in the rhizosphere of three plants (wheat, 
buckwheat and white lupine). The results showed that the 
root apices were more active for P solubilization, and plants 
could response to P deficiency by inducing acidification or 
alkalization in the rhizosphere.

Furthermore, DGT–PO hybrid sensor has been developed 
for simultaneous 2D imaging of O2/pH and trace metal spe-
cies dynamics at a sub-mm resolution. Stahl et al. (2012) 
used a novel DGT–PO hybrid sensor to simultaneously 
obtain 2D imaging distributions of O2 dynamics and trace 
metal fluxes. As shown by the 2D imaging distribution of 
O2 and corresponding metals, irrigated burrows induced 
enhanced O2 levels, resulting in highly localized mobiliza-
tion of Ni, Cu and Pb, as well as a decrease in dissolved 
Fe(II) around the burrow system. Lehto et al. (2017) used a 
DGT–PO sensor to investigate the influence of deposition 
of particulate organic matter (POM) on O2 dynamics and 

metals mobilization at SWI. Results indicated that the depo-
sition of POM resulted in the depletion of O2 concentrations, 
with anoxic conditions at the SWI also increasing mobiliza-
tion of Fe and Mn, while decreasing Zn, Ni and Co mobili-
zation. The combined single-layer gel consisted of the DGT 
with PO applied for analysis of rhizosphere biogeochemical 
processes (Hoefer et al. 2017; Williams et al. 2014). Results 
showed that ROL-derived acidification of the local rhizos-
phere environment, resulted in elevated mobilization of trace 
metals, such as Al, Co, Cu, Fe, Mn, Ni and Pb. In addition, 
2D imaging of O2/pH and trace metals showed that Fe-redox 
cycles regulate the plant uptake of trace metals.

In summary, the combination of DGT with other high-
resolution, imaging techniques allows the simultaneous 
measurement of multiple elements, enhancing our under-
standing of the relationship between labile species and dis-
solved species. This has greatly broadened the application 
scope of DGT and allows its function in revealing the bio-
geochemical processes for various solutes. In terms of analy-
sis of the heterogeneous nature of sediments and flooded 
soils, the combined method looks very promising for future 
application.

Advantages and challenges

Advantages of DGT development

Over the last two decades, DGT has developed into an 
important measurement method, because of its notable 
advantages: (1) DGT can perform in situ measurements, 
with accurate interpretation of the measurement results 
possible. Furthermore, DGT measurements do not ignore 
certain events, such as discharge, rain and tide episodes, 
and are independent of soil properties and water flow con-
ditions; (2) DGT can measure a great number of labile metal 
species, oxyanions, organics and other solutes, even at low 
concentrations due to pre-concentration capacity; (3) DGT 
can be applied to the measurement and evaluation of con-
centrations, distributions, speciation and bioavailability of 
analytes, allowing interpretation and prediction of resupply 
mechanisms from sediment and soil solid phase to solution 
phase, in combination with DIFS; (4) DGT can provide 
high-resolution (mm and sub-mm) information in combi-
nation with other in situ measurement techniques, such as 
DET, Peeper and PO.

DGT development challenges

The DGT technique has been continually developed for more 
than 20 years, and its effective application in sediments, soils 
and water have been well established. However, significant 
challenges remain for the future development of DGT.



1. Overcoming environmental interference to DGT meas-
urement. In addition to biofilms which could affect ana-
lyte diffusion, electrostatic interactions and ion com-
petition can also interfere with solute diffusion in the
diffusive layer, affecting the adsorption performance of
the binding gel. Besides, the adsorption of organics by
the filter membranes could affect the DGT measurement
of organics. There are currently no effective methods to
resolve these problems.

2. Expanding the capability of DGT measurement. With
development of the mixed binding layer, hybrid DGT
devices have provided new insights into the complex
relationships between trace metals and oxyanions in var-
ious environments. The measurement of multiple targets
using a mixed binding layer is required, such as for the
simultaneous measurement of heavy metals and organ-
ics, or nutrient. Furthermore, in order to study the bio-
geochemical processes for a specific target under heavily
polluted conditions, highly selective binding agents need
to be further developed. The currently available DGT
binding agents are too large (mm–μm size) to match
the combined use of other 2D imaging techniques, such
as PO. Smaller binding agents in the nano-size range
should be developed and applied in the future.

3. Unify the DGT operational procedure. To date, many
researchers have applied the DGT technique to the meas-
urement of various solutes in sediment, soil and water
using different operational procedures. The use of vary-
ing operational procedures results in a greater potential
for error, as well as reducing the comparability among
measurement results. Therefore, the unification of opera-
tional procedures for DGT device assembly, deployment
and sample treatment is required. Standardized systems,
such as types of diffusion gel and filter membrane would
significantly facilitate comparison among different stud-
ies. Furthermore, water content should be optimized to
a similar level for the measurement of dryland soils.

4. Improvement of the interpretation of DGT measurement
results. DGT has been demonstrated to be a useful tool
to indicate the lability and bioavailability of nutrients
and metals in soils and sediments. It has the potential to
be applied in environmental quality and ecological risk
assessments. However, the uptake of solutes by organ-
isms are not only controlled by diffusive mechanism
in soils or sediments, but also influenced by organism
types and other factors. It is still far away from estab-
lishing environmental criteria based on DGT measure-
ment. More research should be performed in this aspect.
Furthermore, DIFS modeling has been successfully
employed for the evaluation and prediction of the resup-
ply capacity from soil or sediment solid phase. Further
development of the interpretation of liquid–solid interac-
tions is required, in combination with other models.

Conclusion

A great number of studies have demonstrated that the DGT 
technique is not only a versatile in situ passive sampling 
tool for the measurement of metals and oxyanions, but also 
a potential tool for the determination of inorganic nutrients 
and organics. In this paper, the principles of DGT tech-
nique and research progress are described, with the per-
formances of tradition DGT devices and improved DGT 
devices reviewed, as well as commonly used binding and 
diffusion materials discussed in detail. The novel applica-
tions and development of DGT techniques in recent years are 
discussed, as well as the potential capabilities of DGT, that 
have yet to be fully exploited. Overall, more research atten-
tion should be given to the investigation of biogeochemical 
processes by DGT.
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