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Extragradient with player sampling for faster Nash equilibrium finding

Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g. when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding, that performs gradient extrapolations and updates on a random subset of players at each iteration. This approach provably exhibits a better rate of convergence than full extra-gradient for non-smooth convex games with noisy gradient oracle. We propose an additional variance reduction mechanism to obtain speed-ups in smooth convex games. Our approach makes extrapolation amenable to massive multiplayer settings, and brings empirical speed-ups, in particular when using a heuristic cyclic sampling scheme. Most importantly, it allows to train faster and better GANs and mixtures of GANs.

A growing number of models in machine learning require to optimize over multiple interacting objectives. This is the case of generative adversarial networks [START_REF] Goodfellow | Generative adversarial nets[END_REF], imaginative agents [START_REF] Racanière | Imagination-augmented agents for deep reinforcement learning[END_REF], hierarchical reinforcement learning [START_REF] Wayne | Hierarchical control using networks trained with higher-level forward models[END_REF] and multi-agent reinforcement learning [START_REF] Bu | A comprehensive survey of multi-agent reinforcement learning[END_REF]. Solving saddle-point problems (see e.g., [START_REF] Rockafellar | Monotone operators associated with saddle-functions and minimax problems[END_REF], that is key in robust learning [START_REF] Kim | Robust Fisher discriminant analysis[END_REF] and image reconstruction [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], also falls in this category. These examples can be cast as games where players are parametrized modules that compete or cooperate to minimize their own objective functions.

To define a principled solution to a multi-objective optimization problem, we may rely on the notion of Nash equilibrium [START_REF] Nash | Non-cooperative games[END_REF]. At a Nash equilibrium, no player can improve its objective by unilaterally changing its strategy. The theoretical section of this paper considers the class of con-Proceedings of the 37 th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by the author(s).

vex n-player games, for which Nash equilibria exist [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave n-person games[END_REF]. Finding a Nash equilibrium in this setting is equivalent to solving a variational inequality problem (VI) with a monotone operator [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave n-person games[END_REF][START_REF] Harker | Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[END_REF]. This VI can be solved using first-order methods, that are prevalent in single-objective optimization for machine learning. Stochastic gradient descent (the simplest first-order method) is indeed known to converge to local minima under mild conditions met by ML problems [START_REF] Bottou | The tradeoffs of large scale learning[END_REF]). Yet, while gradient descent can be applied simultaneously to different objectives, it may fail in finding a Nash equilibrium in very simple settings (see e.g., [START_REF] Letcher | Stable opponent shaping in differentiable games[END_REF][START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF]. Two alternative modifications of gradient descent are necessary to solve the VI (hence Nash) problem: averaging [START_REF] Magnanti | Averaging schemes for variational inequalities and systems of equations[END_REF][START_REF] Nedić | Subgradient methods for saddlepoint problems[END_REF] or extrapolation with averaging. The later was introduced as the extra-gradient (EG) method by [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF]); it is faster [START_REF] Nemirovski | Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF] and can handle noisy gradients [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF]. Extrapolation corresponds to an opponent shaping step: each player anticipates its opponents' next moves to update its strategy.

In n-player games, extra-gradient computes 2n single player gradients before performing a parameter update. Whether in massive or simple two-players games, this may be an inefficient update strategy: early gradient information, computed at the beginning of each iteration, could be used to perform eager updates or extrapolations, similar to how alternated update of each player would behave. Therefore, we introduce and analyse new extra-gradient algorithms that extrapolate and update random or carefully selected subsets of players at each iteration (Fig. 1).

-We review the extra-gradient algorithm for differentiable games and outline its shortcomings ( §3.1). We propose a doubly-stochastic extra-gradient (DSEG) algorithm ( §3.2) that updates the strategies of a subset of players, thus performing player sampling. DSEG performs faster but noisier updates than the original full extra-gradient method (full EG, [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF]), that uses a (once) stochastic gradient oracle. We introduce a variance reduction method to attenuate the noise added by player sampling in smooth games.

-We derive convergence rates for DSEG in the convex setting ( §4), as summarized in Table 1. New and existing [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF] convergence rates for convex games, w.r.t. the number of gradient computations k. Doubly-stochastic extra-gradient (DSEG) multiplies the noise contribution by a factor α b/n, where b is the number of sampled players among n. G bounds the gradient norm. L: Lip. constant of losses' gradient. σ 2 bounds the gradient estimation noise. Ω: diameter of the param. space.

α b/n Non-smooth Smooth DSEG O n Ω k (G 2 + α 2 σ 2 ) O ΩLn 3/2 αk + αnσ Ω k Full EG O n Ω k (G 2 + σ 2 ) O ΩLn 3/2 k + nσ Ω k
player sampling. Our rates exhibit a better dependency on gradient noise compared to stochastic extra-gradient, and are thus interesting in the high-noise regime common in machine learning.

-Empirically, we first validate that DSEG is faster in massive differentiable convex games with noisy gradient oracles. We further show that non-random player selection improves convergence speed, and provide explanations for this phenomenon. In practical non-convex settings, we find that cyclic player sampling improves the speed and performance of GAN training (CIFAR10, ResNet architecture). The positive effects of extrapolation and alternation combine: DSEG should be used to train GANs, and even more to train mixtures of GANs.

Related work

Extra-gradient method. In this paper, we focus on finding the Nash equilibrium in convex n-player games, or equivalently the Variational Inequality problem [START_REF] Harker | Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[END_REF][START_REF] Nemirovski | Accuracy certificates for computational problems with convex structure[END_REF]. This can be done using extrapolated gradient [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF], a "cautious" gradient descent approach that was promoted by [START_REF] Nemirovski | Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF] and [START_REF] Nesterov | Dual extrapolation and its applications to solving variational inequalities and related problems[END_REF], under the name mirror-prox-we review this work in §3.1. [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF] propose a stochastic variant of mirror-prox, that assumes access to a noisy gradient oracle. In the convex setting, their results guarantees the convergence of the algorithm we propose, albeit with very slack rates. Our theoretical analysis refines these rates to show the usefulness of player sampling.

Recently, Bach & Levy (2019) described a smoothnessadaptive variant of this algorithm similar to AdaGrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF], an approach that can be combined with ours. [START_REF] Yousefian | On stochastic mirror-prox algorithms for stochastic cartesian variational inequalities: Randomized block coordinate and optimal averaging schemes[END_REF] consider multi-agent games on networks and analyze a stochastic variant of extra-gradient that consists in randomly extrapolating and updating a single player. Compared to them, we analyse more general player sampling strategies. Moreover, our analysis holds for nonsmooth losses, and provides better rates for smooth losses, through variance reduction. We also analyse precisely the reasons why player sampling is useful (see discussion in §4), an original endeavor.

Extra-gradient in non-convex settings. Extra-gradient has been applied in non-convex settings. [START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF] proves asymptotic convergence results for extragradient without averaging in a slightly non-convex case. [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF] demonstrate the effectiveness of extragradient for GANs. They argue that it allows to escape the potentially chaotic behavior of simultaneous gradient updates (examplified by e.g. [START_REF] Cheung | Vortices Instead of Equilibria in MinMax Optimization: Chaos and Butterfly Effects of Online Learning in Zero-Sum Games[END_REF]). Earlier work on GANs propose to replace simultaneous updates with alternated updates, with a comparable improvement [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF]. In §5, we show that alternating player updates while performing opponent extrapolation improves the training speed and quality of GANs.

Opponent shaping and gradient adjustment. Extragradient can also be understood as an opponent shaping method: in the extrapolation step, the player looks one step in the future and anticipates the next moves of his opponents. Several recent works proposed algorithms that make use of the opponents' information to converge to an equilibrium [START_REF] Zhang | Multi-agent learning with policy prediction[END_REF][START_REF] Foerster | Learning with opponentlearning awareness[END_REF][START_REF] Letcher | Stable opponent shaping in differentiable games[END_REF]. In particular, the "Learning with opponent-learning awareness" (LOLA) algorithm is known for encouraging cooperation in cooperative games [START_REF] Foerster | Learning with opponentlearning awareness[END_REF]. Lastly, some recent works proposed algorithms to modify the dynamics of simultaneous gradient descent by adding an adjustment term in order to converge to the Nash equilibrium [START_REF] Mazumdar | On finding local Nash equilibria (and only local Nash equilibria) in zero-sum games[END_REF] and avoid oscillations [START_REF] Balduzzi | The mechanics of n-player differentiable games[END_REF][START_REF] Mescheder | The numerics of GANs[END_REF]. One caveat of these works is that they need to estimate the Jacobian of the simultaneous gradient, which may be expensive in large-scale systems or even impossible when dealing with non-smooth losses as we consider in our setting. This is orthogonal to our approach that finds solutions of the original VI problem (4).

Solving convex games with partial first-order information

We review the framework of Cartesian convex games and the extra-gradient method in §3.1. Building on these, we propose to augment extra-gradient with player sampling and variance reduction in §3.2.

Solving convex games with gradients

In a game, each player observes a loss that depends on the independent parameters of all other players.

Definition 1. A standard n-player game is given by a set of n players with parameters θ = (θ 1 , . . . , θ n ) ∈ Θ ⊂ R d where Θ decomposes into a Cartesian product n i=1 Θ i . Each player's parameter θ i lives in Θ i ⊂ R di . Each player is given a loss function i : Θ → R.

For example, generative adversarial network (GAN) training is a standard game between a generator and discriminator that do not share parameters. We make the following assumption over the geometry of losses and constraints, that is the counterpart of the convexity assumption in singleobjective optimization.

Assumption 1. The parameter spaces Θ 1 , . . . , Θ n are compact, convex and non-empty. Each player's loss i (θ i , θ -i ) is convex in its parameter θ i and concave in θ -i , where θ -i contains all other players' parameters. Moreover,

n i=1 i (θ) is convex in θ.
Ass. 1 implies that Θ has a diameter Ω max u,z∈Θ uz 2 . Note that the losses may be non-differentiable. A simple example of Cartesian convex games satisfying Ass. 1, that we will empirically study in §5, are matrix games (e.g., rock-paper-scissors) defined by a positive payoff matrix A ∈ R d×d , with parameters θ corresponding to n mixed strategies θ i lying in the probability simplex di .

Nash equilibria. Joint solutions to minimizing losses ( i ) i are naturally defined as the set of Nash equilibria [START_REF] Nash | Non-cooperative games[END_REF] of the game. In this setting, we look for equilibria θ ∈ Θ such that

∀ i ∈ [n], i (θ i , θ -i ) = min θ i ∈Θ i i (θ i , θ -i ).
(1)

A Nash equilibrium is a point where no player can benefit by changing his strategy while the other players keep theirs unchanged. Ass. 1 implies the existence of a Nash equilibrium [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave n-person games[END_REF]. We quantify the inaccuracy of a solution θ by the functional Nash error, also known as the [START_REF] Nikaidô | Note on non-cooperative convex games[END_REF] function:

Err N (θ) n i=1 i (θ) -min z∈Θi i (z, θ -i ) . (2) 
This error, computable through convex optimization, quantifies the gain that each player can obtain when deviating alone from the current strategy. In particular, Err N (θ) = 0 if and only if θ is a Nash equilibrium; thus Err N (θ) constitutes a propose indication of convergence for sequence of iterates seeking a Nash equilibrium. We bound this value in our convergence analysis (see §4).

First-order methods and extrapolation. In convex games, as the losses i are (sub)differentiable, we may solve (1) using first-order methods. We assume access to the simultaneous gradient of the game

F (∇ 1 1 , . . . , ∇ n n ) ∈ R d ,
where we write ∇ i i ∇ θ i i . It corresponds to the concatenation of the gradients of each player's loss with respect to its own parameters, and may be noisy. The losses i may be non-smooth, in which case the gradients ∇ i i can be replaced by any subgradients. Simultaneous gradient descent, that explicitly discretizes the flow of the simultaneous gradient may converge slowly-e.g., in matrix games with skew-symmetric payoff and noiseless gradient oracle, convergence of the average iterate demands decreasing stepsizes. The extra-gradient method [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF] provides better guarantees [START_REF] Nemirovski | Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF][START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF])-e.g., in the previous example, the step-size can remain constant. We build upon this method.

Extra-gradient consists in two steps: first, take a gradient step to go to an extrapolated point. Then use the gradient at the extrapolated point to perform a gradient step from the original point: at iteration τ , (extrapolation)

θ τ +1/2 = p Θ [θ τ -γ τ F (θ τ )], (update) θ τ +1 = p Θ [θ τ -γ τ F (θ τ +1/2 )], (3) 
where p Θ [•] is the Euclidean projection onto the constraint set Θ, i.e. p Θ [z] = argmin θ∈Θ θz 2 2 . This "cautious" approach allows to escape cycling orbits of the simultaneous gradient flow, that may arise around equilibrium points with skew-symmetric Hessians (see Fig. 1). The generalization of extra-gradient to general Banach spaces equipped by a Bregman divergence was introduced as the mirror-prox algorithm [START_REF] Nemirovski | Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF]. The new convergence results of §4 extend to the mirror setting (see §A.1). As recalled in Table 1, [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF] provide rates of convergence for the average iterate θt = 1 t t τ =1 θ τ . Those rates are introduced for the equivalent variational inequality (VI) problem, finding

θ ∈ Θ such that F (θ ) (θ -θ ) 0 ∀ θ ∈ Θ, (4) 
where Ass. 1 ensures that the simultaneous gradient F is a monotone operator (see §A.2 for a review).

DSEG: Partial extrapolation and update for extra-gradient

The proposed algorithms are theoretically analyzed in the convex setting §4, and empirically validated in convex and non-convex setting in §5.

Caveats of extra-gradient. In systems with large number of players, an extra-gradient step may be computationally expensive due to the high number of backward passes necessary for gradient computations. Namely, at each iteration, we are required to compute 2n gradients before performing a first update. This is likely to be inefficient, as we could use the first computed gradients to perform a first extrapolation or update. This remains true for games down to two players. In a different setting, stochastic gradient descent [START_REF] Robbins | A stochastic approximation method[END_REF] updates model parameters before observing the whole data, assuming that partial observation is sufficient for progress in the optimization loop. Similarly, in our setting, partial gradient observation should be sufficient to perform extrapolation and updates toward the Nash equilibrium.

Player sampling. While standard extra-gradient performs at each iteration two passes of player's gradient computation, we therefore compute doubly-stochastic simultaneous gradient estimates, where only the gradients of a random subset of players are evaluated. This corresponds to evaluating a simultaneous gradient that is affected by two sources of noise. We sample a mini-batch P of players of size b n, and compute the gradients for this mini-batch only. Furthermore, we assume that the gradients are noisy estimates, e.g., with noise coming from data sampling. We then compute a doubly-stochastic simultaneous gradient estimate F as F ( F (1) , . . . , F (n) ) ∈ R d where

F (i) (θ, P) n b • g i (θ) if i ∈ P 0 di otherwise , (5) 
Algorithm 1 Doubly-stochastic extra-gradient. Sample mini-batches of players P, P .

5:

Compute Fτ+ 1 2 = F (θ τ , P) using (5) or VR (Alg. 2).

6:

Extrapolation step:

θ τ + 1 2 ← p Θ [θ τ -γ τ Fτ+ 1 2 ].
7:

Compute Fτ+1 = F (θ τ + 1 2 , P ) using (5) or VR 8:

Gradient step:

θ τ +1 ← p Θ [θ τ -γ τ Fτ+1 ]. 9: Return θt = [ t τ =0 γ τ ] -1 t τ =0 γ τ θ τ .
Algorithm 2 Variance reduced estimate of the simultaneous gradient with doubly-stochastic sampling Compute

F (i) ← F (i) (θ) + (1 -n b )R (i) 5: Update R (i) ← b n F (i) (θ) = g i (θ) 6: For i / ∈ P, set F (i) ← R (i) . 7: Return estimate F = ( F (1) , ..., F (n) ), table R.
and g i (θ) is a noisy unbiased estimate of ∇ i i (θ). The factor n/b in (5) ensures that the doubly-stochastic simultaneous gradient estimate is an unbiased estimator of the simultaneous gradient. Doubly-stochastic extra-gradient (DSEG) replaces the full gradients in the update (3) by the oracle (5), as detailed in Alg. 1.

Variance reduction for player noise. To obtain faster rates in convex games with smooth losses, we propose to compute a variance-reduced estimate of the gradient oracle (5). This mitigates the noise due to player sampling. Variance reduction is a technique known to accelerate convergence under smoothness assumptions in similar settings. While [START_REF] Palaniappan | Stochastic variance reduction methods for saddle-point problems[END_REF]; [START_REF] Iusem | Extragradient method with variance reduction for stochastic variational inequalities[END_REF]; [START_REF] Chavdarova | Reducing noise in GAN training with variance reduced extragradient[END_REF] apply variance reduction on the noise coming from the gradient estimates, we apply it to the noise coming from the sampling over the players. We implement this idea in Alg. 2. We keep an estimate of ∇ i i for each player in a table R, which we use to compute unbiased gradient estimates with lower variance, akin to the approach of SAGA [START_REF] Defazio | SAGA: A fast incremental gradient method with support for nonstrongly convex composite objectives[END_REF] to reduce the variance of data noise.

Player sampling strategies. For convergence guarantees to hold, each player must have an equal probability of being sampled (equiprobable player sampling condition). Sampling uniformly over b-subsets of [n] is a reasonable way to fulfill this condition as all players have probability p = b/n of being chosen.

As a strategy to accelerate convergence, we propose to cycle over the n(n -1) pairs of different players (with b = 1). At each iteration, we extrapolate the first player of the pair and update the second one. We shuffle the order of pairs once the block has been entirely seen. This scheme bridges extrapolation and alternated gradient descent: for GANs, it corresponds to extrapolate the generator before updating the discriminator, and vice-versa, cyclically. Although its convergence is not guaranteed, cyclic sampling over players is powerful for convex quadratic games ( §5.1) and GANs ( §5.2).

Convergence for convex games

We derive new rates for DSEG with random player sampling, improving the analysis of [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF]. Player sampling can be seen as an extra source of noise in the gradient oracle. Hence the results of Juditsky et al. on stochastic extra-gradient guarantees the convergence of DSEG, as we detail in Corollary 1. Unfortunately, the convergence rates in this corollary do not predict any improvement of DSEG over full extra-gradient. Our main theoretical contribution is therefore a refinement of these rates for player-sampling noise. Improvements are obtained both for non-smooth and smooth losses, the latter using the proposed variance reduction approach. Our results predict better performance for DSEG in the high-noise regime. Results are stated here in Euclidean spaces for simplicity; they are proven in the more general mirror setting in App. B. In the analysis, we separately consider the two following assumptions on the losses. Assumption 2a (Non-smoothness). For each i ∈ [n], the loss i has a bounded subgradient, namely max h∈∂i i(θ) h 2 G i for all θ ∈ Θ. In this case, we also define the quantity

G = n i=1 G 2 i /n. Assumption 2b (Smoothness). For each i ∈ [n], the loss i is once-differentiable and L-smooth, i.e. ∇ i i (θ) -∇ i i (θ ) 2 L θ -θ 2 , for θ, θ ∈ Θ.
Similar to [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF]; [START_REF] Robbins | A stochastic approximation method[END_REF], we assume unbiasedness of the gradient estimate and boundedness of the variance. Assumption 3. For each player i, the noisy gradient g i is unbiased and has bounded variance:

∀ θ ∈ Θ, E[g i (θ)] = ∇ i i (θ), E[ g i (θ) -∇ i i (θ) 2 2 ] σ 2 . ( 6 
)
To compare DSEG to simple stochastic EG, we must take into account the cost of a single iteration, that we assume proportional to the number b of gradients to estimate at each step. We therefore set k 2 b t to be the number of gradients estimates computed up to iteration t, and re-index the sequence of iterate ( θt ) t∈N as ( θk )) k∈2bN . We give rates with respect to k in the following propositions.

4.1. Slack rates derived from Juditsky et al.

Let us first recall the rates obtained by [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF] with noisy gradients but no player sampling.

Theorem 1 (Adapted from [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF]). We consider a convex n-player game where Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations without player sampling, thus performing k = 2 n t gradient evaluations. With optimal constant stepsize, the expected Nash error verifies

E Err N ( θk ) 14n Ω 3k (G 2 + 2σ 2 ). (7) 
Assuming smoothness (Ass. 2b) and optimal stepsize,

E Err N ( θk ) max 7ΩLn 3/2 k , 14n 2Ωσ 2 3k . (8) 
Player sampling fits within the framework of noisy gradient oracle ( 6), replacing the gradient estimates 5), and updating the variance σ 2 accordingly. We thus derive the following corollary.

(g i ) i∈[n] with the estimates ( F (i) ) i∈[n] from (
Corollary 1. We consider a convex n-player game where Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations with equiprobable player sampling, thus performing k = 2 b t gradient evaluations. With optimal constant stepsize, the expected Nash error verifies

E Err N ( θk ) O n Ω k n b G 2 + σ 2 .
Assuming smoothness (Ass. 2b) and optimal stepsize,

E Err N ( θk ) O ΩLn 3/2 k + n Ω k ( n b L 2 Ω 2 + σ 2 ) .
The proof is in §B.1. The notation O(•) hides numerical constants. Whether in the smooth or non-smooth case, the upper-bounds from Corollary 1 does not predict any improvement due to player sampling, as the factor before the gradient size G or LΩ is increased, and the factor before the noise variance σ remains constant.

Tighter rates using noise structure

Fortunately, a more cautious analysis allows to improve these bounds, by taking into account the noise structure induced by sampling in (5). We provide a new result in the non-smooth case, proven in §B.3.

Theorem 2. We consider a convex n-player game where Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations with equiprobable player sampling, thus performing k = 2 b t gradient evaluations. With optimal constant stepsize, the expected Nash error verifies

E Err N ( θk ) O n Ω k G 2 + b n σ 2 . (9)
Compared to Corollary 1, we obtain a factor b n in front of the noise term σ √ k , without changing the constant before the gradient size G. We can thus expect faster convergence with noisy gradients. ( 9) is tightest when sampling a single player, i.e. when b = 1.

A similar improvement can be obtained with smooth losses thanks to the variance reduction technique proposed in Alg. 2. This is made clear in the following result, proven in §B.4.

Theorem 3. We consider a convex n-player game where Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations with equiprobable player sampling, thus performing k = 2 b t gradient evaluations. Alg. 2 yields gradient estimates. With optimal constant stepsize, the expected Nash error verifies

E Err N ( θk ) O n b ΩLn 3/2 k + b n n Ωσ 2 k . (10) 
The upper-bound (10) should be compared with the bound of full extra-gradient (8)-that it recovers for b = n. With player sampling, the constant before the gradient size LΩ is bigger of a factor n b . On the other hand, the constant before the noise term σ is smaller of a factor n b . Player sampling is therefore beneficial when the noise term dominates, which is the case whenever the number of iterations is such that k ΩL 2 n σ 2 n b 2 . For k → ∞, the bound (10) is once again tightest by sampling a random single player.

To sum up, doubly-stochastic extra-gradient convergence is controlled with a better rate than stochastic extra-gradient (EG) with non-smooth losses; with smooth losses, DSEG exhibits the same rate structure in 1 k + 1 √ k as stochastic EG, with a better dependency on the noise but worse dependency on the gradient smoothness. In the high noise regime, or equivalently when demanding high precision results, DSEG brings the same improvement of a factor b n before the constant σ √ k , for both smooth and non-smooth problems.

Step-sizes. The stepsizes of the previous propositions are assumed to be constant and are optimized knowing the geometry of the problem. They are explicit in App. B. As in full extra-gradient, convergence can be guaranteed without such knowledge using decreasing step-sizes. In experiments, we perform a grid-search over stepsizes to obtain the best results given a computational budget k.

Convex and non-convex applications

We show the performance of doubly-stochastic extragradient in the setting of quadratic games, comparing different sampling schemes. We assess the speed and final performance of DSEG in the practical context of GAN training. A PyTorch/Numpy package is attached.

Random convex quadratic games

We consider a game where n players can play d actions, with payoffs provided by a matrix A ∈ R nd×nd , an horizontal stack of matrices A i ∈ R (d×nd) (one for each player). The loss function i of each player is defined as its expected payoff given the n mixed strategies

(θ 1 , . . . , θ n ), i.e. ∀ i ∈ [n], ∀ θ ∈ Θ = d1 × • • • × dn , i (θ i , θ -i ) = θ i A i θ + λ θ i - 1 d i 1 ,
where λ is a regularization parameter that introduces nonsmoothness and pushes strategies to snap to the simplex center. The positivity of A, i.e. θ Aθ 0 for all θ ∈ Θ, is equivalent to the convexity of the game.

Experiments. We sample A as the weighted sum of a random symmetric positive definite matrix and a skew matrix. We compare the convergence speeds of extra-gradient algorithms, with or without player sampling. We vary three parameters: the variance σ of the noise in the gradient oracle (we add a Gaussian noise on each gradient coordinate), the non-smoothness λ of the loss, and the skewness of the matrix. We consider small games and large games (n ∈ {5, 50}). We use the (simplex-adapted) mirror variant of doubly-stochastic extra-gradient, and a constant stepsize, selected among a grid (see App. D). We use variance reduction when λ = 0 (smooth case). We also consider cyclic sampling in our benchmarks, as described in §3.2.

Results. Fig. 2 compares the convergence speed of playersampled extra-gradient for the various settings and sampling schemes. As predicted by Theorem 2 and 3, the regime of convergence in 1/ √ k in the presence of noise is unchanged with player sampling. DSEG always brings a benefit in the convergence constants (Fig. 2a-b), in particular for smooth noisy problems (Fig. 2a center, Fig. 2b left). Most interestingly, cyclic player selection improves upon random sampling for small number of players (Fig. 2a). Fig. 2c highlights the trade-offs in Theorem 3: as the noise increase, the size of player batches should be reduced. Not that for skew-games with many players (Fig. 2b col. 3), our approach only becomes beneficial in the high-noise regime. Figure 2. Player sampled extra-gradient outperform vanilla extra-gradient for small noisy/non-noisy smooth/non-smooth games. Cyclic sampling performs better than random sampling, especially for 5 players (a). Higher sampling ratio is beneficial in high noise regime (c), Curves averaged over 5 games and 5 runs. As predicted in §4, full EG should be favored with noiseless oracles (see App. D).

Spectral study of sampling schemes. The benefit of cyclic sampling can be explained for simple quadratic games. We consider a two-player quadratic game where

i (θ) = θ i Aθ for i = 1, 2, θ = (θ 1 , θ 2
) is an unconstrained vector of R 2×d , and gradients are noiseless. In this setting, full EG and DSEG expected iterates follows a linear recursion

E[θ k+4 ] = A(E[θ k ]),
where k is the number of gradient evaluation and A is a linear "algorithm operator", computable in closed form. A lower spectral radius for A yields a better convergence rate for (E[θ k ]) k , in light of [START_REF] Gelfand | Normierte ringe[END_REF] formula-we compare spectral radii across methods.

We sample random payoff matrices A of varying skewness and condition number, and compare the spectral radius A associated to full EG, and DSEG with cyclic and random player selection. As summarized in Fig. 3, player sampling reduces the spectral radius of A on average; most interestingly, the reduction is more important using cyclic sampling. Spectral radii are not always in the same order across methods, hinting that sampling can be harmful in the worst cases. Yet cyclic sampling will perform best on average in this (simple) setting. We report details and further figures in App. C.

Generative adversarial networks (GANs)

We evaluate the performance of the player sampling approach to train a generative model on CIFAR10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. We use the WGAN-GP loss [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF], that defines a non-convex two-player game. Our theoretical analysis indeed shows a 1/ √ 2 speed-up for noisy monotonous 2-player games-the following suggests that speed-up also arises in a non-convex setting. We compare the full stochastic extra-gradient (SEG) approach advocated by [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF] to the cyclic sampling scheme proposed in §3.2 (i.e. extra. D, upd. G, extra. G, upd. D). We use the ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] architecture from Gidel Results. We report training curves versus wall-clock time in Fig. 4. Cyclic sampling allows faster and better training, especially with respect to FID, which is more correlated to human appreciation [START_REF] Heusel | GANs trained by a two time-scale update rule converge to a local Nash equilibrium[END_REF]. Fig. 5 (right) compares our result to full extra-gradient with uniform averaging. It shows substantial improvements in FID, with results less sensitive to randomness. SEG itself slightly outperforms optimistic mirror descent [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF][START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF].

Interpretation. Without extrapolation, alternated training is known to perform better than simultaneous updates in WGAN-GP [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF]. Full extrapolation has been shown to perform similarly to alternated updates [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF]. Our approach combine extrapolation with an alternated schedule. It thus performs better than extrapolating with simultaneous updates. It remains true across every learning rate we tested. Echoing our findings of §5.1, deterministic sampling is crucial for performance, as random player selection performs poorly (score 6.2 IS).

Mixtures of GANs

Finally, we consider a simple multi-player GAN setting, akin to [START_REF] Ghosh | Multi-agent diverse generative adversarial networks[END_REF], where n different generators (g θi ) i seeks to fool m different discriminators (f ϕj ) j . We minimize j (g θi , f ϕj ) for all i, and maximize i (g θi , f ϕj ) for all j. Fake data is then sampled from mixture n i=1 δ i=J g θi (ε), where J is sampled uniformly in [n] and ε ∼ N (0, I). We compare two methods: (i) SEG extrapolates and updates all (g θi ) i , (f ϕj ) j at the same Results. We compare the training curves of both SEG and DSEG in Fig. 5, for a range of learning rates. DSEG outperform SEG for all learning rates; more importantly, higher learning rates can be used for DSEG, allowing for faster training. DSEG is thus appealing for mixtures of GANs, that are useful to mitigate mode collapse in generative modeling.

We report generated images in Appendix D.

Conclusion

We propose and analyse a doubly-stochastic extra-gradient approach for finding Nash equilibria. According to our convergence results, updating and extrapolating random sets of players in extra-gradient brings speed-up in noisy and nonsmooth convex problems. Numerically, doubly-stochastic extra-gradient indeed brings speed-ups in convex settings, especially with noisy gradients. It brings speed-ups and improve solutions when training non-convex GANs and mixtures of GANs, thus combining the benefits of alternation and extrapolation in adversarial training. Numerical experiments show the importance of sampling schemes. We take a first step towards understanding the good behavior of cyclic player sampling through spectral analysis. We foresee interesting developments using player sampling in reinforcement learning: the policy gradients obtained using multi-agent actor critic methods [START_REF] Lowe | Multi-agent actor-critic for mixed cooperative-competitive environments[END_REF] are noisy estimates, a setting in which it is beneficial.

The appendices are structured as follows: App. A presents the setting and the existing results. In particular, we start by introducing the setting of the mirror-prox algorithm in §A.1 and detail the relation between solving this problem and finding Nash equilibria in convex n-player games §A.2. We then present the proofs of our theorems in App. B. We analyze the DSEG algorithm (Alg. 1) and study its variance-reduction version. App. D presents further experimental results and details.

A. Existing results

A.1. Mirror-prox

Mirror-prox and mirror descent are the formulation of the extra-gradient method and gradient descent for non-Euclidean (Banach) spaces. [START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF] (which is a good reference for this subsection) and [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF] study extragradient/mirror-prox in this setting. We provide an introduction to the topic for completeness.

Setting and notations. We consider a Banach space E and a compact set Θ ⊂ E.

We define an open convex set D such that Θ is included in its closure, that is Θ ⊆ D and D ∩ Θ = ∅. The Banach space E is characterized by a norm • . Its conjugate norm • * is defined as ξ * = max z: z 1 ξ, z . For simplicity, we assume E = R n .

We assume the existence of a mirror map for Θ, which is defined as a function Φ : D → R that is differentiable and µ-strongly convex i.e. ∀x, y ∈ D, ∇Φ(x) -∇Φ(y), xy µ xy 2 .

We can define the Bregman divergence in terms of the mirror map. Definition 2. Given a mirror map Φ : D → R, the Bregman divergence D : D × D → R is defined as

D(x, y) Φ(x) -Φ(y) -∇Φ(y), x -y .
Note that D(•, •) is always non-negative. For more properties, see e.g. [START_REF] Nemirovsky | Problem complexity and method efficiency in optimization[END_REF] and references therein. Given that Θ is compact convex space, we define Ω = max x∈D∩Θ Φ(x) -Φ(x 1 ). Lastly, for z ∈ D and ξ ∈ E * , we define the prox-mapping as

P z (ξ) argmin u∈D∩Θ {Φ(u) + ξ -∇Φ(z), u } = argmin u∈D∩Θ {D(z, u) + ξ, u }. ( 11 
)
The mirror-prox algorithm is the most well-known algorithm to solve convex n-player games in the mirror setting (and variational inequalities, see §A.2). An iteration of mirror-prox consists of:

Compute the extrapolated point:

∇Φ(y τ +1/2 ) = ∇Φ(θ τ ) -γF (θ τ ), θ τ +1/2 = argmin x∈D∩Θ D(x, y τ +1/2 ),
Compute a gradient step:

∇Φ(y τ +1 ) = ∇Φ(θ τ ) -γF (θ τ +1/2 ), θ τ +1 = argmin x∈D∩Θ D(x, y τ +1 ). . (12) 
Remark that the extra-gradient algorithm defined in equation ( 3) corresponds to the mirror-prox (12) when choosing Φ(x) = 1 2 x 2 2 . Lemma 1. By using the proximal mapping notation (11), the mirror-prox updates are equivalent to:

Compute the extrapolated point: θ τ +1/2 = P θτ (γF (θ τ )), Compute a gradient step: θ τ +1 = P θτ (γF (θ τ +1/2 )).

Proof. We just show that θ τ +1/2 = P θτ (γF (θ τ )), as the second part is analogous.

θ τ +1/2 = argmin x∈D∩Θ D(x, y τ +1/2 ) = argmin x∈D∩Θ Φ(x) -∇Φ(y τ +1/2 ), x = argmin x∈D∩Θ Φ(x) -∇Φ(θ τ ) -αF (θ τ ), x = argmin x∈D∩Θ αF (θ τ ), x + D(x, θ τ ).
The mirror framework is particularly well-suited for simplex constraints i.e. when the parameter of each player is a probability vector. Such constraints usually arise in matrix games. If Θ i is the d i -simplex, we express the negative entropy for player i as

Φ i (θ i ) = di j=1 θ i (j) log θ i (j).
We can then define D int Θ = int Θ 1 × • • • × int Θ n and the mirror map as

Φ(θ) = n i=1 Φ i (θ i ).
We use this mirror map in the experiments for random monotone quadratic games ( §5.1).

A.2. Link between convex games and variational inequalities

As first noted by [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave n-person games[END_REF], finding a Nash equilibrium in a convex n-player game is related to solving a variational inequality (VI) problem. We consider a space of parameters Θ ⊆ R d that is compact and convex, equipped with the standard scalar product •, • in R d .

For convex n-player games (Ass. 1), the simultaneous (sub)gradient F (Eq. 3.1) is a monotone operator.

Definition 3. An operator F : Θ → R d is monotone if ∀θ, θ ∈ Θ, F (θ) -F (θ ), θ -θ 0.
Assuming continuity of the losses i , we then consider the set of solutions to the following vairational inequality problem:

Find θ * ∈ Θ such that F (θ), θ -θ * 0 ∀θ ∈ Θ. (13) 
Under Ass. 1, this set coincides with the set of Nash equilibria, and we may solve (13) instead of (1) [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave n-person games[END_REF][START_REF] Harker | Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[END_REF][START_REF] Nemirovski | Accuracy certificates for computational problems with convex structure[END_REF]. ( 13) indeed corresponds to the first-order necessary optimality condition applied to the loss of each player.

The quantity used to quantify the inaccuracy of a solution θ to (13) is the dual VI gap defined as Err VI (θ) = max u∈Θ F (u), θu . However, the functional Nash error (2), also known as the [START_REF] Nikaidô | Note on non-cooperative convex games[END_REF] function, is the usual performance measure for convex games. We provide the convergence rates in term of functional Nash error but they also apply to the dual VI gap.

B. Proofs and mirror-setting algorithms

We start by proving Corollary 1, that derives from Juditsky et al. (2011) ( §B.1). As this result is not instructive, we use the structure of the player sampling noise in (5) to obtain a stronger result in the non-smooth case ( §B.3). For this, we directly modify the proof of Theorem 1 from [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF], using a few useful lemmas ( §B.2). We then turn to the smooth case, for which a variance reduction mechanism proves necessary ( §B.4). The proof is original, and builds upon techniques from the variance reduction literature [START_REF] Defazio | SAGA: A fast incremental gradient method with support for nonstrongly convex composite objectives[END_REF].

B.1. Proof of Corollary 1

Player sampling noise modifies the variance of the unbiased gradient estimate. Indeed, in equation ( 5) Fi (θ, P) is an unbiased estimate of ∇ i i (θ), and for all i ∈ [n]

E Fi (θ, P) = Prob(i ∈ P) n b E [g i (θ)] = E [g i (θ)] = ∇ i i (θ).
If g i has variance bounded by σ 2 , we can bound the variance of Fi (θ, P):

E Fi (θ, P) -∇ i i (θ) 2 = E Fi (θ, P) -g i (θ) + g i (θ) -∇ i i (θ) 2 2E Fi (θ, P) -g i (θ) 2 + 2E g i (θ) -∇ i i (θ) 2 2E Fi (θ, P) -g i (θ) 2 + 2σ 2 = 2E b n n b -1 g i (θ) 2 + 1 - b n g i (θ) 2 + 2σ 2 2 n -b b E g i (θ) 2 + 2σ 2 2 n -b b G 2 + 2σ 2 .
Substituting σ 2 by 2 n-b b G 2 + 2σ 2 in equations ( 7) and (8) yields:

E Err N ( θt(k) ) 14n Ω 3k 4n -3b b G 2 + 2σ 2 = O n Ω k n b G 2 + σ 2 . E Err N ( θt(k) ) max 7ΩLn 3/2 k , 28n Ω(( n b -1)G 2 + σ 2 ) 3k
These bounds are worse than the ones in Theorem 1 when b n. This motivates the following derivations, that yields Theorem 2 and 3.

B.2. Useful lemmas

The following two technical lemmas are proven and used in the proof of Theorem 2 of [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF].

Lemma 2. Let z be a point in X , let χ, η be two points in the dual E * , let w = P z (χ) and r + = P z (η). Then,

w -r + χ -η * .
Moreover, for all u ∈ E, one has

D(u, r + ) -D(u, z) η, u -w + 1 2 χ -η 2 * - 1 2 w -z 2 .
Lemma 3. Let ξ 1 , ξ 2 , . . . be a sequence of elements of E * . Define the sequence {y τ } ∞ τ =0 in X as follows:

y τ = P yτ-1 (ξ τ ).
Then y τ is a measurable function of y 0 and ξ 1 , . . . , ξ τ such that:

∀u ∈ Z, t τ =1 ξ t , y τ -1 -u D(u, y 0 ) + 1 2 t τ =1 ξ τ 2 * .
The following lemma stems from convexity assumptions on the losses (Ass. 1) and is proven as an intermediate development of the proof of Theorem 2 of [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF].

Lemma 4. We consider a convex n-player game with players losses i where i ∈

[n]. Let a sequence of points (z τ ) τ ∈[t] ∈ Θ, the stepsizes (γ τ ) τ ∈[t] ∈ (0, ∞). We define the average iterate ẑτ = t τ =0 γ τ -1 t τ =0 γ τ z τ .
The functional Nash error evaluated in ẑt is upper bounded by

Err N (ẑ t ) sup u∈Z n i=1 i (ẑ t ) -i (u i , ẑ-i t ) sup u∈Z t τ =0 γ τ -1 t τ =0 γ τ F (z τ ), z τ -u .
The following lemma is a consequence of first-order optimality conditions.

Lemma 5. Let (γ t ) t∈N be a sequence in (0, ∞) and A, B > 0. For any t ∈ N, we define the function f t to be

f t (α) A t τ =0 αγ τ + B t τ =0 (αγ τ ) 2 t τ =0 αγ τ .
Then, it attains its minimum for α > 0 when both terms are equal. Let us call α * the point at which the minimum is reached. The value of f t evaluated at α * is

f t (α * ) = f A B t τ =0 γ 2 τ = 2 AB t τ =0 γ 2 τ t τ =0 γ τ .
The next lemma describes the dual norm of the natural Pythagorean norm on a Cartesian product of Banach spaces. Lemma 6. Let (X 1 , • X1 ), . . . , (X n , • Xn ) be Banach spaces where for each i, • Xi is the norm associated to X i . The Cartesian product is X = X 1 × X 2 × • • • × X n and has a norm • X defined for y = (y 1 , . . . , y n ) ∈ X as

y X n i=1 y i 2 Xi .
It is known that (X, • X ) is a Banach space. Moreover, we define the dual spaces

(X * 1 , • X * 1 , . . . , (X * n , • X * n ). The dual space of X is X * = X * 1 × X * 2 × ... × X *
n and has a norm • X * . Then, for any a = (a 1 , ..., a n ) ∈ X * , the following inequality holds

a 2 X * = n i=1 a i 2 X * i .
Proof. On the one hand,

a 2 X * = sup y∈X |ay| 2 y 2 X = sup y∈X ( n i=1 a i y i ) 2 y 2 X sup y∈X n i=1 a i X * i y i Xi 2 y 2 X ,
and by Cauchy-Schwarz inequality

a 2 X * sup y∈X n i=1 a i 2 X * i n i=1 y i 2 Xi y 2 X = n i=1 a i 2 X * i .
To prove the other inequality we define

Z i = y i ∈ X i | y i X = a i X * i . a 2 X * sup y∈Z1ו••×Zn |ay| 2 y 2 X = n i=1 sup yi∈Zi a i y i 2 n i=1 a i 2 X * i = n i=1 a i 2 X * i 2 n i=1 a i 2 X * i = n i=1 a i 2 X * i .
The following two numerical lemmas will be used in Lemma 11. Lemma 7. The following inequality holds for any j ∈ N, p ∈ R such that p > 0:

(2

(j + 1)/2 -j)(1 -p) 2 (j+1)/2 -j-1 p + 2(1 -p) 2 (j+1)/2 -j p 2 2 -p p 2 .
Proof. For j even, we can write

(2 (j + 1)/2 -j)(1 -p) 2 (j+1)/2 -j-1 p + 2(1 -p) 2 (j+1)/2 -j = 2(1 -p)p + 2(1 -p) 2 = 2(1 -p).
For j odd,

(2 (j + 1)/2 -j)(1 -p) 2 (j+1)/2 -j-1 p + 2(1 -p) 2 (j+1)/2 -j = p + 1 -p + 1 -p = 2 -p. Since p > 0, 2 -p 2(1 -p). Lemma 8. For all |α| < 1, ∞ s=q α s-1 s = qα q-1 (1 -α) + α q (1 -α) 2 .
Proof. Sample the random matrices

∞ s=q α s-1 s = ∞ s=q α s = α q 1 -α = qα q-1 (1 -α) + α q (1 -α) 2 .
M τ , M τ +1/2 ∈ R d×d . 4: Compute Fτ+1/2 = n b • M τ F (θ τ ).
5:

Extrapolation step: θ τ +1/2 = P θτ (γ τ Fτ+1/2 ).

6: Compute Fτ+1 = n b • M τ +1/2 F (θ τ +1/2 ).
7:

Gradient step: θ τ +1 = P θτ (γ τ Fτ+1 ).

8: Return θt = t τ =0 γ τ -1 t τ =0 γ τ θ τ .
Notation. We introduce the noisy simultaneous gradient F (θ) defined as

F (θ) = ( F (1) (θ), . . . , F (n) (θ)) (g 1 , . . . , g n ) ∈ R d ,
where g i is a noisy unbiased estimate of ∇ i l i (θ) with variance bounded by σ 2 . We are abusing the notation because F (θ) is a random variable indexed by Θ and not a function, but we do so for the sake of clarity.

For our convenience, we also define the ratio p = b/n.

Differences with Alg. 1

The notation in Alg. 3 differs in a few aspects. First, we model the sampling over the players by using the random block-diagonal matrices M τ and M τ +1/2 in R d×d . More precisely, at each iteration, we select according to a uniform distribution b diagonal blocks and assign them to the identity matrix. Remark that we add a factor n/b in front of the random matrices to ensure the unbiasedness of the gradient estimates Fτ and Fτ+1/2 . Note that the matrices M τ and M τ +1/2 are just used for the convenience of the analysis. In practice, sampling over players is not performed in this way.

Moreover, while the update in Alg. 1 involve Euclidean projections, we use the proximal mapping (11) in Alg. 3. The new notation will be used throughout the appendix.

We first proceed to the analysis of Alg. 3 in the case of non-smooth losses.

B.3.2. CONVERGENCE RATE UNDER ASSUMPTION 2A (NON-SMOOTHNESS)-PROOF OF THEOREM 2

The following Theorem 4 generalizes Theorem 2 to the mirror setting.

Theorem 4. We consider a convex n-player game where Ass. 2a holds. Assume that Alg. 3 is run with constant stepsizes γ τ = γ. Let t(k) = k/(2b) be the number of iterations corresponding to k gradient computations. Setting

γ = 2Ω n (3n-b)G 2 b + σ 2 t(k)
, the rate of convergence in expectation at iteration t(k) is

E Err N ( θt(k) ) = 4 Ωn (3G 2 n + b(σ 2 -G 2 )) k . ( 14 
)
Proof. The strategy of the proof is similar to the proof of Theorem 2 and part of Theorem 1 from [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF]. It consists in bounding

t τ =0 γ τ F (θ τ +1/2
), θ τ +1/2u , which by Lemma 4 is itself a bound of the functional Nash error.

By using Lemma 2 with z = θ τ , χ = γ τ Fτ+1/2 , η = γ τ Fτ+1 (so that w = θ τ +1/2 and r + = θ τ +1 ), we have for any u ∈ Θ

γ τ Fτ+1 , θ τ +1/2 -u + D(u, θ τ +1 ) -D(u, θ τ ) γ 2 τ 2 Fτ+1 -Fτ+1/2 2 * - 1 2 θ τ +1/2 -θ τ 2 * γ 2 τ 2 Fτ+1 -Fτ+1/2 2 * . (15) 
When summing up from τ = 0 to τ = t in equation ( 15), we get

t τ =0 γ τ Fτ+1 , θ τ +1/2 -u D(u, θ 0 ) -D(u, θ t+1 ) + t τ =0 γ 2 τ 2 Fτ+1 -Fτ+1/2 2 * . (16) 
By decomposing the right-hand side ( 16), we obtain

t τ =0 γ τ F (θ τ +1/2 ), θ τ +1/2 -u D(u, θ 0 ) -D(u, θ t+1 ) + t τ =0 γ 2 τ 2 Fτ+1 -Fτ+1/2 2 * + t τ =0 γ τ (F (θ τ +1/2 ) -Fτ+1 ), θ τ +1/2 -u Ω + t τ =0 γ 2 τ 2 Fτ+1 -Fτ+1/2 2 * + t τ =0 γ τ F (θ τ +1/2 ) -Fτ+1 , θ τ +1/2 -y τ + t τ =0 γ τ F (θ τ +1/2 ) -Fτ+1 , y τ -u , (17) 
where we used D(u, θ 0 ) Ω and defined y τ +1 = P yτ (γ τ ∆ τ ) with y 0 = θ 0 and ∆ τ = F (θ τ +1/2 ) -Fτ+1 . So far, we followed the same steps as [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF]. We aim at bounding the left-hand side of equation ( 17) in expectation. To this end, we will now bound the expectation of each of the right-hand side terms. These steps represent the main difference with the analysis by [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF].

We first define the filtrations F τ = σ(θ τ : τ τ + 1/2) and F τ = σ(θ τ : τ τ ). We now bound the third term on the right-hand side of (17) in expectation.

E Fτ+1 -Fτ+1/2 2 * 2 E Fτ+1 2 * + E Fτ+1/2 2 * = 2 p 2 E E M τ +1/2 F (θ τ +1/2 ) 2 * |F τ + E E M τ F (θ τ ) 2 * |F τ = 2 p 2 n i=1 E E M (i) τ +1/2 F (i) (θ τ +1/2 ) 2 * |F τ (18) +E E M (i) τ F (i) (θ τ ) 2 * |F τ 2 p n i=1 E F (i) (θ τ +1/2 ) 2 * + E F (i) (θ τ ) 2 * 4nG 2 p ,
where we used a + b 2 * 2 a 2 * + 2 b 2 * in the first inequality and applied Lemma 6 in the second equality. Now, we compute the expectation of the fourth term of equation ( 17).

E γ τ t τ =0 F (θ τ +1/2 ) -Fτ+1 , y τ -u (19) = E t τ =0 E γ τ I - M τ +1/2 p F (θ τ +1/2 ), θ τ +1/2 -y τ F τ = E t τ =0 γ τ E I - M τ +1/2 p F τ E F (θ τ +1/2 ) F τ , θ τ +1/2 -y τ = 0,
where we used the independence property of the random variables in the second equality and E[ k n • M τ +1/2 ] = I d in the third equality. Regarding the fifth term of (17), by using the sequences {y τ } and {ξ τ = γ τ ∆ τ } in Lemma 3 (as done in [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF], we obtain:

t τ =0 γ τ ∆ τ , y τ -u D(u, θ 0 ) + t τ =0 γ 2 τ 2 ∆ τ 2 * Ω + t τ =0 γ 2 τ 2 F (θ τ +1/2 ) -Fτ+1 2 * . (20) 
We now bound the expectation of F (θ τ +1/2 ) -Fτ+1

2 * using the filtration F τ . By using Lemma 6 in the first equality,

Extra-gradient with player sampling a + b 2 * 2 a 2 * + 2 b 2 * in the second inequality and the bound on the variance (Ass. 3) in the third inequality, we obtain

E F (θ τ +1/2 ) -Fτ+1 2 * = n i=1 E F (i) (θ τ +1/2 ) - F (i) τ +1 2 * = n i=1 E F (i) (θ τ +1/2 ) - M (i) τ +1 p F (i) (θ τ +1/2 ) 2 * n i=1 2E I - M (i) τ +1 p F (i) (θ τ +1/2 ) 2 * + n i=1 2E F (i) (θ τ +1/2 ) -F (i) (θ τ +1/2 ) 2 * n i=1 2E p p -1 p F (i) (θ τ +1/2 ) 2 * + (1 -p) F (i) (θ τ +1/2 ) 2 * + 2nσ 2 = n i=1 2 1 -p + (1 -p) 2 p E F (i) (θ τ +1/2 ) 2 * + 2nσ 2 = n i=1 2 1 p -1 E F (i) (θ τ +1/2 ) 2 * + 2nσ 2 2nG 2 (1 -p) p + 2nσ 2 . ( 21 
)
Therefore, by taking the expectation in equation ( 17) and plugging ( 18), ( 19), ( 20) and ( 21), we finally get:

E sup u∈Z t τ =0 γ τ F (θ τ +1/2 ), θ τ +1/2 -u 2Ω + t τ =0 γ 2 τ n (3 -p)G 2 p + σ 2 (22) 
Applying Lemma 4 to equation ( 22) yields an upper bound on the functional Nash error shown in equation ( 23).

E Err N ( θt ) t τ =0 γ τ -1 2Ω + t τ =0 γ 2 τ n (3n -b)G 2 b + σ 2 . ( 23 
)
Now, let us set γ t constant and optimize the bound (23). Namely, we apply Lemma 5 setting γ τ = 1 for all τ ∈ [t], A = 2Ω and

B = n (3n -b)G 2 b + σ 2 .
The optimal value for γ τ is

γ τ = γ = 2Ω n (3n-b)G 2 b + σ 2 t .
and the optimal value of the bound is

E Err N ( θt ) 8Ωn (3n-b)G 2 b + σ 2 t . (24) 
The number of iterations t can be expressed in terms of the number of gradient computations k as t(k) = k/(2b). Plugging this expression into (24), we get

E Err N ( θt(k) ) = 8Ωn 3G 2 n b + σ 2 -G 2 k 2b
, which yields equation ( 14) after simplification.

Remark 1. For constant stepsizes, equation (24) implies that with an appropriate choice of t and γ we can achieve a value of the Nash error arbitrarily close to zero at time t. However, from Equation 23we see that constant stepsizes do not ensure convergence; the bound has a strictly positive limit. Stepsizes decreasing as 1/ √ τ do ensure convergence, although we do not make a detailed analysis of this case.

Remark 2. Without using any variance reduction technique, the smooth losses assumption Ass. 2b does not yield a significant improvement over the bound from Theorem 4. We do not include the analysis of this case. Algorithm 4 Mirror prox with variance reduced player randomness

1: Input: initial point θ 0 ∈ R d , stepsizes (γ τ ) τ ∈[t] , mini-batch size over the players b ∈ [n]. 2: Set R 0 = F (θ 0 ) ∈ R d 3: for τ = 0, . . . , t do 4: Sample the random matrices M τ , M τ +1/2 ∈ R d×d . 5: Compute Fτ+1/2 = R τ + n b M τ ( F (θ τ ) -R τ ) 6: Set R τ +1/2 = R τ + M τ ( F (θ τ ) -R τ ) 7:
Extrapolation step: θ τ +1/2 = P θτ (γ τ Fτ+1/2 ).

8: Compute Fτ+1 = R τ +1/2 + n b M τ +1/2 ( F (θ τ +1/2 ) -R τ +1/2 ) 9: Set R τ +1 = R τ +1/2 + M τ +1/2 ( F (θ τ +1/2 ) -R τ +1/2 ) 10:
Extra-gradient step: θ τ +1 = P θτ (γ τ Fτ+1 ).

11: Return θt = t τ =0 γ τ -1 t τ =0 γ τ θ τ .
F (θ) is defined as in Alg. 3. The random matrices M τ , M τ +1/2 are also sampled the same way.

In Alg. 4, we leverage information from a table (R τ ) τ ∈[t] to produce doubly-stochastic simultaneous gradient estimates with lower variance than in Alg. 3. The table R τ is updated when possible.

The following Theorem 5 generalizes Theorem 3 in the mirror setting.

Theorem 5. Assume that for all i between 1 and n, the gradients ∇ i i are L-Lipschitz (Ass. 2b). Assume Alg. 4 is run with constant stepsizes γ τ = γ, with γ defined as

γ min p 3/2 (1 -p)(2 -p) 1 12L √ n , 1 L 5 27n + 12 , 1 2 Ω 13nσ 2 t(k) ,
where p b/n, k is the number of gradient computations and t(k) = k/(2b) is the corresponding number of iterations.

Then, the convergence rate in expectation at iteration t(k) is

E Err N ( θt(k) ) max 96 √ 2ΩLn 2 √ bk , 8ΩbL 27n + 12 5 1 k , 8 26Ωnbσ 2 k .
Outline of the proof of Theorem 5.

• Lemma 12 provides a bound for

E t τ =0 γ 2 τ Fτ+1 -F (θ τ +1/2 ) 2 + γ 2 τ F (θ τ ) -Fτ+1/2
2 and it is the keystone of the proof. It specifically uses the structure of player sampling and the introduced variance reduction mechanism.

• Lemma 10 and 11 are intermediate steps in the proof of Lemma 12. Lemma 9 and Lemma 8 are used in the proof of Lemma 11.

• We prove Theorem 5 by refining base inequalities established by [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF], using the results from Lemma 12.

Definition 4. For a given j and i (which we omit), let us define K j as the random variable indicating the highest q ∈ N strictly lower than j such that M (i) q/2 is the identity (and K j = 0 if there exists no such q).

In other words, K j is the last step q before j at which the sequence (R (i) q/2 ) q∈N was updated with a new value F (i) (θ q/2 ). That is, R j/2,i = F (i) (θ Kj /2 ).

Lemma 9. For a given j, j -K j is a random variable that has a geometric distribution with parameter p and support between 1 and j, i.e., for all q such that j -1 q 1, P (K j = q) = p(1p) j-1-q , and P (K

j = 0) = 1 - j-1 q=1 P (K j = q) = (1 -p) j-1 . Proof. M (i)
q/2 is Bernoulli distributed with parameter p among zero and the identity, for all q.

Lemma 10. The following equalities hold:

E F (i) (θ τ ) - F (i) τ +1/2 2 = 2(1 -p) p E R (i) τ -F (i) (θ τ ) 2 + 2σ 2 , E F (i) τ +1 -F (i) (θ τ +1/2 ) 2 = 2(1 -p) p E R (i) τ +1/2 -F (i) (θ τ +1/2 ) 2 + 2σ 2 .
Proof. Using the conditional expectation with respect to the filtration up to w τ ,

E F (i) τ +1 -F (i) (θ τ +1/2 ) 2 = 2E   R (i) τ +1/2 + M (i) τ +1/2 p ( F (i) (θ τ +1/2 ) -R (i) τ +1/2 ) -F (i) (θ τ +1/2 ) 2   + 2E F (i) (θ τ +1/2 ) -F (i) (θ τ +1/2 ) 2 = 2E     I - M (i) τ +1/2 p   (R (i) τ +1/2 -F (i) (θ τ +1/2 )) 2   + 2σ 2 = 2E p p -1 p (R (i) τ +1/2 -F (i) (θ τ +1/2 )) 2 + (1 -p) R (i) τ +1/2 -F (i) (θ τ +1/2 ) 2 + 2σ 2 = 2 1 -p + (1 -p) 2 p E R (i) τ +1/2 -F (i) (θ τ +1/2 ) 2 + 2σ 2 = 2(1 -p) p E R (i) τ +1/2 -F (i) (θ τ +1/2 ) 2 + 2σ 2 .
The second equality is derived analogously.

Let us define the change of variables j = 2τ . Parametrized by j, the sequences that we are dealing with are (M (i) j/2 ) j∈N , (R (i) j/2 ) j∈N and (θ j/2 ) j∈N . In this scope i is a fixed integer between 1 and n. Lemma 11. Let us define h : R → R as

h(p) 2 -p p 2 . ( 25 
)
Assume that (γ τ ) τ ∈N is non-increasing. Then, the following holds:

t τ =0 γ 2 τ E R (i) τ -F (i) (θ τ ) 2 2t-1 j=0 h(p)γ 2 j/2 E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 , ( 26 
) t τ =0 γ 2 τ E R (i) τ +1/2 -F (i) (θ τ +1/2 ) 2 2t-1 j=0 h(p)γ 2 j/2 E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 .
Proof. We can write

E R (i) τ -F (i) (θ τ ) 2 = E R (i) 2τ /2 -F (i) (θ 2τ /2 ) 2 (27) = E E R (i) 2τ /2 -F (i) (θ 2τ /2 ) 2 K 2τ = 2τ -1 q=0 P (K 2τ = q)E R (i) 2τ /2 -F (i) (θ 2τ /2 ) 2 K 2τ = q = 2τ -1 q=1 p(1 -p) 2τ -1-q E F (i) (θ q/2 ) -F (i) (θ 2τ /2 ) 2 + (1 -p) 2τ -1 E F (i) (θ 0 ) -F (i) (θ 2τ /2 ) 2 .
As seen in equation ( 27), the point of conditioning with respect to the sigma-field generated by K 2τ (see Def. 4) is that we can write the expression for R 2τ /2,i . We have used Lemma 9. Now, using the rearrangement inequality,

E F (i) (θ q/2 ) -F (i) (θ 2τ /2 ) 2 = E   2τ -1 j=q F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2   (28) 2τ -1 j=q (2τ -q)E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 .
Using equations ( 27) and ( 28) we can now write

t τ =0 γ 2 τ E R (i) τ -F (i) (θ τ ) 2 (29) = t τ =0 γ 2 τ 2τ -1 q=1 p(1 -p) 2τ -1-q E F (i) (θ q/2 ) -F (i) (θ 2τ /2 ) 2 + γ 2 τ (1 -p) 2τ -1 E F (i) (θ 0 ) -F (i) (θ 2τ /2 ) 2 t τ =0 γ 2 τ 2τ -1 q=1 p(1 -p) 2τ -1-q 2τ -1 j=q (2τ -q)E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 + γ 2 τ (1 -p) 2τ -1 2τ -1 j=0 2τ E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 .
Given j between 0 and 2t -1 the right hand side of equation ( 29) contains the term

E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 2 multiplied by t τ = (j+1)/2 γ 2 τ j r=1 (2τ -r)p(1 -p) 2τ -1-r + 2τ (1 -p) 2τ -1 γ 2 j/2 t τ = (j+1)/2 j r=1 (2τ -r)p(1 -p) 2τ -1-r + 2τ (1 -p) 2τ -1 = γ 2 j/2 t τ = (j+1)/2 p j-1 r =0 (1 -p) 2τ -1-j+r (2τ -j + r ) + 2τ (1 -p) 2τ -1 γ 2 j/2 t τ = (j+1)/2 p ∞ r =2τ -j
(1p) r -1 r = ( * ).

Using Lemma 8 twice:

( * ) = γ 2 j/2 t τ = (j+1)/2 p (2τ -j)(1 -p) 2τ -1-j p + (1 -p) 2τ -j p 2 = γ 2 j/2 t τ = (j+1)/2 (2τ -j)(1 -p) 2τ -1-j p + (1 -p) 2τ -j p γ 2 j/2 ∞ τ =2 (j+1)/2 (τ -j)(1 -p) τ -1-j + γ 2 j/2 p ∞ τ =2 (j+1)/2 (1 -p) τ -j = γ 2 j/2 ∞ τ =2 (j+1)/2 -j τ (1 -p) τ -1 + γ 2 j/2 p ∞ τ =2 (j+1)/2 -j (1 -p) τ = γ 2 j/2
(2 (j + 1)/2j)(1p) 2 (j+1)/2 -j-1 p + 2(1p) 2 (j+1)/2 -j p 2 .

By Lemma 7 we have

(2 (j + 1)/2j)(1p) 2 (j+1)/2 -j-1 p + 2(1p) 2 (j+1)/2 -j p 2 . h(p)

Hence, from equation ( 29) we get

t τ =0 γ 2 τ E R (i) τ -F (i) (θ τ ) 2 2t-1 j=0 γ 2 j/2 h(p)E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 .
Analogously to equation ( 27):

E R (i) τ +1/2 -F (i) (θ τ +1/2 ) 2 = E R (i) (2τ +1)/2 -F (i) (θ (2τ +1)/2 ) 2 = E E R (i) (2τ +1)/2 -F (i) (θ (2τ +1)/2 ) 2 K 2τ +1 = 2τ k=0 P (K 2τ +1 = k)E R (i) (2τ +1)/2 -F (i) (θ (2τ +1)/2 ) 2 K 2τ +1 = k = 2τ k=1 p(1 -p) 2τ -k E F (i) (θ k/2 ) -F (i) (θ (2τ +1)/2 ) 2 + (1 -p) 2τ E F (i) (θ 0 ) -F (i) (θ (2τ +1)/2 ) 2 .
Extra-gradient with player sampling

Using the same reasoning we get an inequality that is analogous to (26):

t τ =0 γ 2 τ E R (i) τ +1/2 -F (i) (θ τ +1/2 ) 2 2t j=0 γ 2 j/2 h(p)E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 .
Lemma 12. Assume that for all i between 1 and n, the gradients ∇ i i are L-Lipschitz. Assume that for all τ between 0 and t, γ τ γ. Let

χ(p, γ) = 1 -36 1 -p p nh(p)L 2 γ 2 . ( 30 
)
If γ is small enough that χ(p, γ) is positive, then

E t τ =0 γ 2 τ Fτ+1 -F (θ τ +1/2 ) 2 + γ 2 τ F (θ τ ) -Fτ+1/2 2 (31) 104nσ 2 t τ =0 γ 2 τ + 1 -p pχ(p, γ) (12L 2 + 36L 4 γ 2 )nh(p) t τ =0 γ 2 τ E θ τ -θ τ +1/2 2 .
Proof. We first want to bound the terms E F

(i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 2 .
When j is even we can make the change of variables j/2 = τ (just for simplicity in the notation) and use smoothness. We get

E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 = E F (i) (θ τ ) -F (i) (θ τ +1/2 ) 2 (32) 3E F (i) (θ τ ) -F (i) (θ τ +1/2 ) 2 + 3E F (i) (θ τ ) -F (i) (θ τ +1/2 ) 2 + 3E F (i) (θ τ +1/2 ) -F (i) (θ τ +1/2 ) 2 3L 2 E θ τ -θ τ +1/2 2 + 6σ 2 .
When j is odd, we can write j/2 = τ + 1/2. We use smoothness and the fact that the prox-mapping is 1-Lipschitz (Lemma 2):

E F (i) (θ j/2 ) -F (i) (θ (j+1)/2 ) 2 = E F (i) (θ τ +1/2 ) -F (i) (θ τ +1 ) 2 (33) 3E F (i) (θ τ +1/2 ) -F (i) (θ τ +1 ) 2 + 3E F (i) (θ τ +1/2 ) -F (i) (θ τ +1/2 ) 2 + 3E F (i) (θ τ +1 ) -F (i) (θ τ +1 ) 2 3L 2 E θ τ +1/2 -θ τ +1 2 + 6σ 2 = 3L 2 E P θτ (γ τ Fτ+1/2 ) -P θτ (γ τ Fτ+1 ) 2 + 6σ 2 3L 2 γ 2 τ E Fτ+1/2 -Fτ+1 2 + 6σ 2 9L 2 γ 2 τ E Fτ+1/2 -F (θ τ ) 2 +E F (θ τ +1/2 ) -Fτ+1 2 +E F (θ τ ) -F (θ τ +1/2 ) 2 + 6σ 2 .
Now, we use Lemma 6 to break up the dual norms in the right-hand side of (31).

E t τ =0 γ 2 τ Fτ+1 -F (θ τ +1/2 ) 2 + γ 2 τ F (θ τ ) -Fτ+1/2 2 = E t τ =0 n i=1 γ 2 τ F (i) τ +1 -F (i) (θ τ +1/2 ) 2 + γ 2 τ F (i) (θ τ ) - F (i) τ +1/2 2 , (34) 
Hence, from equation ( 34) and Lemma 10 and 11:

E t τ =0 γ 2 τ Fτ+1 -F (θ τ +1/2 ) 2 + γ 2 τ F (θ τ ) -Fτ+1/2 2 4nσ 2 t τ =0 γ 2 τ + 2(1 -p) p E t τ =0 n i=1 γ 2 t R (i) τ -F (i) (θ τ ) 2 + R (i) τ +1/2 -F (i) (θ τ ) 2 4nσ 2 t τ =0 γ 2 τ + 2(1 -p) p n i=1 2t j=0 2γ 2 j/2 h(p)E F i (θ j/2 ) -F i (θ (j+1)/2 ) 2 = ( * * ).
We split the last term in summands corresponding to even and odd j, we change variables from j to τ and we apply equations ( 32) and ( 33):

( * * ) = 4nσ 2 t τ =0 γ 2 τ + 2(1 -p) p n i=1 2t j=0, j even 2γ 2 j/2 h(p)E F i (θ j/2 ) -F i (θ (j+1)/2 ) 2 + 2(1 -p) p n i=1 2t j=0, j odd 2γ 2 j/2 h(p)E F i (θ j/2 ) -F i (θ (j+1)/2 ) 2 = 4nσ 2 t τ =0 γ 2 τ + 2(1 -p) p n i=1 t τ =0 2γ 2 τ h(p)E F i (θ τ ) -F i (θ τ +1/2 ) 2 + 2(1 -p) p n i=1 t τ =0 2γ 2 τ h(p)E F i (θ τ +1/2 ) -F i (θ τ +1 ) 2 52nσ 2 t τ =0 γ 2 τ + 1 -p p t τ =0 12nγ 2 τ h(p)L 2 E θ τ -θ τ +1/2 2 + 1 -p p t τ =0 36nh(p)L 2 γ 4 τ E Fτ+1/2 -F (θ τ ) 2 + E F (θ τ +1/2 ) -Fτ+1 2 + 1 -p p t τ =0 36nh(p)L 4 γ 4 τ E θ τ -θ τ +1/2 2 = ( * * * ).
We use that γ τ γ:

( * * * ) 52nσ 2 t τ =0 γ 2 τ + 1 -p p (12L 2 + 36L 4 γ 2 )nh(p) t τ =0 γ 2 τ E θ τ -θ τ +1/2 2 + 36 1 -p p nh(p)L 2 γ 2 t τ =0 γ 2 τ E Fτ+1/2 -F (θ τ ) 2 + E F (θ τ +1/2 ) -Fτ+1 2 .
Rearranging and using χ(p, γ) > 0 yields the desired result.

Proof of Theorem 5. We rewrite equation ( 17):

γ τ Fτ+1 , θ τ +1/2 -u + D(u, θ τ +1 ) -D(u, θ τ ) γ 2 τ 2 Fτ+1 -Fτ+1/2 2 - 1 2 θ τ +1/2 -θ τ 2 3γ 2 τ 2 Fτ+1 -F (θ τ +1/2 ) 2 + 3γ 2 τ 2 F (θ τ ) -Fτ+1/2 2 + 3γ 2 τ 2 F (θ τ +1/2 ) -F (θ τ ) 2 - 1 2 θ τ +1/2 -θ τ 2 .
We rewrite equation ( 20). We have ∆ τ = F (θ τ +1/2 ) -Fτ+1 and y τ +1 = P yτ (γ τ ∆ τ ) with y 0 = θ 0 .

t τ =0 γ τ ∆ τ , y τ -u D(u, θ 0 ) + t τ =0 γ 2 τ 2 ∆ τ 2 = D(u, θ 0 ) + t τ =0 γ 2 τ 2 F (θ τ +1/2 ) -Fτ+1 2 . ( 35 
)
Using equation ( 35) and the analogous equation to ( 19), we reach the following inequality:

E sup u∈Z t τ =0 γ τ F (θ τ +1/2 ), θ τ +1/2 -u E sup u∈Z 2D(u, θ 0 ) -D(u, θ t+1 ) - t τ =0 1 2 θ τ +1/2 -θ τ 2 2 (36) + E t τ =0 2γ 2 τ Fτ+1 -F (θ τ +1/2 ) 2 + 3γ 2 τ 2 F (θ τ ) -Fτ+1/2 2 + 3γ 2 τ 2 F (θ τ +1/2 ) -F (θ τ ) 2
Taking the definition of χ(p, γ) in ( 30), using the definition of h(p) in ( 25) and rearranging, we obtain

γ p 3/2 (1 -p)(2 -p) 1 12L √ n ⇐⇒ χ(p, γ) 3/4 > 0. (37) 
Hence, the assumptions of Lemma 12 are fulfilled. Starting from the result in (36) and using Lemma 12,

E sup u∈Z t τ =0 γ τ F (θ τ +1/2 ), θ τ +1/2 -u (38) E sup u∈Z 2D(u, θ 0 ) -D(u, θ t ) + 32nσ 2 t τ =0 γ 2 τ + 2 1 -p pχ(p, γ) (12L 2 + 36L 4 γ 2 )nh(p) t τ =0 γ 2 τ E θ τ -θ τ +1/2 2 + 3nL 2 2 t τ =0 γ 2 τ E θ τ -θ τ +1/2 2 - 1 2 t τ =0 E θ τ -θ τ +1/2 2 2Ω + 104nσ 2 t τ =0 γ 2 τ + (24L 2 + 72L 4 γ 2 )nh(p)γ 2 1 -p pχ(p, γ) + 3nγ 2 L 2 2 - 1 2 t τ =0 E θ τ -θ τ +1/2 2 .
Recalling the definition of h(p) in Equation ( 25), the conditions χ(p, γ) 3/4 and

γ 1 L 5 27n + 12 , (39) 
imply

(24L 2 + 72L 4 γ 2 )nh(p)γ 2 1 -p pχ(p, γ) + 3nγ 2 L 2 2 - 1 2 0. (40) 
We show this development:

(24L 2 + 72L 4 γ 2 )n 2 -p p 2 γ 2 1 -p pχ(p, γ) + 3nγ 2 L 2 2 - 1 2 χ 3/4 (24L 2 + 72L 4 γ 2 )n 2 -p p 2 γ 2 4(1 -p) 3p + 3nγ 2 L 2 2 - 1 2 = 24 + 72L 2 γ 2 27 (1 -χ(p, γ)) + 3nγ 2 L 2 2 - 1 2 2 + 6L 2 γ 2 9 + 3nγ 2 L 2 2 - 1 2 = γ 2 (9n + 4)L 2 6 - 5 18 .
Using Equation ( 40) on ( 38) yields

E sup u∈Z t τ =1 γ τ F (θ τ +1/2 ), θ τ +1/2 -u 2Ω + 104nσ 2 t τ =0 γ 2 τ .
By Lemma 4, we conclude

Err N ( θt ) t τ =0 γ τ -1 2Ω + 104nσ 2 t τ =0 γ 2 τ (41) 
Now we apply Lemma 5 to equation ( 41) assuming constant stepsizes. That is, we set γ τ = 1, A = 2Ω and B = 104nσ 2 . Using the notation from Lemma 5, we get that

α * = 1 2 Ω 13nσ 2 t
and the value of the bound at α * is 8 13Ωnσ 2 t .

However, γ is also subject to the constraints in equations ( 37) and (39). Namely,

γ min p 3/2
(1p)(2p)

1 12L √ n , 1 L 5 27n + 12 , 1 2 Ω 13nσ 2 t , (42) 
If the minimum in equation ( 42) is not achieved at α * (the third term), it is easy to see that the first term of the bound in equation ( 41) is larger than the second one, which means that 4Ω/(γt) is a looser bound. We conclude

E Err N ( θt ) max 4Ω γt , 8 13Ωnσ 2 t .
Substituting γ for its expression and plugging t(k) = k/2b on equation B.4.1 we get

E Err N ( θt(k) ) max        4Ω ( b n ) 3/2 √ (1-b n )(2-b n ) 1 12L √ n k 2b
, 4Ω The following well-known result proved by [START_REF] Gelfand | Normierte ringe[END_REF] relates matrix norms with spectral radii. Theorem 6 (Gelfand's formula). Let • be a matrix norm on R n and let ρ(A) be the spectral radius of A ∈ R n (the maximum absolute value of the eigenvalues of A). Then, lim t→∞ A t 1/t = ρ(A).

In our case, we thus have the following results, that describes the expected rate of convergence of the last iterate sequence (θ t ) t towards 0. It is governed by the spectral radii ρ(A (η) ) whenever the later is strictly lower than 1.

Corollary 2. The behavior of θ full t , θ cyc t and θ rand t is related to the corresponding operators by the following expressions: 

for all matrix games with positive payoff matrix A ∈ R 2d×2d . This is not tractable in closed form. However, we may study the distribution of these values for random games. . 50-player completely skew smooth game with increasing noise (sampling with variance reduction). In the non-noisy setting, player sampling reduces convergence speed. On the other hand, it provides a speed-up in the high noise regime.

D. Experimental results and details

We provide the necessary details for reproducing the experiments of §5.

D.1. Quadratic games

Generation of random matrices. We sample two random Gaussian matrix G and F in R nd×nd , where each coefficient g ij , f ij ∼ N (0, 1) is sampled independently. We form a symmetric matrix A sym = 1 2 (G + G T ), and a skew matrix A skew = 1 2 (F -F T ). To make A sym positive definite, we compute its lowest eigenvalue µ 0 , and update A sym ← A sym + (µµ 0 )I nd×nd , where µ regulates the conditioning of the problem and is set to 0.01. We then form the final matrix A = (1α)A sym + αA skew , where α is a parameter between 0 and 1, that regulates the skewness of the game.

Parameters for quadratic games. Fig. 2 compare rates of convergence for doubly-stochastic extra-gradient and extragradient, for increasing problem complexity. Used parameters are reported in Table 2. Note that the conclusion reported in §5.1 regarding the impact of noise and the impact of cyclic sampling holds for all configurations we have tested; we designed increasingly complex experiments for concisely showing the efficiency and limitations of doubly-stochastic extra-gradient.

Grids. For each experiment, we sampled 5 matrices (A i ) i with skewness parameter α. We performed a grid-search on learning rates, setting η ∈ {10 -5 , • • • , 1}, with 32 logarithmically-spaced values, making sure that the best performing learning rate is always strictly in the tested range.

Limitations in skew non-noisy games. As mentioned in the main section, player sampling can hinder performance in completely skew games (α = 1) with non-noisy losses. Those problems are the hardest and slower to solve. They corresponds to fully adversarial settings, where sub-game between each pair is zero-sum. We illustrate this finding in Fig. 7, showing how the performance of player sampling improves with noise. We emphasize that the non-noisy setting is not 

Figure 1 .

 1 Figure 1. Left: We compute masked gradient during the extrapolation and update steps of the extra-gradient algorithm, to perform faster updates. Right: Optimization trajectories for doubly stochastic extra-gradient and full-update extra-gradient, on a convex single-parameter two-player convex game. Player sampling improves the expected rate of convergence toward the Nash equilibrium (0, 0).

  50-player smooth game with increasing noise (sampling with variance reduction).

  Figure3. Left: Spectral radii of operators for random 2-player matrix games. Right: each radius is compared to the median radius obtained for full extra-gradient, within each category of skewness and conditioning of random payoff matrices. Cyclic sampling lowers spectral radii and improve convergence rates.

Figure 4 .

 4 Figure 4. Training curves and samples using doubly-stochastic extragradient on CIFAR10 with WGAN-GP losses, for the best learning rates. Doubly-stochastic extrapolation allows faster and better training, most notably in term of Fréchet Inception Distance (10k). Curves averaged over 5 runs.

Figure 5 .

 5 Figure 5. Left: Player sampling allows faster training of mixtures of GANs. Right: Player sampling trains better ResNet WGAN-GP. FID and IS computed on 50k samples, averaged over 5 runs. time; (ii) DSEG extrapolates and updates successive pairs (g θj , f ϕj ) alternating the 4-step updates from §5.2.

B. 3 .

 3 Doubly-stochastic mirror-prox-Proof of Theorem 2 B.3.1. ALGORITHM While Alg. 1 presents the doubly-stochastic algorithm in the Euclidean setting, we consider here its mirror version. Algorithm 3 Doubly-stochastic mirror-prox 1: Input: initial point θ 0 ∈ R d , stepsizes (γ τ ) τ ∈[t] , mini-batch size over the players b ∈ [n]. 2: for τ = 0, . . . , t do 3:

B. 4 .

 4 Doubly-stochastic mirror-prox with variance reduction-Proof of Theorem 3 B.4.1. ALGORITHM With the same notations as above, we present a version of Alg. 1 with variance reduction in the mirror framework.

.

  The result follows using 1b/n < 1 and 2b/n < 2.

For

  

  The proof is analogous for the three cases. Using the definition of operator norm, distributions of the spectral radii Comparing the cyclic, random and full sampling schemes thus requires to compare the valuesA full min γ∈R + ρ(A (γ) full ), A cyc min γ∈R + ρ(A (γ) cyc ), A rand min γ∈R + ρ(A (γ)rand ),

  Figure7. 50-player completely skew smooth game with increasing noise (sampling with variance reduction). In the non-noisy setting, player sampling reduces convergence speed. On the other hand, it provides a speed-up in the high noise regime.

Table 1 .

 1 Proofs strongly relies on the specific structure of the noise introduced by

	Stochastic extra-gradient	Doubly-stochastic extra-gradient
		Update
	Gradient Extra. gradient Update Full gradient Full extra. grad.	Extrapolate

  Input: initial point θ 0 ∈ R d , stepsizes (γ τ ) τ ∈[t] , minibatch size over the players b ∈ [n].

	2: With variance reduction (VR), R ← F (θ 0 , [1, n]) as in (5), i.e. the full simultaneous gradient.
	3: for τ = 0, . . . , t do
	4:

1:

Table 2 .

 2 Parameters used in Fig.2for increasing problem complexity.

	Figure Players # Exp.	Skewness α Noise σ	Reg. λ
	Fig. 2a	5	Smooth, no-noise	0.9	0	0
			Smooth, noisy	0.9	1	0.
	Fig. 2b	50	Skew, non-smooth, noisy Smooth, no-noise	1. 0.9	1 0	2 • 10 2 0
	Fig. 2c	50	Non-smooth, noisy Skew, non-smooth, noisy Smooth, skew, lowest-noise	0.9 1. 0.95	1 1 1	2 • 10 -2 2 • 10 -2 0.
				0.95	10	0.
			Smooth, skew, highest-noise	0.95	100	0.
	Fig. 7	50	Smooth, skew, no-noise	1	0	0.
				1	10	0.
			Smooth, skew, highest-noise	1	50	0

C. Spectral convergence analysis for non-constrained 2-player games

We observed in the experimental section that player sampling tended to be empirically faster than full extra-gradient, and that cyclic sampling had a tendency to be better than random sampling.

To have more insight on this finding, let us study a simplified version of the random two-player quadratic games. Let A ∈ R 2d×2d be formed by stacking the matrices A i ∈ R d×2d for each i ∈ [d]. We assume that A is invertible and has a positive semidefinite symmetric part. For i ∈ {1, 2}, we define the loss of the i-th player i as

where A ii ∈ R d and θ i ∈ R di . Contrary to the random quadratic games setting in §5.1, we do not enforce here any parameter constraints nor regularization. Therefore, this places us in the extra-gradient (Euclidean) setting. We restrict our attention to the non-noisy regime.

C.1. Recursion operator for the different sampling schemes

We study the "algorithm operator" A that appears in the recursion θ k+4 = A(θ k ) for the different sampling schemes. k is the number of gradient computations. We consider steps of 4 evaluation as this corresponds to a single iteration of full extra-gradient.

Full extrapolation and update. We have ∇ i i (θ) = A i θ. Since A is invertible, θ = 0 is the only Nash equilibrium. The full extra-gradient updates with constant stepsize are

By introducing A (γ)

Remark that (44) contains two iterations of Alg. 1; θ k+1 and θ k+3 are extrapolations and θ k+2 and θ k+4 are updates.

Defining

Random sampling. Extra-gradient with random subsampling (b = 1) rewrites as

.

where S k+1 , S k+2 , S k+3 , S k+4 take values 1 and 2 with equal probability and pairwise are independent. Note that we also enroll two iterations of sampled extra-gradient, as we consider a budget of 4 gradient evaluations. Let Experiment. We sample matrices A in R 2d×2d (with d = 3) as the weighted sum of a random positive definite matrix A sym and of a random skew matrix A skew . We refer to App. D for a detailed description of the matrix sampling method. We vary the weight α ∈ [0, 1] of the skew matrix and the lowest eigenvalue µ of the matrix A sym . We sample 300 different games and compute A (η) on a grid of step sizes η, for the three different methods. We thus estimate the best algorithmic spectral radii defined in (45).

Results and interpretation. The distributions of algorithm spectral radii are presented in Fig. 6. We observe that the algorithm operator associated with sampling one among two players at each update is systematically more contracting than the standard extra-gradient algorithm operator, providing a further insight for the faster rates observed in §5.1, Fig. 2. Radius tend to be smaller for cyclic sampling than random sampling, in most problem geometry. This is especially true in well conditioned problem (high µ), little-skew problems (skewness α < .5) and completely skew problems α = 1. The later gives insights to explain the good performance of cyclic player sampling for GANs ( §5.2), as those are described by skew games (zero-sum notwithstanding the discriminator penalty in WP-GAN).

On the other hand, we observe that radii are more spread using cyclic sampling for intermediary skew problerm (α = .75), hinting that worst-case rates may be better for random sampling.

relevant to machine learning or reinforcement learning problems.

D.2. Generative adversarial networks

Models and loss. We use the Residual network architecture for generator and discriminator proposed by [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF]. We use a WGAN-GP loss, with gradient penalty λ = 10. As advocated by [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF], we use a 10 times lower stepsize for the generator. We train the generator and discriminator using the Adam algorithm [START_REF] Kingma | A Method for Stochastic Optimization[END_REF], and its straight-forward extension proposed by [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF].

Grids. We perform 5 • 10 5 generator updates. We average each experiments with 5 random seeds, and select the best performing generator learning rate η ∈ {2 • 10 -5 , 5 • 10 -5 , 8 • 10 -5 , 1 • 10 -4 , 2 • 10 -4 }, which turned out to be 5 • 10 -5 for both subsampled and non-subsampled extra-gradient.