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Abstract
Data-driven modeling increasingly requires to
find a Nash equilibrium in multi-player games, e.g.
when training GANs. In this paper, we analyse a
new extra-gradient method for Nash equilibrium
finding, that performs gradient extrapolations and
updates on a random subset of players at each
iteration. This approach provably exhibits a better
rate of convergence than full extra-gradient for
non-smooth convex games with noisy gradient
oracle. We propose an additional variance reduc-
tion mechanism to obtain speed-ups in smooth
convex games. Our approach makes extrapolation
amenable to massive multiplayer settings, and
brings empirical speed-ups, in particular when
using a heuristic cyclic sampling scheme. Most
importantly, it allows to train faster and better
GANs and mixtures of GANs.

A growing number of models in machine learning require
to optimize over multiple interacting objectives. This is
the case of generative adversarial networks (Goodfellow
et al., 2014), imaginative agents (Racanière et al., 2017), hi-
erarchical reinforcement learning (Wayne & Abbott, 2014)
and multi-agent reinforcement learning (Bu et al., 2008).
Solving saddle-point problems (see e.g., Rockafellar, 1970),
that is key in robust learning (Kim et al., 2006) and image
reconstruction (Chambolle & Pock, 2011), also falls in this
category. These examples can be cast as games where play-
ers are parametrized modules that compete or cooperate to
minimize their own objective functions.

To define a principled solution to a multi-objective optimiza-
tion problem, we may rely on the notion of Nash equilib-
rium (Nash, 1951). At a Nash equilibrium, no player can im-
prove its objective by unilaterally changing its strategy. The
theoretical section of this paper considers the class of con-
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vex n-player games, for which Nash equilibria exist (Rosen,
1965). Finding a Nash equilibrium in this setting is equiv-
alent to solving a variational inequality problem (VI) with
a monotone operator (Rosen, 1965; Harker & Pang, 1990).
This VI can be solved using first-order methods, that are
prevalent in single-objective optimization for machine learn-
ing. Stochastic gradient descent (the simplest first-order
method) is indeed known to converge to local minima under
mild conditions met by ML problems (Bottou & Bousquet,
2008). Yet, while gradient descent can be applied simulta-
neously to different objectives, it may fail in finding a Nash
equilibrium in very simple settings (see e.g., Letcher et al.,
2019; Gidel et al., 2019). Two alternative modifications of
gradient descent are necessary to solve the VI (hence Nash)
problem: averaging (Magnanti & Perakis, 1997; Nedić &
Ozdaglar, 2009) or extrapolation with averaging. The later
was introduced as the extra-gradient (EG) method by Ko-
rpelevich (1976)); it is faster (Nemirovski, 2004) and can
handle noisy gradients (Juditsky et al., 2011). Extrapola-
tion corresponds to an opponent shaping step: each player
anticipates its opponents’ next moves to update its strategy.

In n-player games, extra-gradient computes 2n single player
gradients before performing a parameter update. Whether
in massive or simple two-players games, this may be an
inefficient update strategy: early gradient information, com-
puted at the beginning of each iteration, could be used to
perform eager updates or extrapolations, similar to how al-
ternated update of each player would behave. Therefore, we
introduce and analyse new extra-gradient algorithms that
extrapolate and update random or carefully selected subsets
of players at each iteration (Fig. 1).

– We review the extra-gradient algorithm for differentiable
games and outline its shortcomings (§3.1). We propose
a doubly-stochastic extra-gradient (DSEG) algorithm
(§3.2) that updates the strategies of a subset of players,
thus performing player sampling. DSEG performs faster
but noisier updates than the original full extra-gradient
method (full EG, (Juditsky et al., 2011)), that uses a
(once) stochastic gradient oracle. We introduce a vari-
ance reduction method to attenuate the noise added by
player sampling in smooth games.

– We derive convergence rates for DSEG in the convex
setting (§4), as summarized in Table 1. Proofs strongly
relies on the specific structure of the noise introduced by
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Figure 1. Left: We compute masked gradient during the extrapolation and update steps of the extra-gradient algorithm, to perform faster
updates. Right: Optimization trajectories for doubly stochastic extra-gradient and full-update extra-gradient, on a convex single-parameter
two-player convex game. Player sampling improves the expected rate of convergence toward the Nash equilibrium (0, 0).

Table 1. New and existing (Juditsky et al., 2011) convergence rates
for convex games, w.r.t. the number of gradient computations k.
Doubly-stochastic extra-gradient (DSEG) multiplies the noise con-
tribution by a factor α ,

√
b/n, where b is the number of sampled

players among n. G bounds the gradient norm. L: Lip. constant
of losses’ gradient. σ2 bounds the gradient estimation noise. Ω:
diameter of the param. space.

α,
√
b/n Non-smooth Smooth

DSEG O
(
n
√

Ω
k

(G2 + α2σ2)

)
O
(

ΩLn3/2

αk
+ αnσ

√
Ω
k

)
Full EG O

(
n
√

Ω
k

(G2 + σ2)

)
O
(

ΩLn3/2

k
+ nσ

√
Ω
k

)

player sampling. Our rates exhibit a better dependency
on gradient noise compared to stochastic extra-gradient,
and are thus interesting in the high-noise regime com-
mon in machine learning.

– Empirically, we first validate that DSEG is faster in
massive differentiable convex games with noisy gradi-
ent oracles. We further show that non-random player
selection improves convergence speed, and provide ex-
planations for this phenomenon. In practical non-convex
settings, we find that cyclic player sampling improves
the speed and performance of GAN training (CIFAR10,
ResNet architecture). The positive effects of extrapola-
tion and alternation combine: DSEG should be used to
train GANs, and even more to train mixtures of GANs.

2. Related work
Extra-gradient method. In this paper, we focus on find-
ing the Nash equilibrium in convex n-player games, or
equivalently the Variational Inequality problem (Harker &
Pang, 1990; Nemirovski et al., 2010). This can be done us-
ing extrapolated gradient (Korpelevich, 1976), a “cautious”
gradient descent approach that was promoted by Nemirovski
(2004) and Nesterov (2007), under the name mirror-prox—

we review this work in §3.1. Juditsky et al. (2011) propose
a stochastic variant of mirror-prox, that assumes access to
a noisy gradient oracle. In the convex setting, their results
guarantees the convergence of the algorithm we propose,
albeit with very slack rates. Our theoretical analysis re-
fines these rates to show the usefulness of player sampling.
Recently, Bach & Levy (2019) described a smoothness-
adaptive variant of this algorithm similar to AdaGrad (Duchi
et al., 2011), an approach that can be combined with ours.
Yousefian et al. (2018) consider multi-agent games on net-
works and analyze a stochastic variant of extra-gradient that
consists in randomly extrapolating and updating a single
player. Compared to them, we analyse more general player
sampling strategies. Moreover, our analysis holds for non-
smooth losses, and provides better rates for smooth losses,
through variance reduction. We also analyse precisely the
reasons why player sampling is useful (see discussion in
§4), an original endeavor.

Extra-gradient in non-convex settings. Extra-gradient
has been applied in non-convex settings. Mertikopoulos
et al. (2019) proves asymptotic convergence results for extra-
gradient without averaging in a slightly non-convex case.
Gidel et al. (2019) demonstrate the effectiveness of extra-
gradient for GANs. They argue that it allows to escape the
potentially chaotic behavior of simultaneous gradient up-
dates (examplified by e.g. Cheung & Piliouras (2019)). Ear-
lier work on GANs propose to replace simultaneous updates
with alternated updates, with a comparable improvement
(Gulrajani et al., 2017). In §5, we show that alternating
player updates while performing opponent extrapolation
improves the training speed and quality of GANs.

Opponent shaping and gradient adjustment. Extra-
gradient can also be understood as an opponent shaping
method: in the extrapolation step, the player looks one step
in the future and anticipates the next moves of his opponents.
Several recent works proposed algorithms that make use of
the opponents’ information to converge to an equilibrium
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(Zhang & Lesser, 2010; Foerster et al., 2018; Letcher et al.,
2019). In particular, the “Learning with opponent-learning
awareness” (LOLA) algorithm is known for encouraging
cooperation in cooperative games (Foerster et al., 2018).
Lastly, some recent works proposed algorithms to modify
the dynamics of simultaneous gradient descent by adding
an adjustment term in order to converge to the Nash equilib-
rium (Mazumdar et al., 2019) and avoid oscillations (Bal-
duzzi et al., 2018; Mescheder et al., 2017). One caveat
of these works is that they need to estimate the Jacobian
of the simultaneous gradient, which may be expensive in
large-scale systems or even impossible when dealing with
non-smooth losses as we consider in our setting. This is or-
thogonal to our approach that finds solutions of the original
VI problem (4).

3. Solving convex games with partial
first-order information

We review the framework of Cartesian convex games and
the extra-gradient method in §3.1. Building on these, we
propose to augment extra-gradient with player sampling and
variance reduction in §3.2.

3.1. Solving convex games with gradients

In a game, each player observes a loss that depends on the
independent parameters of all other players.

Definition 1. A standard n-player game is given by a set
of n players with parameters θ = (θ1, . . . , θn) ∈ Θ ⊂ Rd
where Θ decomposes into a Cartesian product

∏n
i=1 Θi.

Each player’s parameter θi lives in Θi ⊂ Rdi . Each player
is given a loss function `i : Θ→ R.

For example, generative adversarial network (GAN) training
is a standard game between a generator and discriminator
that do not share parameters. We make the following as-
sumption over the geometry of losses and constraints, that
is the counterpart of the convexity assumption in single-
objective optimization.

Assumption 1. The parameter spaces Θ1, . . . ,Θn are com-
pact, convex and non-empty. Each player’s loss `i(θi, θ−i)
is convex in its parameter θi and concave in θ−i, where
θ−i contains all other players’ parameters. Moreover,∑n
i=1 `i(θ) is convex in θ.

Ass. 1 implies that Θ has a diameter Ω ,
maxu,z∈Θ ‖u− z‖2. Note that the losses may be
non-differentiable. A simple example of Cartesian convex
games satisfying Ass. 1, that we will empirically study in
§5, are matrix games (e.g., rock-paper-scissors) defined
by a positive payoff matrix A ∈ Rd×d, with parameters
θ corresponding to n mixed strategies θi lying in the
probability simplex4di .

Nash equilibria. Joint solutions to minimizing losses
(`i)i are naturally defined as the set of Nash equilibria (Nash,
1951) of the game. In this setting, we look for equilibria
θ? ∈ Θ such that

∀ i ∈ [n], `i(θ
i
?, θ
−i
? ) = min

θi∈Θi
`i(θ

i, θ−i? ). (1)

A Nash equilibrium is a point where no player can bene-
fit by changing his strategy while the other players keep
theirs unchanged. Ass. 1 implies the existence of a Nash
equilibrium (Rosen, 1965). We quantify the inaccuracy of a
solution θ by the functional Nash error, also known as the
Nikaidô & Isoda (1955) function:

ErrN (θ) ,
n∑
i=1

[
`i(θ)− min

z∈Θi
`i(z, θ

−i)

]
. (2)

This error, computable through convex optimization, quan-
tifies the gain that each player can obtain when deviating
alone from the current strategy. In particular, ErrN (θ) = 0
if and only if θ is a Nash equilibrium; thus ErrN (θ) consti-
tutes a propose indication of convergence for sequence of
iterates seeking a Nash equilibrium. We bound this value in
our convergence analysis (see §4).

First-order methods and extrapolation. In convex
games, as the losses `i are (sub)differentiable, we may
solve (1) using first-order methods. We assume access to
the simultaneous gradient of the game

F , (∇1`1, . . . ,∇n`n)> ∈ Rd,

where we write ∇i`i , ∇θi`i. It corresponds to the con-
catenation of the gradients of each player’s loss with respect
to its own parameters, and may be noisy. The losses `i
may be non-smooth, in which case the gradients ∇i`i can
be replaced by any subgradients. Simultaneous gradient
descent, that explicitly discretizes the flow of the simultane-
ous gradient may converge slowly—e.g., in matrix games
with skew-symmetric payoff and noiseless gradient oracle,
convergence of the average iterate demands decreasing step-
sizes. The extra-gradient method (Korpelevich, 1976) pro-
vides better guarantees (Nemirovski, 2004; Juditsky et al.,
2011)—e.g., in the previous example, the step-size can re-
main constant. We build upon this method.

Extra-gradient consists in two steps: first, take a gradient
step to go to an extrapolated point. Then use the gradient at
the extrapolated point to perform a gradient step from the
original point: at iteration τ ,

(extrapolation) θτ+1/2 = pΘ[θτ − γτF (θτ )],

(update) θτ+1 = pΘ[θτ − γτF (θτ+1/2)],
(3)

where pΘ[·] is the Euclidean projection onto the constraint
set Θ, i.e. pΘ[z] = argminθ∈Θ ‖θ − z‖22. This "cautious"
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approach allows to escape cycling orbits of the simultaneous
gradient flow, that may arise around equilibrium points with
skew-symmetric Hessians (see Fig. 1). The generalization
of extra-gradient to general Banach spaces equipped by
a Bregman divergence was introduced as the mirror-prox
algorithm (Nemirovski, 2004). The new convergence results
of §4 extend to the mirror setting (see §A.1). As recalled in
Table 1, Juditsky et al. (2011) provide rates of convergence
for the average iterate θ̂t = 1

t

∑t
τ=1 θτ . Those rates are

introduced for the equivalent variational inequality (VI)
problem, finding

θ? ∈ Θ such that F (θ?)
>(θ − θ?) > 0 ∀ θ ∈ Θ, (4)

where Ass. 1 ensures that the simultaneous gradient F is a
monotone operator (see §A.2 for a review).

3.2. DSEG: Partial extrapolation and update for
extra-gradient

The proposed algorithms are theoretically analyzed in the
convex setting §4, and empirically validated in convex and
non-convex setting in §5.

Caveats of extra-gradient. In systems with large number
of players, an extra-gradient step may be computationally
expensive due to the high number of backward passes nec-
essary for gradient computations. Namely, at each iteration,
we are required to compute 2n gradients before performing
a first update. This is likely to be inefficient, as we could
use the first computed gradients to perform a first extrap-
olation or update. This remains true for games down to
two players. In a different setting, stochastic gradient de-
scent (Robbins & Monro, 1951) updates model parameters
before observing the whole data, assuming that partial ob-
servation is sufficient for progress in the optimization loop.
Similarly, in our setting, partial gradient observation should
be sufficient to perform extrapolation and updates toward
the Nash equilibrium.

Player sampling. While standard extra-gradient performs
at each iteration two passes of player’s gradient computa-
tion, we therefore compute doubly-stochastic simultaneous
gradient estimates, where only the gradients of a random
subset of players are evaluated. This corresponds to evaluat-
ing a simultaneous gradient that is affected by two sources
of noise. We sample a mini-batchP of players of size b 6 n,
and compute the gradients for this mini-batch only. Further-
more, we assume that the gradients are noisy estimates, e.g.,
with noise coming from data sampling. We then compute
a doubly-stochastic simultaneous gradient estimate F̃ as
F̃ , (F̃ (1), . . . , F̃ (n))> ∈ Rd where

F̃ (i)(θ,P) ,

{
n
b · gi(θ) if i ∈ P
0di otherwise

, (5)

Algorithm 1 Doubly-stochastic extra-gradient.

1: Input: initial point θ0 ∈ Rd, stepsizes (γτ )τ∈[t], mini-
batch size over the players b ∈ [n].

2: With variance reduction (VR), R ← F̃ (θ0, [1, n]) as
in (5), i.e. the full simultaneous gradient.

3: for τ = 0, . . . , t do
4: Sample mini-batches of players P , P ′.
5: Compute F̃τ+ 1

2
= F̃ (θτ ,P) using (5) or VR

(Alg. 2).
6: Extrapolation step: θτ+ 1

2
← pΘ[θτ − γτ F̃τ+ 1

2
].

7: Compute F̃τ+1 = F̃ (θτ+ 1
2
,P ′) using (5) or VR

8: Gradient step: θτ+1 ← pΘ[θτ − γτ F̃τ+1].
9: Return θ̂t = [

∑t
τ=0 γτ ]−1

∑t
τ=0 γτθτ .

Algorithm 2 Variance reduced estimate of the simultaneous
gradient with doubly-stochastic sampling

1: Input: point θ ∈ Rd, mini-batch P , table of previous
gradient estimates R ∈ Rd.

2: Compute F̃ (θ,P) as specified in equation (5).
3: for i ∈ P do
4: Compute F̄ (i) ← F̃ (i)(θ) + (1− n

b )R(i)

5: Update R(i) ← b
n F̃

(i)(θ) = gi(θ)

6: For i /∈ P , set F̄ (i) ← R(i).
7: Return estimate F̄ = (F̄ (1), ..., F̄ (n)), table R.

and gi(θ) is a noisy unbiased estimate of∇i`i(θ). The factor
n/b in (5) ensures that the doubly-stochastic simultaneous
gradient estimate is an unbiased estimator of the simulta-
neous gradient. Doubly-stochastic extra-gradient (DSEG)
replaces the full gradients in the update (3) by the oracle (5),
as detailed in Alg. 1.

Variance reduction for player noise. To obtain faster
rates in convex games with smooth losses, we propose to
compute a variance-reduced estimate of the gradient ora-
cle (5). This mitigates the noise due to player sampling.
Variance reduction is a technique known to accelerate con-
vergence under smoothness assumptions in similar settings.
While Palaniappan & Bach (2016); Iusem et al. (2017);
Chavdarova et al. (2019) apply variance reduction on the
noise coming from the gradient estimates, we apply it to the
noise coming from the sampling over the players. We im-
plement this idea in Alg. 2. We keep an estimate of∇i`i for
each player in a table R, which we use to compute unbiased
gradient estimates with lower variance, akin to the approach
of SAGA (Defazio et al., 2014) to reduce the variance of
data noise.

Player sampling strategies. For convergence guarantees
to hold, each player must have an equal probability of being
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sampled (equiprobable player sampling condition). Sam-
pling uniformly over b-subsets of [n] is a reasonable way to
fulfill this condition as all players have probability p = b/n
of being chosen.

As a strategy to accelerate convergence, we propose to cycle
over the n(n − 1) pairs of different players (with b = 1).
At each iteration, we extrapolate the first player of the pair
and update the second one. We shuffle the order of pairs
once the block has been entirely seen. This scheme bridges
extrapolation and alternated gradient descent: for GANs,
it corresponds to extrapolate the generator before updating
the discriminator, and vice-versa, cyclically. Although its
convergence is not guaranteed, cyclic sampling over players
is powerful for convex quadratic games (§5.1) and GANs
(§5.2).

4. Convergence for convex games
We derive new rates for DSEG with random player sampling,
improving the analysis of Juditsky et al. (2011). Player sam-
pling can be seen as an extra source of noise in the gradient
oracle. Hence the results of Juditsky et al. on stochastic
extra-gradient guarantees the convergence of DSEG, as we
detail in Corollary 1. Unfortunately, the convergence rates
in this corollary do not predict any improvement of DSEG
over full extra-gradient. Our main theoretical contribution
is therefore a refinement of these rates for player-sampling
noise. Improvements are obtained both for non-smooth and
smooth losses, the latter using the proposed variance reduc-
tion approach. Our results predict better performance for
DSEG in the high-noise regime. Results are stated here
in Euclidean spaces for simplicity; they are proven in the
more general mirror setting in App. B. In the analysis, we
separately consider the two following assumptions on the
losses.
Assumption 2a (Non-smoothness). For each i ∈
[n], the loss `i has a bounded subgradient, namely
maxh∈∂i`i(θ) ‖h‖2 6 Gi for all θ ∈ Θ. In this case, we
also define the quantity G =

√∑n
i=1G

2
i /n.

Assumption 2b (Smoothness). For each i ∈ [n],
the loss `i is once-differentiable and L-smooth, i.e.
‖∇i`i(θ)−∇i`i(θ′)‖2 6 L‖θ − θ′‖2, for θ, θ′ ∈ Θ.

Similar to Juditsky et al. (2011); Robbins & Monro (1951),
we assume unbiasedness of the gradient estimate and bound-
edness of the variance.
Assumption 3. For each player i, the noisy gradient gi is
unbiased and has bounded variance:

∀ θ ∈ Θ, E[gi(θ)] = ∇i`i(θ),
E[‖gi(θ)−∇i`i(θ)‖22] 6 σ2.

(6)

To compare DSEG to simple stochastic EG, we must take
into account the cost of a single iteration, that we assume

proportional to the number b of gradients to estimate at
each step. We therefore set k , 2 b t to be the number of
gradients estimates computed up to iteration t, and re-index
the sequence of iterate (θ̂t)t∈N as (θ̂k))k∈2bN. We give rates
with respect to k in the following propositions.

4.1. Slack rates derived from Juditsky et al.

Let us first recall the rates obtained by Juditsky et al. (2011)
with noisy gradients but no player sampling.

Theorem 1 (Adapted from Juditsky et al. (2011)). We con-
sider a convex n-player game where Ass. 2a and Ass. 3 hold.
We run Alg. 1 for t iterations without player sampling, thus
performing k = 2n t gradient evaluations. With optimal
constant stepsize, the expected Nash error verifies

E
[
ErrN (θ̂k)

]
6 14n

√
Ω

3k
(G2 + 2σ2). (7)

Assuming smoothness (Ass. 2b) and optimal stepsize,

E
[
ErrN (θ̂k)

]
6 max

{
7ΩLn3/2

k
, 14n

√
2Ωσ2

3k

}
. (8)

Player sampling fits within the framework of noisy gradient
oracle (6), replacing the gradient estimates (gi)i∈[n] with
the estimates (F̃ (i))i∈[n] from (5), and updating the variance
σ2 accordingly. We thus derive the following corollary.

Corollary 1. We consider a convex n-player game where
Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations with
equiprobable player sampling, thus performing k = 2 b t
gradient evaluations. With optimal constant stepsize, the
expected Nash error verifies

E
[
ErrN (θ̂k)

]
6 O

(
n

√
Ω

k

(n
b
G2 + σ2

))
.

Assuming smoothness (Ass. 2b) and optimal stepsize,

E
[
ErrN (θ̂k)

]
6 O

(
ΩLn3/2

k
+ n

√
Ω

k
(
n

b
L2Ω2 + σ2)

)
.

The proof is in §B.1. The notation O(·) hides numerical
constants. Whether in the smooth or non-smooth case, the
upper-bounds from Corollary 1 does not predict any im-
provement due to player sampling, as the factor before the
gradient size G or LΩ is increased, and the factor before the
noise variance σ remains constant.

4.2. Tighter rates using noise structure

Fortunately, a more cautious analysis allows to improve
these bounds, by taking into account the noise structure
induced by sampling in (5). We provide a new result in the
non-smooth case, proven in §B.3.



Extra-gradient with player sampling

Theorem 2. We consider a convex n-player game where
Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations with
equiprobable player sampling, thus performing k = 2 b t
gradient evaluations. With optimal constant stepsize, the
expected Nash error verifies

E
[
ErrN (θ̂k)

]
6 O

(
n

√
Ω

k

(
G2 +

b

n
σ2

))
. (9)

Compared to Corollary 1, we obtain a factor
√

b
n in front

of the noise term σ√
k

, without changing the constant before
the gradient size G. We can thus expect faster convergence
with noisy gradients. (9) is tightest when sampling a single
player, i.e. when b = 1.

A similar improvement can be obtained with smooth losses
thanks to the variance reduction technique proposed in
Alg. 2. This is made clear in the following result, proven in
§B.4.

Theorem 3. We consider a convex n-player game where
Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations with
equiprobable player sampling, thus performing k = 2 b t
gradient evaluations. Alg. 2 yields gradient estimates. With
optimal constant stepsize, the expected Nash error verifies

E
[
ErrN (θ̂k)

]
6O

(√n

b

ΩLn3/2

k
+

√
b

n
n

√
Ωσ2

k

)
. (10)

The upper-bound (10) should be compared with the bound
of full extra-gradient (8)—that it recovers for b = n. With
player sampling, the constant before the gradient size LΩ
is bigger of a factor

√
n
b . On the other hand, the constant

before the noise term σ is smaller of a factor
√

n
b . Player

sampling is therefore beneficial when the noise term domi-
nates, which is the case whenever the number of iterations
is such that k > ΩL2n

σ2

(
n
b

)2
. For k →∞, the bound (10) is

once again tightest by sampling a random single player.

To sum up, doubly-stochastic extra-gradient convergence is
controlled with a better rate than stochastic extra-gradient
(EG) with non-smooth losses; with smooth losses, DSEG
exhibits the same rate structure in 1

k + 1√
k

as stochastic EG,
with a better dependency on the noise but worse dependency
on the gradient smoothness. In the high noise regime, or
equivalently when demanding high precision results, DSEG

brings the same improvement of a factor
√

b
n before the

constant σ√
k

, for both smooth and non-smooth problems.

Step-sizes. The stepsizes of the previous propositions are
assumed to be constant and are optimized knowing the ge-
ometry of the problem. They are explicit in App. B. As in
full extra-gradient, convergence can be guaranteed without
such knowledge using decreasing step-sizes. In experiments,

we perform a grid-search over stepsizes to obtain the best
results given a computational budget k.

5. Convex and non-convex applications
We show the performance of doubly-stochastic extra-
gradient in the setting of quadratic games, comparing dif-
ferent sampling schemes. We assess the speed and final
performance of DSEG in the practical context of GAN train-
ing. A PyTorch/Numpy package is attached.

5.1. Random convex quadratic games

We consider a game where n players can play d actions, with
payoffs provided by a matrix A ∈ Rnd×nd, an horizontal
stack of matrices Ai ∈ R(d×nd) (one for each player). The
loss function `i of each player is defined as its expected
payoff given the n mixed strategies (θ1, . . . , θn), i.e. ∀ i ∈
[n], ∀ θ ∈ Θ = 4d1 × · · · × 4dn ,

`i(θ
i, θ−i) = θi

>
Aiθ + λ‖θi − 1

di
‖1,

where λ is a regularization parameter that introduces non-
smoothness and pushes strategies to snap to the simplex
center. The positivity of A, i.e. θ>Aθ > 0 for all θ ∈ Θ, is
equivalent to the convexity of the game.

Experiments. We sample A as the weighted sum of a ran-
dom symmetric positive definite matrix and a skew matrix.
We compare the convergence speeds of extra-gradient algo-
rithms, with or without player sampling. We vary three
parameters: the variance σ of the noise in the gradient
oracle (we add a Gaussian noise on each gradient coor-
dinate), the non-smoothness λ of the loss, and the skewness
of the matrix. We consider small games and large games
(n ∈ {5, 50}). We use the (simplex-adapted) mirror variant
of doubly-stochastic extra-gradient, and a constant stepsize,
selected among a grid (see App. D). We use variance reduc-
tion when λ = 0 (smooth case). We also consider cyclic
sampling in our benchmarks, as described in §3.2.

Results. Fig. 2 compares the convergence speed of player-
sampled extra-gradient for the various settings and sampling
schemes. As predicted by Theorem 2 and 3, the regime of
convergence in 1/

√
k in the presence of noise is unchanged

with player sampling. DSEG always brings a benefit in the
convergence constants (Fig. 2a-b), in particular for smooth
noisy problems (Fig. 2a center, Fig. 2b left). Most interest-
ingly, cyclic player selection improves upon random sam-
pling for small number of players (Fig. 2a).

Fig. 2c highlights the trade-offs in Theorem 3: as the noise
increase, the size of player batches should be reduced. Not
that for skew-games with many players (Fig. 2b col. 3), our
approach only becomes beneficial in the high-noise regime.
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Figure 2. Player sampled extra-gradient outperform vanilla extra-gradient for small noisy/non-noisy smooth/non-smooth games. Cyclic
sampling performs better than random sampling, especially for 5 players (a). Higher sampling ratio is beneficial in high noise regime (c),
Curves averaged over 5 games and 5 runs.
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Figure 3. Left: Spectral radii of operators for random 2-player
matrix games. Right: each radius is compared to the median radius
obtained for full extra-gradient, within each category of skewness
and conditioning of random payoff matrices. Cyclic sampling
lowers spectral radii and improve convergence rates.

As predicted in §4, full EG should be favored with noiseless
oracles (see App. D).

Spectral study of sampling schemes. The benefit of
cyclic sampling can be explained for simple quadratic
games. We consider a two-player quadratic game where
`i(θ) = θi

>
Aθ for i = 1, 2, θ = (θ1, θ2) is an uncon-

strained vector of R2×d, and gradients are noiseless. In this
setting, full EG and DSEG expected iterates follows a linear
recursion E[θk+4] = A(E[θk]), where k is the number of
gradient evaluation and A is a linear “algorithm operator”,
computable in closed form. A lower spectral radius for A

yields a better convergence rate for (E[θk])k, in light of
Gelfand (1941) formula—we compare spectral radii across
methods.

We sample random payoff matrices A of varying skewness
and condition number, and compare the spectral radius A
associated to full EG, and DSEG with cyclic and random
player selection. As summarized in Fig. 3, player sam-
pling reduces the spectral radius of A on average; most
interestingly, the reduction is more important using cyclic
sampling. Spectral radii are not always in the same order
across methods, hinting that sampling can be harmful in the
worst cases. Yet cyclic sampling will perform best on av-
erage in this (simple) setting. We report details and further
figures in App. C.

5.2. Generative adversarial networks (GANs)

We evaluate the performance of the player sampling ap-
proach to train a generative model on CIFAR10 (Krizhevsky
& Hinton, 2009). We use the WGAN-GP loss (Gulrajani
et al., 2017), that defines a non-convex two-player game.
Our theoretical analysis indeed shows a 1/

√
2 speed-up for

noisy monotonous 2-player games—the following suggests
that speed-up also arises in a non-convex setting. We com-
pare the full stochastic extra-gradient (SEG) approach advo-
cated by Gidel et al. (2019) to the cyclic sampling scheme
proposed in §3.2 (i.e. extra. D, upd. G, extra. G, upd. D).
We use the ResNet (He et al., 2016) architecture from Gidel
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rates. Doubly-stochastic extrapolation allows faster and better training, most notably in term of Fréchet Inception Distance (10k). Curves
averaged over 5 runs.

et al. (2019), and select the best performing stepsizes among
a grid (see App. D). We use the Adam (Kingma & Ba, 2015)
refinement of extra-gradient (Gidel et al., 2019) for both the
baseline and proposed methods. The notion of functional
Nash error does not exist in the non-convex setting. We
estimate the convergence speed toward an equilibrium by
measuring a quality criterion for the generator. We therefore
evaluate the Inception Score (Salimans et al., 2016) and
Fréchet Inception Distance (FID, Heusel et al. (2017) along
training, and report their final values.

Results. We report training curves versus wall-clock time
in Fig. 4. Cyclic sampling allows faster and better training,
especially with respect to FID, which is more correlated
to human appreciation (Heusel et al., 2017). Fig. 5 (right)
compares our result to full extra-gradient with uniform av-
eraging. It shows substantial improvements in FID, with
results less sensitive to randomness. SEG itself slightly
outperforms optimistic mirror descent (Gidel et al., 2019;
Mertikopoulos et al., 2019).

Interpretation. Without extrapolation, alternated train-
ing is known to perform better than simultaneous updates
in WGAN-GP (Gulrajani et al., 2017). Full extrapolation
has been shown to perform similarly to alternated updates
(Gidel et al., 2019). Our approach combine extrapolation
with an alternated schedule. It thus performs better than
extrapolating with simultaneous updates. It remains true
across every learning rate we tested. Echoing our findings
of §5.1, deterministic sampling is crucial for performance,
as random player selection performs poorly (score 6.2 IS).

5.3. Mixtures of GANs

Finally, we consider a simple multi-player GAN setting,
akin to Ghosh et al. (2018), where n different genera-
tors (gθi)i seeks to fool m different discriminators (fϕj )j .
We minimize

∑
j `(gθi , fϕj ) for all i, and maximize∑

i `(gθi , fϕj ) for all j. Fake data is then sampled from
mixture

∑n
i=1 δi=Jgθi(ε), where J is sampled uniformly

in [n] and ε ∼ N (0, I). We compare two methods: (i)
SEG extrapolates and updates all (gθi)i, (fϕj )j at the same
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Figure 5. Left: Player sampling allows faster training of mixtures
of GANs. Right: Player sampling trains better ResNet WGAN-GP.
FID and IS computed on 50k samples, averaged over 5 runs.

time; (ii) DSEG extrapolates and updates successive pairs
(gθj , fϕj ) alternating the 4-step updates from §5.2.

Results. We compare the training curves of both SEG and
DSEG in Fig. 5, for a range of learning rates. DSEG outper-
form SEG for all learning rates; more importantly, higher
learning rates can be used for DSEG, allowing for faster
training. DSEG is thus appealing for mixtures of GANs, that
are useful to mitigate mode collapse in generative modeling.
We report generated images in Appendix D.

6. Conclusion
We propose and analyse a doubly-stochastic extra-gradient
approach for finding Nash equilibria. According to our con-
vergence results, updating and extrapolating random sets of
players in extra-gradient brings speed-up in noisy and non-
smooth convex problems. Numerically, doubly-stochastic
extra-gradient indeed brings speed-ups in convex settings,
especially with noisy gradients. It brings speed-ups and
improve solutions when training non-convex GANs and
mixtures of GANs, thus combining the benefits of alterna-
tion and extrapolation in adversarial training. Numerical
experiments show the importance of sampling schemes. We
take a first step towards understanding the good behavior
of cyclic player sampling through spectral analysis. We
foresee interesting developments using player sampling in
reinforcement learning: the policy gradients obtained us-
ing multi-agent actor critic methods (Lowe et al., 2017) are
noisy estimates, a setting in which it is beneficial.
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The appendices are structured as follows: App. A presents the setting and the existing results. In particular, we start by
introducing the setting of the mirror-prox algorithm in §A.1 and detail the relation between solving this problem and finding
Nash equilibria in convex n-player games §A.2. We then present the proofs of our theorems in App. B. We analyze the
DSEG algorithm (Alg. 1) and study its variance-reduction version. App. D presents further experimental results and details.

A. Existing results
A.1. Mirror-prox

Mirror-prox and mirror descent are the formulation of the extra-gradient method and gradient descent for non-Euclidean
(Banach) spaces. Bubeck (2015) (which is a good reference for this subsection) and Juditsky et al. (2011) study extra-
gradient/mirror-prox in this setting. We provide an introduction to the topic for completeness.

Setting and notations. We consider a Banach space E and a compact set Θ ⊂ E. We define an open convex set D such
that Θ is included in its closure, that is Θ ⊆ D̄ and D ∩Θ 6= ∅. The Banach space E is characterized by a norm ‖ · ‖. Its
conjugate norm ‖ · ‖∗ is defined as ‖ξ‖∗ = maxz:‖z‖61〈ξ, z〉. For simplicity, we assume E = Rn.

We assume the existence of a mirror map for Θ, which is defined as a function Φ: D → R that is differentiable and
µ-strongly convex i.e.

∀x, y ∈ D, 〈∇Φ(x)−∇Φ(y), x− y〉 > µ‖x− y‖2.
We can define the Bregman divergence in terms of the mirror map.
Definition 2. Given a mirror map Φ: D → R, the Bregman divergence D : D ×D → R is defined as

D(x, y) , Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉.

Note that D(·, ·) is always non-negative. For more properties, see e.g. Nemirovsky & Yudin (1983) and references therein.
Given that Θ is compact convex space, we define Ω = maxx∈D∩Θ Φ(x)− Φ(x1). Lastly, for z ∈ D and ξ ∈ E∗, we define
the prox-mapping as

Pz(ξ) , argmin
u∈D∩Θ

{Φ(u) + 〈ξ −∇Φ(z), u〉} = argmin
u∈D∩Θ

{D(z, u) + 〈ξ, u〉}. (11)

The mirror-prox algorithm is the most well-known algorithm to solve convex n-player games in the mirror setting (and
variational inequalities, see §A.2). An iteration of mirror-prox consists of:

Compute the extrapolated point:

{
∇Φ(yτ+1/2) = ∇Φ(θτ )− γF (θτ ),

θτ+1/2 = argminx∈D∩Θ D(x, yτ+1/2),

Compute a gradient step:

{
∇Φ(yτ+1) = ∇Φ(θτ )− γF (θτ+1/2),

θτ+1 = argminx∈D∩Θ D(x, yτ+1).
.

(12)

Remark that the extra-gradient algorithm defined in equation (3) corresponds to the mirror-prox (12) when choosing
Φ(x) = 1

2‖x‖22.
Lemma 1. By using the proximal mapping notation (11), the mirror-prox updates are equivalent to:

Compute the extrapolated point: θτ+1/2 = Pθτ (γF (θτ )),

Compute a gradient step: θτ+1 = Pθτ (γF (θτ+1/2)).

Proof. We just show that θτ+1/2 = Pθτ (γF (θτ )), as the second part is analogous.

θτ+1/2 = argmin
x∈D∩Θ

D(x, yτ+1/2)

= argmin
x∈D∩Θ

Φ(x)− 〈∇Φ(yτ+1/2), x〉

= argmin
x∈D∩Θ

Φ(x)− 〈∇Φ(θτ )− αF (θτ ), x〉

= argmin
x∈D∩Θ

〈αF (θτ ), x〉+D(x, θτ ).
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The mirror framework is particularly well-suited for simplex constraints i.e. when the parameter of each player is a
probability vector. Such constraints usually arise in matrix games. If Θi is the di-simplex, we express the negative entropy
for player i as

Φi(θ
i) =

di∑
j=1

θi(j) log θi(j).

We can then define D , int Θ = int Θ1 × · · · × int Θn and the mirror map as

Φ(θ) =

n∑
i=1

Φi(θ
i).

We use this mirror map in the experiments for random monotone quadratic games (§5.1).

A.2. Link between convex games and variational inequalities

As first noted by Rosen (1965), finding a Nash equilibrium in a convex n-player game is related to solving a variational
inequality (VI) problem. We consider a space of parameters Θ ⊆ Rd that is compact and convex, equipped with the standard
scalar product 〈·, ·〉 in Rd.

For convex n-player games (Ass. 1), the simultaneous (sub)gradient F (Eq. 3.1) is a monotone operator.

Definition 3. An operator F : Θ→ Rd is monotone if ∀θ, θ′ ∈ Θ, 〈F (θ)− F (θ′), θ − θ′〉 > 0.

Assuming continuity of the losses `i, we then consider the set of solutions to the following vairational inequality problem:

Find θ∗ ∈ Θ such that 〈F (θ), θ − θ∗〉 > 0 ∀θ ∈ Θ. (13)

Under Ass. 1, this set coincides with the set of Nash equilibria, and we may solve (13) instead of (1) (Rosen, 1965; Harker
& Pang, 1990; Nemirovski et al., 2010). (13) indeed corresponds to the first-order necessary optimality condition applied to
the loss of each player.

The quantity used to quantify the inaccuracy of a solution θ to (13) is the dual VI gap defined as ErrVI(θ) =
maxu∈Θ〈F (u), θ − u〉. However, the functional Nash error (2), also known as the (Nikaidô & Isoda, 1955) function,
is the usual performance measure for convex games. We provide the convergence rates in term of functional Nash error but
they also apply to the dual VI gap.
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B. Proofs and mirror-setting algorithms
We start by proving Corollary 1, that derives from Juditsky et al. (2011) (§B.1). As this result is not instructive, we use the
structure of the player sampling noise in (5) to obtain a stronger result in the non-smooth case (§B.3). For this, we directly
modify the proof of Theorem 1 from Juditsky et al. (2011), using a few useful lemmas (§B.2). We then turn to the smooth
case, for which a variance reduction mechanism proves necessary (§B.4). The proof is original, and builds upon techniques
from the variance reduction literature (Defazio et al., 2014).

B.1. Proof of Corollary 1

Player sampling noise modifies the variance of the unbiased gradient estimate. Indeed, in equation (5) F̃i(θ,P) is an
unbiased estimate of∇i`i(θ), and for all i ∈ [n]

E
[
F̃i(θ,P)

]
= Prob(i ∈ P)

n

b
E [gi(θ)] = E [gi(θ)] = ∇i`i(θ).

If gi has variance bounded by σ2, we can bound the variance of F̃i(θ,P):

E
[
‖F̃i(θ,P)−∇i`i(θ)‖2

]
= E

[
‖F̃i(θ,P)− gi(θ) + gi(θ)−∇i`i(θ)‖2

]
6 2E

[
‖F̃i(θ,P)− gi(θ)‖2

]
+ 2E

[
‖gi(θ)−∇i`i(θ)‖2

]
6 2E

[
‖F̃i(θ,P)− gi(θ)‖2

]
+ 2σ2

= 2E
[
b

n

∥∥∥(n
b
− 1
)
gi(θ)

∥∥∥2

+

(
1− b

n

)
‖gi(θ)‖2

]
+ 2σ2

6 2
n− b
b

E
[
‖gi(θ)‖2

]
+ 2σ2

6 2
n− b
b

G2 + 2σ2.

Substituting σ2 by 2n−bb G2 + 2σ2 in equations (7) and (8) yields:

E
[
ErrN (θ̂t(k))

]
6 14n

√
Ω

3k

(
4n− 3b

b
G2 + 2σ2

)
= O

(
n

√
Ω

k

(n
b
G2 + σ2

))
.

E
[
ErrN (θ̂t(k))

]
6 max

{
7ΩLn3/2

k
, 28n

√
Ω((nb − 1)G2 + σ2)

3k

}

These bounds are worse than the ones in Theorem 1 when b � n. This motivates the following derivations, that
yields Theorem 2 and 3.

B.2. Useful lemmas

The following two technical lemmas are proven and used in the proof of Theorem 2 of Juditsky et al. (2011).

Lemma 2. Let z be a point in X , let χ, η be two points in the dual E∗, let w = Pz(χ) and r+ = Pz(η). Then,

‖w − r+‖ 6 ‖χ− η‖∗ .

Moreover, for all u ∈ E, one has

D(u, r+)−D(u, z) 6 〈η, u− w〉+
1

2
‖χ− η‖2∗ −

1

2
‖w − z‖2 .

Lemma 3. Let ξ1, ξ2, . . . be a sequence of elements of E∗. Define the sequence {yτ}∞τ=0 in X as follows:

yτ = Pyτ−1(ξτ ).
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Then yτ is a measurable function of y0 and ξ1, . . . , ξτ such that:

∀u ∈ Z,
〈 t∑
τ=1

ξt, yτ−1 − u
〉

6 D(u, y0) +
1

2

t∑
τ=1

‖ξτ‖2∗.

The following lemma stems from convexity assumptions on the losses (Ass. 1) and is proven as an intermediate development
of the proof of Theorem 2 of Juditsky et al. (2011).

Lemma 4. We consider a convex n-player game with players losses `i where i ∈ [n]. Let a sequence of points (zτ )τ∈[t] ∈ Θ,

the stepsizes (γτ )τ∈[t] ∈ (0,∞). We define the average iterate ẑτ =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτzτ . The functional Nash error

evaluated in ẑt is upper bounded by

ErrN (ẑt) , sup
u∈Z

n∑
i=1

`i(ẑt)− `i(ui, ẑ−it ) 6 sup
u∈Z

(
t∑

τ=0

γτ

)−1 t∑
τ=0

〈γτF (zτ ), zτ − u〉.

The following lemma is a consequence of first-order optimality conditions.

Lemma 5. Let (γt)t∈N be a sequence in (0,∞) and A,B > 0. For any t ∈ N, we define the function ft to be

ft(α) ,
A∑t

τ=0 αγτ
+
B
∑t
τ=0(αγτ )2∑t
τ=0 αγτ

.

Then, it attains its minimum for α > 0 when both terms are equal. Let us call α∗ the point at which the minimum is reached.
The value of ft evaluated at α∗ is

ft(α∗) = f

(√
A

B
∑t
τ=0 γ

2
τ

)
=

2
√
AB

∑t
τ=0 γ

2
τ∑t

τ=0 γτ
.

The next lemma describes the dual norm of the natural Pythagorean norm on a Cartesian product of Banach spaces.

Lemma 6. Let (X1, ‖ · ‖X1
), . . . , (Xn, ‖ · ‖Xn) be Banach spaces where for each i, ‖ · ‖Xi is the norm associated to Xi.

The Cartesian product is X = X1 ×X2 × · · · ×Xn and has a norm ‖ · ‖X defined for y = (y1, . . . , yn) ∈ X as

‖y‖X ,

√√√√ n∑
i=1

‖yi‖2Xi .

It is known that (X, ‖ · ‖X) is a Banach space. Moreover, we define the dual spaces (X∗1 , ‖ · ‖X∗1 , . . . , (X∗n, ‖ · ‖X∗n). The
dual space of X is X∗ = X∗1 ×X∗2 × ...×X∗n and has a norm ‖ · ‖X∗ . Then, for any a = (a1, ..., an) ∈ X∗, the following
inequality holds

‖a‖2X∗ =

n∑
i=1

‖ai‖2X∗i .

Proof. On the one hand,

‖a‖2X∗ = sup
y∈X

|ay|2
‖y‖2X

= sup
y∈X

(
∑n
i=1 aiyi)

2

‖y‖2X
6 sup
y∈X

(∑n
i=1 ‖ai‖X∗i ‖yi‖Xi

)2

‖y‖2X
,

and by Cauchy-Schwarz inequality

‖a‖2X∗ 6 sup
y∈X

(∑n
i=1 ‖ai‖2X∗i

) (∑n
i=1 ‖yi‖2Xi

)
‖y‖2X

=

n∑
i=1

‖ai‖2X∗i .
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To prove the other inequality we define Zi =
{
yi ∈ Xi|‖yi‖X = ‖ai‖X∗i

}
.

‖a‖2X∗ > sup
y∈Z1×···×Zn

|ay|2
‖y‖2X

=

(∑n
i=1 supyi∈Zi aiyi

)2∑n
i=1 ‖ai‖2X∗i

=

(∑n
i=1 ‖ai‖2X∗i

)2

∑n
i=1 ‖ai‖2X∗i

=

n∑
i=1

‖ai‖2X∗i .

The following two numerical lemmas will be used in Lemma 11.
Lemma 7. The following inequality holds for any j ∈ N, p ∈ R such that p > 0:

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j

p2
6

2− p
p2

.

Proof. For j even, we can write

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j = 2(1− p)p+ 2(1− p)2 = 2(1− p).
For j odd,

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j = p+ 1− p+ 1− p = 2− p.
Since p > 0, 2− p > 2(1− p).

Lemma 8. For all |α| < 1,
∞∑
s=q

αs−1s =
qαq−1(1− α) + αq

(1− α)2
.

Proof.
∞∑
s=q

αs−1s =

( ∞∑
s=q

αs

)′
=

(
αq

1− α

)′
=
qαq−1(1− α) + αq

(1− α)2
.

B.3. Doubly-stochastic mirror-prox—Proof of Theorem 2

B.3.1. ALGORITHM

While Alg. 1 presents the doubly-stochastic algorithm in the Euclidean setting, we consider here its mirror version.

Algorithm 3 Doubly-stochastic mirror-prox

1: Input: initial point θ0 ∈ Rd, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].
2: for τ = 0, . . . , t do
3: Sample the random matrices Mτ ,Mτ+1/2 ∈ Rd×d.
4: Compute F̃τ+1/2 = n

b ·Mτ F̂ (θτ ).

5: Extrapolation step: θτ+1/2 = Pθτ (γτ F̃τ+1/2).
6: Compute F̃τ+1 = n

b ·Mτ+1/2F̂ (θτ+1/2).

7: Gradient step: θτ+1 = Pθτ (γτ F̃τ+1).

8: Return θ̂t =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτθτ .

Notation. We introduce the noisy simultaneous gradient F̂ (θ) defined as

F̂ (θ) = (F̂ (1)(θ), . . . , F̂ (n)(θ))> , (g1, . . . , gn)> ∈ Rd,

where gi is a noisy unbiased estimate of∇ili(θ) with variance bounded by σ2. We are abusing the notation because F̂ (θ) is
a random variable indexed by Θ and not a function, but we do so for the sake of clarity.

For our convenience, we also define the ratio p = b/n.
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Differences with Alg. 1 The notation in Alg. 3 differs in a few aspects. First, we model the sampling over the players by
using the random block-diagonal matrices Mτ and Mτ+1/2 in Rd×d. More precisely, at each iteration, we select according
to a uniform distribution b diagonal blocks and assign them to the identity matrix. Remark that we add a factor n/b in front
of the random matrices to ensure the unbiasedness of the gradient estimates F̃τ and F̃τ+1/2. Note that the matrices Mτ and
Mτ+1/2 are just used for the convenience of the analysis. In practice, sampling over players is not performed in this way.

Moreover, while the update in Alg. 1 involve Euclidean projections, we use the proximal mapping (11) in Alg. 3. The new
notation will be used throughout the appendix.

We first proceed to the analysis of Alg. 3 in the case of non-smooth losses.

B.3.2. CONVERGENCE RATE UNDER ASSUMPTION 2A (NON-SMOOTHNESS)—PROOF OF THEOREM 2

The following Theorem 4 generalizes Theorem 2 to the mirror setting.

Theorem 4. We consider a convex n-player game where Ass. 2a holds. Assume that Alg. 3 is run with constant stepsizes
γτ = γ. Let t(k) = k/(2b) be the number of iterations corresponding to k gradient computations. Setting

γ =

√√√√ 2Ω

n
(

(3n−b)G2

b + σ2
)
t(k)

,

the rate of convergence in expectation at iteration t(k) is

E
[
ErrN (θ̂t(k))

]
= 4

√
Ωn (3G2n+ b(σ2 −G2))

k
. (14)

Proof. The strategy of the proof is similar to the proof of Theorem 2 and part of Theorem 1 from Juditsky et al. (2011). It
consists in bounding

∑t
τ=0〈γτF (θτ+1/2), θτ+1/2 − u〉, which by Lemma 4 is itself a bound of the functional Nash error.

By using Lemma 2 with z = θτ , χ = γτ F̃τ+1/2, η = γτ F̃τ+1 (so that w = θτ+1/2 and r+ = θτ+1), we have for any u ∈ Θ

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ ) 6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗ −

1

2
‖θτ+1/2 − θτ‖2∗

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗. (15)

When summing up from τ = 0 to τ = t in equation (15), we get

t∑
τ=0

〈γτ F̃τ+1, θτ+1/2 − u〉 6 D(u, θ0)−D(u, θt+1) +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗. (16)

By decomposing the right-hand side (16), we obtain

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉 6 D(u, θ0)−D(u, θt+1) +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗

+

t∑
τ=0

〈
γτ (F (θτ+1/2)− F̃τ+1), θτ+1/2 − u

〉

6 Ω +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗

+

t∑
τ=0

γτ

〈
F (θτ+1/2)− F̃τ+1, θτ+1/2 − yτ

〉

+

t∑
τ=0

γτ

〈
F (θτ+1/2)− F̃τ+1, yτ − u

〉
,

(17)
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where we used D(u, θ0) 6 Ω and defined yτ+1 = Pyτ (γτ∆τ ) with y0 = θ0 and ∆τ = F (θτ+1/2) − F̃τ+1. So far, we
followed the same steps as Juditsky et al. (2011). We aim at bounding the left-hand side of equation (17) in expectation. To
this end, we will now bound the expectation of each of the right-hand side terms. These steps represent the main difference
with the analysis by Juditsky et al. (2011).

We first define the filtrations Fτ = σ(θτ ′ : τ ′ 6 τ + 1/2) and Fτ = σ(θτ ′ : τ ′ 6 τ). We now bound the third term on the
right-hand side of (17) in expectation.

E
[
‖F̃τ+1 − F̃τ+1/2‖2∗

]
6 2

(
E
[
‖F̃τ+1‖2∗

]
+ E

[
‖F̃τ+1/2‖2∗

])
=

2

p2

(
E
[
E
[
‖Mτ+1/2F̂ (θτ+1/2)‖2∗|Fτ

]]
+ E

[
E
[
‖Mτ F̂ (θτ )‖2∗|F ′τ

]])
=

2

p2

n∑
i=1

(
E
[
E
[
‖M (i)

τ+1/2F̂
(i)(θτ+1/2)‖2∗|Fτ

]]
(18)

+E
[
E
[
‖M (i)

τ F̂ (i)(θτ )‖2∗|F ′τ
]])

6
2

p

n∑
i=1

E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ E

[
‖F̂ (i)(θτ )‖2∗

]
6

4nG2

p
,

where we used ‖a + b‖2∗ 6 2‖a‖2∗ + 2‖b‖2∗ in the first inequality and applied Lemma 6 in the second equality. Now, we
compute the expectation of the fourth term of equation (17).

E

[
γτ

t∑
τ=0

〈
F (θτ+1/2)− F̃τ+1, yτ − u

〉]
(19)

= E

[
t∑

τ=0

E
[〈
γτ

(
I − Mτ+1/2

p

)
F̂ (θτ+1/2), θτ+1/2 − yτ

〉∣∣∣∣Fτ]
]

= E

[
t∑

τ=0

〈
γτE

[(
I − Mτ+1/2

p

) ∣∣∣∣Fτ]E [F̂ (θτ+1/2)

∣∣∣∣Fτ] , θτ+1/2 − yτ
〉]

= 0,

where we used the independence property of the random variables in the second equality and E[ kn ·Mτ+1/2] = Id in the
third equality. Regarding the fifth term of (17), by using the sequences {yτ} and {ξτ = γτ∆τ} in Lemma 3 (as done in
Juditsky et al. (2011)), we obtain:

t∑
τ=0

〈γτ∆τ , yτ − u〉 6 D(u, θ0) +

t∑
τ=0

γ2
τ

2
‖∆τ‖2∗ 6 Ω +

t∑
τ=0

γ2
τ

2
‖F (θτ+1/2)− F̃τ+1‖2∗. (20)

We now bound the expectation of ‖F (θτ+1/2)− F̃τ+1‖2∗ using the filtration Fτ . By using Lemma 6 in the first equality,
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‖a+ b‖2∗ 6 2‖a‖2∗ + 2‖b‖2∗ in the second inequality and the bound on the variance (Ass. 3) in the third inequality, we obtain

E
[
‖F (θτ+1/2)− F̃τ+1‖2∗

]
=

n∑
i=1

E
[
‖F (i)(θτ+1/2)− F̃ (i)

τ+1‖2∗
]

=

n∑
i=1

E

[∥∥∥∥F (i)(θτ+1/2)− M
(i)
τ+1

p
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]

6
n∑
i=1

2E

[∥∥∥∥
(
I − M

(i)
τ+1

p

)
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]
+

n∑
i=1

2E

[∥∥∥∥F (i)(θτ+1/2)− F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]

6
n∑
i=1

2E

[
p

∥∥∥∥p− 1

p
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗
+ (1− p)‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

=

n∑
i=1

2

(
1− p+

(1− p)2

p

)
E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

=

n∑
i=1

2

(
1

p
− 1

)
E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

6
2nG2(1− p)

p
+ 2nσ2. (21)

Therefore, by taking the expectation in equation (17) and plugging (18), (19), (20) and (21), we finally get:

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 2Ω +

t∑
τ=0

γ2
τn

(
(3− p)G2

p
+ σ2

)
(22)

Applying Lemma 4 to equation (22) yields an upper bound on the functional Nash error shown in equation (23).

E
[
ErrN (θ̂t)

]
6

(
t∑

τ=0

γτ

)−1(
2Ω +

t∑
τ=0

γ2
τn

(
(3n− b)G2

b
+ σ2

))
. (23)

Now, let us set γt constant and optimize the bound (23). Namely, we apply Lemma 5 setting γτ = 1 for all τ ∈ [t], A = 2Ω
and

B = n

(
(3n− b)G2

b
+ σ2

)
.

The optimal value for γτ is

γτ = γ =

√√√√ 2Ω

n
(

(3n−b)G2

b + σ2
)
t
.

and the optimal value of the bound is

E
[
ErrN (θ̂t)

]
6

√√√√8Ωn
(

(3n−b)G2

b + σ2
)

t
. (24)

The number of iterations t can be expressed in terms of the number of gradient computations k as t(k) = k/(2b). Plugging
this expression into (24), we get

E
[
ErrN (θ̂t(k))

]
=

√
8Ωn

(
3G2n
b + σ2 −G2

)
k
2b

,

which yields equation (14) after simplification.
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Remark 1. For constant stepsizes, equation (24) implies that with an appropriate choice of t and γ we can achieve a value
of the Nash error arbitrarily close to zero at time t. However, from Equation 23 we see that constant stepsizes do not ensure
convergence; the bound has a strictly positive limit. Stepsizes decreasing as 1/

√
τ do ensure convergence, although we do

not make a detailed analysis of this case.

Remark 2. Without using any variance reduction technique, the smooth losses assumption Ass. 2b does not yield a
significant improvement over the bound from Theorem 4. We do not include the analysis of this case.

B.4. Doubly-stochastic mirror-prox with variance reduction—Proof of Theorem 3

B.4.1. ALGORITHM

With the same notations as above, we present a version of Alg. 1 with variance reduction in the mirror framework.

Algorithm 4 Mirror prox with variance reduced player randomness

1: Input: initial point θ0 ∈ Rd, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].
2: Set R0 = F̂ (θ0) ∈ Rd
3: for τ = 0, . . . , t do
4: Sample the random matrices Mτ ,Mτ+1/2 ∈ Rd×d.
5: Compute F̃τ+1/2 = Rτ + n

bMτ (F̂ (θτ )−Rτ )

6: Set Rτ+1/2 = Rτ +Mτ (F̂ (θτ )−Rτ )

7: Extrapolation step: θτ+1/2 = Pθτ (γτ F̃τ+1/2).
8: Compute F̃τ+1 = Rτ+1/2 + n

bMτ+1/2(F̂ (θτ+1/2)−Rτ+1/2)

9: Set Rτ+1 = Rτ+1/2 +Mτ+1/2(F̂ (θτ+1/2)−Rτ+1/2)

10: Extra-gradient step: θτ+1 = Pθτ (γτ F̃τ+1).

11: Return θ̂t =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτθτ .

F̂ (θ) is defined as in Alg. 3. The random matrices Mτ ,Mτ+1/2 are also sampled the same way.

In Alg. 4, we leverage information from a table (Rτ )τ∈[t] to produce doubly-stochastic simultaneous gradient estimates
with lower variance than in Alg. 3. The table Rτ is updated when possible.

The following Theorem 5 generalizes Theorem 3 in the mirror setting.

Theorem 5. Assume that for all i between 1 and n, the gradients ∇i`i are L-Lipschitz (Ass. 2b). Assume Alg. 4 is run with
constant stepsizes γτ = γ, with γ defined as

γ , min

{
p3/2√

(1− p)(2− p)
1

12L
√
n
,

1

L

√
5

27n+ 12
,

1

2

√
Ω

13nσ2t(k)

}
,

where p , b/n, k is the number of gradient computations and t(k) = k/(2b) is the corresponding number of iterations.
Then, the convergence rate in expectation at iteration t(k) is

E
[
ErrN (θ̂t(k))

]
6 max

{
96
√

2ΩLn2

√
bk

, 8ΩbL

√
27n+ 12

5

1

k
, 8

√
26Ωnbσ2

k

}
.

Outline of the proof of Theorem 5.

• Lemma 12 provides a bound for E
[∑t

τ=0 γ
2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?
]

and it is the keystone
of the proof. It specifically uses the structure of player sampling and the introduced variance reduction mechanism.

• Lemma 10 and 11 are intermediate steps in the proof of Lemma 12. Lemma 9 and Lemma 8 are used in the proof of
Lemma 11.

• We prove Theorem 5 by refining base inequalities established by Juditsky et al. (2011), using the results from Lemma 12.
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Definition 4. For a given j and i (which we omit), let us define Kj as the random variable indicating the highest q ∈ N
strictly lower than j such that M (i)

q/2 is the identity (and Kj = 0 if there exists no such q).

In other words, Kj is the last step q before j at which the sequence (R
(i)
q/2)q∈N was updated with a new value F̂ (i)(θq/2).

That is, Rj/2,i = F̂ (i)(θKj/2).

Lemma 9. For a given j, j −Kj is a random variable that has a geometric distribution with parameter p and support
between 1 and j, i.e., for all q such that j − 1 > q > 1,

P (Kj = q) = p(1− p)j−1−q,

and P (Kj = 0) = 1−∑j−1
q=1 P (Kj = q) = (1− p)j−1.

Proof. M (i)
q/2 is Bernoulli distributed with parameter p among zero and the identity, for all q.

Lemma 10. The following equalities hold:

E
[
‖F (i)(θτ )− F̃ (i)

τ+1/2‖2?
]

=
2(1− p)

p
E
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

+ 2σ2,

E
[
‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2?
]

=
2(1− p)

p
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2.

Proof. Using the conditional expectation with respect to the filtration up to wτ ,

E
[
‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2?
]

= 2E

∥∥∥∥R(i)
τ+1/2 +

M
(i)
τ+1/2

p
(F̂ (i)(θτ+1/2)−R(i)

τ+1/2)− F̂ (i)(θτ+1/2)

∥∥∥∥2

?


+ 2E

[
‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2?

]
= 2E

∥∥∥∥
I − M

(i)
τ+1/2

p

 (R
(i)
τ+1/2 − F̂ (i)(θτ+1/2))

∥∥∥∥2

?

+ 2σ2

= 2E

[
p

∥∥∥∥p− 1

p
(R

(i)
τ+1/2 − F̂ (i)(θτ+1/2))

∥∥∥∥2

?

+ (1− p)‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2?

]
+ 2σ2

= 2

(
1− p+

(1− p)2

p

)
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2

=
2(1− p)

p
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2.

The second equality is derived analogously.

Let us define the change of variables j = 2τ . Parametrized by j, the sequences that we are dealing with are (M
(i)
j/2)j∈N,

(R
(i)
j/2)j∈N and (θj/2)j∈N. In this scope i is a fixed integer between 1 and n.

Lemma 11. Let us define h : R→ R as

h(p) ,
2− p
p2

. (25)
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Assume that (γτ )τ∈N is non-increasing. Then, the following holds:

t∑
τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]
6

2t−1∑
j=0

h(p)γ2
bj/2cE

[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
, (26)

t∑
τ=0

γ2
τE
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]
6

2t−1∑
j=0

h(p)γ2
bj/2cE

[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.

Proof. We can write

E
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

= E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
]

(27)

= E
[
E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
∣∣∣∣K2τ

]]
=

2τ−1∑
q=0

P (K2τ = q)E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
∣∣∣∣K2τ = q

]

=

2τ−1∑
q=1

p(1− p)2τ−1−qE
[
‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2?

]
+ (1− p)2τ−1E

[
‖F̂ (i)(θ0)− F̂ (i)(θ2τ/2)‖2?

]
.

As seen in equation (27), the point of conditioning with respect to the sigma-field generated by K2τ (see Def. 4) is that we
can write the expression for R2τ/2,i. We have used Lemma 9.

Now, using the rearrangement inequality,

E
[
‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2?

]
= E

∥∥∥∥ 2τ−1∑
j=q

F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)

∥∥∥∥2

?

 (28)

6
2τ−1∑
j=q

(2τ − q)E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.

Using equations (27) and (28) we can now write

t∑
τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

(29)

=

t∑
τ=0

γ2
τ

2τ−1∑
q=1

p(1− p)2τ−1−qE
[
‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2?

]
+ γ2

τ (1− p)2τ−1E
[
‖F̂ (i)(θ0)− F̂ (i)(θ2τ/2)‖2?

]
6

t∑
τ=0

γ2
τ

2τ−1∑
q=1

p(1− p)2τ−1−q
2τ−1∑
j=q

(2τ − q)E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]

+ γ2
τ (1− p)2τ−1

2τ−1∑
j=0

2τE
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.

Given j between 0 and 2t − 1 the right hand side of equation (29) contains the term
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E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖22

]
multiplied by

t∑
τ=d(j+1)/2e

γ2
τ

(
j∑
r=1

(2τ − r)p(1− p)2τ−1−r + 2τ(1− p)2τ−1

)

6 γ2
bj/2c

t∑
τ=d(j+1)/2e

j∑
r=1

(2τ − r)p(1− p)2τ−1−r + 2τ(1− p)2τ−1

= γ2
bj/2c

t∑
τ=d(j+1)/2e

p

j−1∑
r′=0

(1− p)2τ−1−j+r′(2τ − j + r′) + 2τ(1− p)2τ−1

6 γ2
bj/2c

t∑
τ=d(j+1)/2e

p

∞∑
r′=2τ−j

(1− p)r′−1r′ = (∗).

Using Lemma 8 twice:

(∗) = γ2
bj/2c

t∑
τ=d(j+1)/2e

p
(2τ − j)(1− p)2τ−1−jp+ (1− p)2τ−j

p2

= γ2
bj/2c

t∑
τ=d(j+1)/2e

(2τ − j)(1− p)2τ−1−jp+ (1− p)2τ−j

p

6 γ2
bj/2c

∞∑
τ=2d(j+1)/2e

(τ − j)(1− p)τ−1−j +
γ2
bj/2c
p

∞∑
τ=2d(j+1)/2e

(1− p)τ−j

= γ2
bj/2c

∞∑
τ=2d(j+1)/2e−j

τ(1− p)τ−1 +
γ2
bj/2c
p

∞∑
τ=2d(j+1)/2e−j

(1− p)τ

= γ2
bj/2c

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j

p2
.

By Lemma 7 we have

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j

p2
. 6 h(p)

Hence, from equation (29) we get
t∑

τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]
6

2t−1∑
j=0

γ2
bj/2ch(p)E

[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.

Analogously to equation (27):

E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

= E
[
‖R(i)

(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2?
]

= E
[
E
[
‖R(i)

(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2?
∣∣∣∣K2τ+1

]]
=

2τ∑
k=0

P (K2τ+1 = k)E
[
‖R(i)

(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2?
∣∣∣∣K2τ+1 = k

]

=

2τ∑
k=1

p(1− p)2τ−kE
[
‖F̂ (i)(θk/2)− F̂ (i)(θ(2τ+1)/2)‖2?

]
+ (1− p)2τE

[
‖F̂ (i)(θ0)− F̂ (i)(θ(2τ+1)/2)‖2?

]
.
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Using the same reasoning we get an inequality that is analogous to (26):

t∑
τ=0

γ2
τE
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]
6

2t∑
j=0

γ2
bj/2ch(p)E

[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.

Lemma 12. Assume that for all i between 1 and n, the gradients∇i`i are L-Lipschitz. Assume that for all τ between 0 and
t, γτ 6 γ. Let

χ(p, γ) = 1− 36
1− p
p

nh(p)L2γ2. (30)

If γ is small enough that χ(p, γ) is positive, then

E

[
t∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?

]
(31)

6 104nσ2
t∑

τ=0

γ2
τ +

1− p
pχ(p, γ)

(12L2 + 36L4γ2)nh(p)
t∑

τ=0

γ2
τE
[
‖θτ − θτ+1/2‖2?

]
.

Proof. We first want to bound the terms E
[
‖F (i)(θj/2)− F (i)(θ(j+1)/2)‖22

]
. When j is even we can make the change of

variables j/2 = τ (just for simplicity in the notation) and use smoothness. We get

E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
= E

[
‖F̂ (i)(θτ )− F̂ (i)(θτ+1/2)‖2?

]
(32)

6 3E
[
‖F (i)(θτ )− F (i)(θτ+1/2)‖2?

]
+ 3E

[
‖F̂ (i)(θτ )− F (i)(θτ+1/2)‖2?

]
+ 3E

[
‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2?

]
6 3L2E

[
‖θτ − θτ+1/2‖2?

]
+ 6σ2.

When j is odd, we can write j/2 = τ + 1/2. We use smoothness and the fact that the prox-mapping is 1-Lipschitz (Lemma
2):

E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
= E

[
‖F̂ (i)(θτ+1/2)− F̂ (i)(θτ+1)‖2?

]
(33)

6 3E
[
‖F (i)(θτ+1/2)− F (i)(θτ+1)‖2?

]
+ 3E

[
‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2?

]
+ 3E

[
‖F̂ (i)(θτ+1)− F (i)(θτ+1)‖2?

]
6 3L2E

[
‖θτ+1/2 − θτ+1‖2?

]
+ 6σ2

= 3L2E
[
‖Pθτ (γτ F̃τ+1/2)− Pθτ (γτ F̃τ+1)‖2?

]
+ 6σ2

6 3L2γ2
τE
[
‖F̃τ+1/2 − F̃τ+1‖2?

]
+ 6σ2

6 9L2γ2
τ

(
E
[
‖F̃τ+1/2 − F (θτ )‖2?

]
+E

[
‖F (θτ+1/2)− F̃τ+1‖2?

]
+E

[
‖F (θτ )− F (θτ+1/2)‖2?

])
+ 6σ2.
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Now, we use Lemma 6 to break up the dual norms in the right-hand side of (31).

E

[
t∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?

]

= E

[
t∑

τ=0

n∑
i=1

γ2
τ‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2? + γ2
τ‖F (i)(θτ )− F̃ (i)

τ+1/2‖2?

]
, (34)

Hence, from equation (34) and Lemma 10 and 11:

E

[
t∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?

]

6 4nσ2
t∑

τ=0

γ2
τ +

2(1− p)
p

E

[
t∑

τ=0

n∑
i=1

γ2
t ‖R(i)

τ − F̂ (i)(θτ )‖2 + ‖R(i)
τ+1/2 − F̂ (i)(θτ )‖2

]

6 4nσ2
t∑

τ=0

γ2
τ +

2(1− p)
p

n∑
i=1

2t∑
j=0

2γ2
bj/2ch(p)E

[
‖Fi(θj/2)− Fi(θ(j+1)/2)‖2?

]
= (∗∗).

We split the last term in summands corresponding to even and odd j, we change variables from j to τ and we apply
equations (32) and (33):

(∗∗) = 4nσ2
t∑

τ=0

γ2
τ +

2(1− p)
p

n∑
i=1

2t∑
j=0, j even

2γ2
bj/2ch(p)E

[
‖Fi(θj/2)− Fi(θ(j+1)/2)‖2?

]
+

2(1− p)
p

n∑
i=1

2t∑
j=0, j odd

2γ2
bj/2ch(p)E

[
‖Fi(θj/2)− Fi(θ(j+1)/2)‖2?

]
= 4nσ2

t∑
τ=0

γ2
τ +

2(1− p)
p

n∑
i=1

t∑
τ=0

2γ2
τh(p)E

[
‖Fi(θτ )− Fi(θτ+1/2)‖2?

]
+

2(1− p)
p

n∑
i=1

t∑
τ=0

2γ2
τh(p)E

[
‖Fi(θτ+1/2)− Fi(θτ+1)‖2?

]
6 52nσ2

t∑
τ=0

γ2
τ +

1− p
p

t∑
τ=0

12nγ2
τh(p)L2E

[
‖θτ − θτ+1/2‖2?

]
+

1− p
p

t∑
τ=0

36nh(p)L2γ4
τ

(
E
[
‖F̃τ+1/2 − F (θτ )‖2?

]
+ E

[
‖F (θτ+1/2)− F̃τ+1‖2?

])
+

1− p
p

t∑
τ=0

36nh(p)L4γ4
τE
[
‖θτ − θτ+1/2‖2?

]
= (∗ ∗ ∗).

We use that γτ 6 γ:

(∗ ∗ ∗) 6 52nσ2
t∑

τ=0

γ2
τ +

1− p
p

(12L2 + 36L4γ2)nh(p)

t∑
τ=0

γ2
τE
[
‖θτ − θτ+1/2‖2?

]
+ 36

1− p
p

nh(p)L2γ2
t∑

τ=0

γ2
τ

(
E
[
‖F̃τ+1/2 − F (θτ )‖2?

]
+ E

[
‖F (θτ+1/2)− F̃τ+1‖2?

])
.

Rearranging and using χ(p, γ) > 0 yields the desired result.
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Proof of Theorem 5. We rewrite equation (17):

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ )

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2? −

1

2
‖θτ+1/2 − θτ‖2

6
3γ2
τ

2
‖F̃τ+1 − F (θτ+1/2)‖2? +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2? +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2?

− 1

2
‖θτ+1/2 − θτ‖2.

We rewrite equation (20). We have ∆τ = F (θτ+1/2)− F̃τ+1 and yτ+1 = Pyτ (γτ∆τ ) with y0 = θ0.

t∑
τ=0

〈γτ∆τ , yτ − u〉 6 D(u, θ0) +

t∑
τ=0

γ2
τ

2
‖∆τ‖2?

= D(u, θ0) +

t∑
τ=0

γ2
τ

2
‖F (θτ+1/2)− F̃τ+1‖2?. (35)

Using equation (35) and the analogous equation to (19), we reach the following inequality:

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 E

[
sup
u∈Z

2D(u, θ0)−D(u, θt+1)−
t∑

τ=0

1

2
‖θτ+1/2 − θτ‖22

]
(36)

+ E

[
t∑

τ=0

2γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2? +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2?

]

Taking the definition of χ(p, γ) in (30), using the definition of h(p) in (25) and rearranging, we obtain

γ 6
p3/2√

(1− p)(2− p)
1

12L
√
n
⇐⇒ χ(p, γ) > 3/4 > 0. (37)

Hence, the assumptions of Lemma 12 are fulfilled. Starting from the result in (36) and using Lemma 12,

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]

(38)

6 E
[

sup
u∈Z

2D(u, θ0)−D(u, θt)

]
+ 32nσ2

t∑
τ=0

γ2
τ

+ 2
1− p
pχ(p, γ)

(12L2 + 36L4γ2)nh(p)

t∑
τ=0

γ2
τE
[
‖θτ − θτ+1/2‖2?

]
+

3nL2

2

t∑
τ=0

γ2
τE
[
‖θτ − θτ+1/2‖2?

]
− 1

2

t∑
τ=0

E
[
‖θτ − θτ+1/2‖2?

]
6 2Ω + 104nσ2

t∑
τ=0

γ2
τ

+

(
(24L2 + 72L4γ2)nh(p)γ2 1− p

pχ(p, γ)
+

3nγ2L2

2
− 1

2

) t∑
τ=0

E
[
‖θτ − θτ+1/2‖2?

]
.

Recalling the definition of h(p) in Equation (25), the conditions χ(p, γ) > 3/4 and

γ 6
1

L

√
5

27n+ 12
, (39)
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imply

(24L2 + 72L4γ2)nh(p)γ2 1− p
pχ(p, γ)

+
3nγ2L2

2
− 1

2
6 0. (40)

We show this development:

(24L2 + 72L4γ2)n
2− p
p2

γ2 1− p
pχ(p, γ)

+
3nγ2L2

2
− 1

2

χ>3/4

6 (24L2 + 72L4γ2)n
2− p
p2

γ2 4(1− p)
3p

+
3nγ2L2

2
− 1

2

=
24 + 72L2γ2

27
(1− χ(p, γ)) +

3nγ2L2

2
− 1

2

6
2 + 6L2γ2

9
+

3nγ2L2

2
− 1

2

= γ2 (9n+ 4)L2

6
− 5

18
.

Using Equation (40) on (38) yields

E

[
sup
u∈Z

t∑
τ=1

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 2Ω + 104nσ2

t∑
τ=0

γ2
τ .

By Lemma 4, we conclude

ErrN (θ̂t) 6

(
t∑

τ=0

γτ

)−1(
2Ω + 104nσ2

t∑
τ=0

γ2
τ

)
(41)

Now we apply Lemma 5 to equation (41) assuming constant stepsizes. That is, we set γτ = 1, A = 2Ω and B = 104nσ2.
Using the notation from Lemma 5, we get that

α∗ =
1

2

√
Ω

13nσ2t

and the value of the bound at α∗ is

8

√
13Ωnσ2

t
.

However, γ is also subject to the constraints in equations (37) and (39). Namely,

γ , min

{
p3/2√

(1− p)(2− p)
1

12L
√
n
,

1

L

√
5

27n+ 12
,

1

2

√
Ω

13nσ2t

}
, (42)

If the minimum in equation (42) is not achieved at α∗ (the third term), it is easy to see that the first term of the bound in
equation (41) is larger than the second one, which means that 4Ω/(γt) is a looser bound. We conclude

E
[
ErrN (θ̂t)

]
6 max

{
4Ω

γt
, 8

√
13Ωnσ2

t

}
.

Substituting γ for its expression and plugging t(k) = k/2b on equation B.4.1 we get

E
[
ErrN (θ̂t(k))

]
6 max


4Ω

( bn )
3/2

√
(1− b

n )(2− b
n )

1
12L
√
n
k
2b

,
4Ω

1
L

√
5

27n+12
k
2b

, 8

√
26Ωnbσ2

k

 .

The result follows using 1− b/n < 1 and 2− b/n < 2.
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C. Spectral convergence analysis for non-constrained 2-player games
We observed in the experimental section that player sampling tended to be empirically faster than full extra-gradient, and
that cyclic sampling had a tendency to be better than random sampling.

To have more insight on this finding, let us study a simplified version of the random two-player quadratic games. Let
A ∈ R2d×2d be formed by stacking the matrices Ai ∈ Rd×2d for each i ∈ [d]. We assume that A is invertible and has a
positive semidefinite symmetric part. For i ∈ {1, 2}, we define the loss of the i-th player `i as

`i(θ
i, θ−i) = θi

>
Aiθ −

1

2
θi
>
Aiiθ

i,

whereAii ∈ Rd and θi ∈ Rdi . Contrary to the random quadratic games setting in §5.1, we do not enforce here any parameter
constraints nor regularization. Therefore, this places us in the extra-gradient (Euclidean) setting. We restrict our attention to
the non-noisy regime.

C.1. Recursion operator for the different sampling schemes

We study the “algorithm operator” A that appears in the recursion θk+4 = A(θk) for the different sampling schemes. k
is the number of gradient computations. We consider steps of 4 evaluation as this corresponds to a single iteration of full
extra-gradient.

Full extrapolation and update. We have∇i`i(θ) = Aiθ. Since A is invertible, θ = 0 is the only Nash equilibrium. The
full extra-gradient updates with constant stepsize are{

θfull
k+2 = θfull

k − γAθfull
k ,

θfull
k+4 = θfull

k − γAθfull
k+2.

(43)

By introducing A(γ)
full := I − γA+ γ2A2, (43) is simply θfull

k+4 = A(γ)
full θ

full
k .

Cyclic sampling. Defining the matrices M1,M2 ∈ R2d×2d

M1 =

[
Id 0d×d

0d×d 0d×d

]
, M2 =

[
0d×d 0d×d
0d×d Id

]
,

the updates becomes 
θcyc
k+1 = θcyc

k − γM1Aθ
cyc
k ,

θcyc
k+2 = θcyc

k − γM2Aθ
cyc
k+1,

θcyc
k+3 = θcyc

k+2 − γM2Aθ
cyc
k+2,

θcyc
k+4 = θcyc

k+2 − γM1Aθ
cyc
k+3.

. (44)

Remark that (44) contains two iterations of Alg. 1; θk+1 and θk+3 are extrapolations and θk+2 and θk+4 are updates.
Defining A(γ)

ij := I − γMiA+ γ2MiAMjA and A(γ)
cyc := Aγ12A

(γ)
21 , we have θcyc

k+4 = A(γ)
cyc θ

cyc
k .

Random sampling. Extra-gradient with random subsampling (b = 1) rewrites as
θrand
k+1 = θrand

k − γMSk+1
Aθrand

k ,

θrand
k+2 = θrand

k − γMSk+2
Aθrand

k+1,

θrand
k+3 = θrand

k+2 − γMSk+3
Aθrand

k+2,

θrand
k+4 = θrand

k+2 − γMSk+3
Aθrand

k+3.

.

where Sk+1, Sk+2, Sk+3, Sk+4 take values 1 and 2 with equal probability and pairwise are independent. Note that we also
enroll two iterations of sampled extra-gradient, as we consider a budget of 4 gradient evaluations. Let Fk = σ(Sk′ : k′ 6 k).
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For extra-gradient with random player sampling, we can write

E
[
θrand
k+4

]
= E

[
A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

θrand
k

]
= E

[
E
[
A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

θrand
k

∣∣∣∣Fk]]
= E

[
E
[
A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

∣∣∣∣Fk] θrand
k

]
= E

[
A(γ)
Sk+4Sk+3

A(γ)
Sk+2Sk+1

]
E
[
θrand
k

]
=

1

16

∑
j1,j2,j3,j4∈{1,2}

A(γ)
j1j2
A(γ)
j3j4

E
[
θrand
k

]
=

1

16

(
4I − 2γA+ γ2A2

)2 E [θrand
k

]
, A(γ)

rand E
[
θrand
k

]
C.2. Convergence behavior through spectral analysis

The following well-known result proved by Gelfand (1941) relates matrix norms with spectral radii.

Theorem 6 (Gelfand’s formula). Let ‖ · ‖ be a matrix norm on Rn and let ρ(A) be the spectral radius of A ∈ Rn (the
maximum absolute value of the eigenvalues of A). Then,

lim
t→∞

‖At‖1/t = ρ(A).

In our case, we thus have the following results, that describes the expected rate of convergence of the last iterate sequence
(θt)t towards 0. It is governed by the spectral radii ρ(A(η)) whenever the later is strictly lower than 1.

Corollary 2. The behavior of θfull
t , θcyc

t and θrand
t is related to the corresponding operators by the following expressions:

lim
t→∞

(
sup

θfull
0 ∈R2d

‖θfull
t ‖2
‖θfull

0 ‖2

)1/t

= ρ
(
A(γ)

full

)
,

lim
t→∞

(
sup

θcyc
0 ∈R2d

‖θcyc
t ‖2
‖θcyc

0 ‖2

)1/t

= ρ
(
A(γ)

cyc

)
,

lim
t→∞

(
sup

θrand
0 ∈R2d

‖E
[
θrand
t

]
‖

2

‖θrand
0 ‖2

)1/t

= ρ
(
A(γ)

rand

)
.

Proof. The proof is analogous for the three cases. Using the definition of operator norm,

lim
t→∞

(
sup

θfull
0 ∈R2d

‖θfull
t ‖
‖θfull

0 ‖

)1/t

= lim
t→∞

 sup
θfull
0 ∈R2d

∥∥∥∥(A(γ)
full

)t
θfull

0

∥∥∥∥
‖θfull

0 ‖


1/t

= lim
t→∞

∥∥∥∥(A(γ)
full

)t∥∥∥∥1/t

,

which is equal to ρ
(
A(γ)

full

)
by Gelfand’s formula.

C.3. Empirical distributions of the spectral radii

Comparing the cyclic, random and full sampling schemes thus requires to compare the values

A?full , min
γ∈R+

ρ(A(γ)
full ), A?cyc , min

γ∈R+
ρ(A(γ)

cyc ), A?rand , min
γ∈R+

ρ(A(γ)
rand), (45)

for all matrix games with positive payoff matrix A ∈ R2d×2d. This is not tractable in closed form. However, we may study
the distribution of these values for random games.
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Figure 6. Spectral radii distribution of the algorithmic operator associated to doubly-stochastic and full extra-gradient, in the non-
constrained bi-linear two-player game setting, for various conditioning and skewness. Random and cyclic sampling yields lower radius
(hence faster rates) for most problem geometry. Cyclic sampling outperforms random sampling in most settings, especially for better
conditioned problems.

Experiment. We sample matrices A in R2d×2d (with d = 3) as the weighted sum of a random positive definite matrix
Asym and of a random skew matrix Askew. We refer to App. D for a detailed description of the matrix sampling method.
We vary the weight α ∈ [0, 1] of the skew matrix and the lowest eigenvalue µ of the matrix Asym. We sample 300 different
games and compute A(η) on a grid of step sizes η, for the three different methods. We thus estimate the best algorithmic
spectral radii defined in (45).

Results and interpretation. The distributions of algorithm spectral radii are presented in Fig. 6. We observe that the
algorithm operator associated with sampling one among two players at each update is systematically more contracting than
the standard extra-gradient algorithm operator, providing a further insight for the faster rates observed in §5.1, Fig. 2. Radius
tend to be smaller for cyclic sampling than random sampling, in most problem geometry. This is especially true in well
conditioned problem (high µ), little-skew problems (skewness α < .5) and completely skew problems α = 1. The later
gives insights to explain the good performance of cyclic player sampling for GANs (§5.2), as those are described by skew
games (zero-sum notwithstanding the discriminator penalty in WP-GAN).

On the other hand, we observe that radii are more spread using cyclic sampling for intermediary skew problerm (α = .75),
hinting that worst-case rates may be better for random sampling.
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Figure 7. 50-player completely skew smooth game with increasing noise (sampling with variance reduction). In the non-noisy setting,
player sampling reduces convergence speed. On the other hand, it provides a speed-up in the high noise regime.

D. Experimental results and details
We provide the necessary details for reproducing the experiments of §5.

D.1. Quadratic games

Generation of random matrices. We sample two random Gaussian matrix G and F in Rnd×nd, where each coefficient
gij , fij ∼ N (0, 1) is sampled independently. We form a symmetric matrix Asym = 1

2 (G + GT ), and a skew matrix
Askew = 1

2 (F − FT ). To make Asym positive definite, we compute its lowest eigenvalue µ0, and update Asym ←
Asym + (µ− µ0)Ind×nd, where µ regulates the conditioning of the problem and is set to 0.01. We then form the final matrix
A = (1− α)Asym + αAskew, where α is a parameter between 0 and 1, that regulates the skewness of the game.

Parameters for quadratic games. Fig. 2 compare rates of convergence for doubly-stochastic extra-gradient and extra-
gradient, for increasing problem complexity. Used parameters are reported in Table 2. Note that the conclusion reported in
§5.1 regarding the impact of noise and the impact of cyclic sampling holds for all configurations we have tested; we designed
increasingly complex experiments for concisely showing the efficiency and limitations of doubly-stochastic extra-gradient.

Grids. For each experiment, we sampled 5 matrices (Ai)i with skewness parameter α. We performed a grid-search on
learning rates, setting η ∈ {10−5, · · · , 1}, with 32 logarithmically-spaced values, making sure that the best performing
learning rate is always strictly in the tested range.

Limitations in skew non-noisy games. As mentioned in the main section, player sampling can hinder performance
in completely skew games (α = 1) with non-noisy losses. Those problems are the hardest and slower to solve. They
corresponds to fully adversarial settings, where sub-game between each pair is zero-sum. We illustrate this finding in Fig. 7,
showing how the performance of player sampling improves with noise. We emphasize that the non-noisy setting is not

Table 2. Parameters used in Fig. 2 for increasing problem complexity.

Figure Players # Exp. Skewness α Noise σ Reg. λ

Fig. 2a 5 Smooth, no-noise 0.9 0 0
Smooth, noisy 0.9 1 0.
Skew, non-smooth, noisy 1. 1 2 · 102

Fig. 2b 50 Smooth, no-noise 0.9 0 0
Non-smooth, noisy 0.9 1 2 · 10−2

Skew, non-smooth, noisy 1. 1 2 · 10−2

Fig. 2c 50 Smooth, skew, lowest-noise 0.95 1 0.
0.95 10 0.

Smooth, skew, highest-noise 0.95 100 0.

Fig. 7 50 Smooth, skew, no-noise 1 0 0.
1 10 0.

Smooth, skew, highest-noise 1 50 0
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relevant to machine learning or reinforcement learning problems.

D.2. Generative adversarial networks

Models and loss. We use the Residual network architecture for generator and discriminator proposed by Gidel et al.
(2019). We use a WGAN-GP loss, with gradient penalty λ = 10. As advocated by (Gidel et al., 2019), we use a 10 times
lower stepsize for the generator. We train the generator and discriminator using the Adam algorithm (Kingma & Ba, 2015),
and its straight-forward extension proposed by (Gidel et al., 2019).

Grids. We perform 5 · 105 generator updates. We average each experiments with 5 random seeds, and select the best
performing generator learning rate η ∈ {2 · 10−5, 5 · 10−5, 8 · 10−5, 1 · 10−4, 2 · 10−4}, which turned out to be 5 · 10−5 for
both subsampled and non-subsampled extra-gradient.


