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Abstract

Data-driven model training is increasingly relying on finding Nash equilibria with provable techniques,
e.g., for GANs and multi-agent RL. In this paper, we analyse a new extra-gradient method, that performs
gradient extrapolations and updates on a random subset of players at each iteration. This approach
provably exhibits the same rate of convergence as full extra-gradient in non-smooth convex games. We
propose an additional variance reduction mechanism for this to hold for smooth convex games. Our
approach makes extrapolation amenable to massive multiplayer settings, and brings empirical speed-ups,
in particular when using cyclic sampling schemes. We demonstrate the efficiency of player sampling on
large-scale non-smooth and non-strictly convex games. We show that the joint use of extrapolation and
player sampling allows to train better GANs on CIFAR10.

1 Introduction
A growing number of models in machine learning require to optimize over multiple interacting objectives.
This is the case of generative adversarial networks (Goodfellow et al., 2014), imaginative agents (Racanière
et al., 2017), hierarchical reinforcement learning (Vezhnevets et al., 2017; Wayne and Abbott, 2014) and
more generally multi-agent reinforcement learning (Bu et al., 2008). Solving saddle-point problems (see e.g.,
Rockafellar, 1970), that is key in robust learning (Kim et al., 2006) and image reconstruction (Chambolle and
Pock, 2011), also falls in this category. All these examples can be cast as games where players are modules
that compete or cooperate to minimize their own objective functions.

Optimizing over several objectives is challenging. To define a principled solution to a multi-objective
optimization problem, we may rely on the notion of Nash equilibrium (Nash, 1951). At a Nash equilibrium,
no player can improve its objective by unilaterally changing its strategy. In general games, finding a Nash
equilibrium is known to be PPAD-complete (Daskalakis et al., 2009). The theoretical section of this paper
considers the class of convex n-player games, for which Nash equilibria exist (Nemirovski et al., 2010). Finding
a Nash equilibrium in this setting is equivalent to solving a variational inequality problem (VI) with a
monotone operator (Harker and Pang, 1990; Nemirovski et al., 2010). This VI can be solved using first-order
methods, that are prevalent in single-objective optimization for machine learning. Stochastic gradient descent
(the simplest first-order method) is indeed known to converge to local minima under mild conditions met
by ML problems (Bottou and Bousquet, 2008; Lee et al., 2016). Yet, while gradient descent can be applied
simultaneously to different objectives, it may fail in finding a Nash equilibrium in very simple settings (see
e.g., Gidel et al., 2019; Letcher et al., 2019). Two alternative modifications of gradient descent are necessary
∗Equal contribution
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Figure 1: Left: We compute masked gradient during the extrapolation and update steps of the extra-gradient
algorithm, to perform faster updates. Right: Optimization trajectories for doubly stochastic extra-gradient
and full-update extra-gradient, on a convex two-player, one-parameter each, convex game. Player sampling
improves the expected rate of convergence toward the Nash equilibrium (0, 0). Doubly-stochastic extra-gradient
trajectory averaged over 10 runs.
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Table 1: New and existing convergence rates with respect to number of computations k. Doubly-stochastic
extra-gradient divides the noise contribution with a factor

√
n/b, where b is the number of sampled players

among n. G bounds the gradient norm, L is the Lipschitz constant of the gradients of losses, σ2 bounds the
noise in gradient estimation, Ω is the diameter of the parameter space.

to solve the VI (hence Nash) problem: averaging (Magnanti and Perakis, 1997; Nedić and Ozdaglar, 2009)
and extrapolation with averaging (introduced as the extra-gradient method (Korpelevich, 1976)), which is
faster (Nemirovski, 2004). Extrapolation corresponds to an opponent shaping step: each player anticipates its
opponents’ next moves to update its strategy.

In n-player games, extra-gradient computes 2n single player gradients before performing a parameter
update. Whether in massive or simple two-players games, this may be an inefficient update strategy: early
gradient information, computed at the beginning of each iteration, could be used to perform eager updates or
extrapolations, similar to how alternated training e.g, Goodfellow et al., 2014, for GANs would behave. In
this paper, we introduce and analyse new extra-gradient algorithms that extrapolate and update random or
carefully selected subsets of players at each iteration (Fig. 1). Contributions are as follow.
– We review the extra-gradient algorithm for convex games and outline its shortcomings (§3.1). We propose
a doubly-stochastic extra-gradient (DSEG) algorithm (§3.2) that relies on partially observed gradients
of players. It performs faster but noisier updates than original extra-gradient descent. We introduce a
variance reduction method to attenuate the added noise for smooth games. We describe an importance
and a cyclic sampling scheme that improve convergence speed.

– We propose a sharp analysis of our method’s convergence rates (§4), as outlined in Table 1, for the various
proposed variants. Those rates outlines the trade-offs of player sampling.

– We demonstrate the performance of player-sampled extra-gradient in controlled settings (quadratic games,
§5), showing how our approach overcomes vanilla extra-gradient, especially using cyclic player selection.
Most interestingly, compared to vanilla extra-gradient, our approach (with cyclic sampling) is also more
efficient for GAN training (CIFAR10, ResNet architecture).
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2 Related work
Extra-gradient method. In this paper, we focus on finding the Nash equilibrium in convex n-player
games (1), or equivalently the Variational Inequality problem (4) (Harker and Pang, 1990; Nemirovski
et al., 2010). This can be done using extrapolated gradient (Korpelevich, 1976), a “cautious” gradient
descent approach (described in (3)) that was promoted by Nemirovski (2004) and Nesterov (2007), under
the name mirror-prox—we review this work in §3.1. Juditsky et al. (2011) propose a stochastic variant of
mirror-prox, that assumes access to a noisy gradient oracle. Recently, Bach and Levy (2019) described a
smoothness-adaptive variant of this algorithm similar to AdaGrad (Duchi et al., 2011), an approach that
can be combined with ours. Yousefian et al. (2018) consider multi-agent games on networks and analyze a
stochastic variant of extra-gradient that consists in randomly extrapolating and updating a single player.
Compared to them, we analyse more general player sampling strategies. Moreover, our analysis holds for
non-smooth losses, and provides better rates for smooth losses, through variance reduction. We also analyse
precisely the reasons why player sampling is useful (see §3.2 and comments on rates in §4), which is an
original endeavor.

Finding Nash equilibria in non-convex settings. A number of algorithms have been proposed in the
non-convex setting under restricted assumptions on the game, for example WoLF in two-player two-action
games (Bowling and Veloso, 2001), policy prediction in two-player two-action bi-matrix games (Zhang and
Lesser, 2010), AWESOME in repeated games (Conitzer and Sandholm, 2007), Optimistic Mirror Descent
in two-player bilinear zero-sum games (Daskalakis et al., 2018) and Consensus Optimization in two-player
zero-sum games (Mescheder et al., 2017). Mertikopoulos et al. (2019) proved asymptotic convergence results
for extra-gradient without averaging in a slightly non-convex setting. Gidel et al. (2019) demonstrated the
effectivenes of extra-gradient for non-convex GAN training—in §5, we demonstrate that player sampling
improves training speed and effectiveness in the GAN setting.

Opponent shaping and gradient adjustment. Extra-gradient can also be understood as an opponent
shaping method: in the extrapolation step, the player looks one step in the future and anticipates the
next moves of his opponents. Several recent works proposed algorithms that make use of the opponents’
information to converge to an equilibrium (Foerster et al., 2018; Letcher et al., 2019; Zhang and Lesser, 2010).
In particular, the “Learning with opponent-learning awareness” (LOLA) algorithm is known for encouraging
cooperation in cooperative games (Foerster et al., 2018). Lastly, some recent works proposed algorithms to
modify the dynamics of simultaneous gradient descent by adding an adjustment term in order to converge
to the Nash equilibrium (Mazumdar et al., 2019) and avoid oscillations (Balduzzi et al., 2018; Mescheder
et al., 2017). One caveat of these works is that they need to estimate the Jacobian of the simultaneous
gradient, which may be expensive in large-scale systems or even impossible when dealing with non-smooth
losses as we consider in our setting. This is orthogonal to our approach that finds solutions of the original VI
problem (4).

3 Solving convex games with partial first-order information
We review the framework of Cartesian convex games and the extra-gradient method in §3.1. Building on
these, we propose to augment extra-gradient with player sampling and variance reduction in §3.2.

3.1 Solving convex n-player games with gradients
Each player observes a loss that depends on the independent parameters of all other players.

Definition 1. A Cartesian n-player game is given by a set of n players with parameters θ = (θ1, . . . , θn) ∈
Θ ⊂ Rd where Θ decomposes into a Cartesian product

∏n
i=1 Θi. Each player’s parameter θi lives in Θi ⊂ Rdi ,

where d =
∑n
i=1 di. Each player is given a loss function `i : Θ→ R.
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For example, generative adversarial network (GAN) training can be cast as a Cartesian game between
a generator and discriminator that do not share parameters. We make the following assumption over the
geometry of losses and constraints, that corresponds to the convexity assumption for one player.

Assumption 1. The parameter spaces Θ,Θ1, . . . ,Θn are compact, convex and non-empty. Each player’s loss
`i(θ

i, θ−i) is convex in its parameter θi and concave in θ−i, where θ−i contains all other players’ parameters.
Moreover,

∑n
i=1 `i(θ) is convex in θ.

Ass. 1 implies that Θ has a diameter Ω , maxu,z∈Θ ‖u− z‖2. Note that the losses may be non-differentiable.
A simple example of Cartesian convex games satisfying Ass. 1, that we will empirically study in §5, are
matrix games (e.g., rock-paper-scissors) defined by a positive payoff matrix A ∈ Rd×d, with parameters θ
corresponding to n mixed strategies θi lying in the probability simplex 4di .

Nash equilibria. Joint solutions to minimizing losses (`i)i are naturally defined as the set of Nash
equilibria (Nash, 1951) of the game. In this setting, the goal of multi-objective optimization becomes

Find θ? ∈ Θ such that ∀ i ∈ [n], `i(θ
i
?, θ
−i
? ) = min

θi∈Θi
`i(θ

i, θ−i? ). (1)

Intuitively, a Nash equilibrium is a point where no player can benefit by changing his strategy while the other
players keep theirs unchanged. Ass. 1 implies the existence of a Nash equilibrium (Rosen, 1964). We quantify
the inaccuracy of a solution θ by the functional Nash error (Nemirovski, 2004)

ErrN (θ) ,
∑n
i=1

[
`i(θ)−minz∈Θi `i(z, θ

−i)
]
. (2)

This error, computable through convex optimization, quantifies the gain that each player can obtain when
deviating alone from the current strategy. In particular, ErrN (θ) = 0 if and only if θ is a Nash equilibrium;
thus ErrN (θ) constitutes a proper indication of convergence for sequence of iterates seeking a Nash equilibrium.
It is the value we bound in our convergence analysis (see §4).

First-order methods and extrapolation. We consider (sub)differentiable losses `i forming a convex
game. The Nash equilibrium can be found using first-order methods, that access the gradients of `i. We
define the simultaneous gradient of the game to be

F , (∇1`1, . . . ,∇n`n)> ∈ Rd,

where we write ∇i`i , ∇θi`i. It corresponds to the concatenation of the gradients of each player’s loss with
respect to its own parameters. The losses `i may be non-smooth, in which case the gradients ∇ili should be
replaced by subgradients. Simultaneous gradient descent simply approximates the flow of the simultaneous
gradient. It fails to converge in very simple settings, in particular in any matrix games for which the payoff is
skew-symmetric. An alternative approach with better guarantees is the extra-gradient (Korpelevich, 1976)
method, which forms the basis for the algorithms presented in this paper. It has been extensively analyzed
under several settings (see §2). In particular, Nemirovski (2004) provides convergence results when gradients
are exact, and Juditsky et al. (2011) when gradients are accessed through a noisy oracle.

Extra-gradient consists in two steps: first, we take a gradient step to go to an extrapolated point. We
then use the gradient at the extrapolated point to perform a gradient step from the original point:

At iteration τ , (extrapolation) θτ+1/2 = pΘ[θτ − γτF (θτ )],

(update) θτ+1 = pΘ[θτ − γτF (θτ+1/2)],
(3)

where pΘ[·] is the Euclidean projection onto the constraint set Θ, i.e. pΘ[z] = argminθ∈Θ ‖θ − z‖22. This
"cautious" approach allows to escape cycling orbits of the simultaneous gradient flow, that may arise around
equilibrium points with skew-symmetric Hessians (see Fig. 1). The generalization of extra-gradient to general
Banach spaces equipped by a Bregman divergence was introduced as the mirror-prox algorithm (Nemirovski,
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Algorithm 1 Doubly-stochastic extra-gradient.

1: Input: initial point θ0 ∈ Rd, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].
2: If variance reduction, initialize R← F̃ (θ0, [n]) as in equation (5) with full simultaneous gradient.
3: for τ = 0, . . . , t do
4: Sample mini-batches of players P, P ′.
5: Compute F̃τ+ 1

2
= F̃ (θτ ,P) using (5) or using variance reduction (Alg. 2).

6: Extrapolation step: θτ+ 1
2
← pΘ[θτ − γτ F̃τ+ 1

2
].

7: Compute F̃τ+1 = F̃ (θτ+ 1
2
,P ′) using (5) or with variance reduction.

8: Gradient step: θτ+1 ← pΘ[θτ − γτ F̃τ+1].
9: Return θ̂t = [

∑t
τ=0 γτ ]−1

∑t
τ=0 γτθτ .

2004). All new results from §4 extend to this mirror setting (see §A.1). As recalled in Table 1, Juditsky et al.
(2011) provide rates of convergence for the average iterate θ̂t = 1

t

∑t
τ=1 θτ . Those rates are introduced for

the equivalent variational inequality (VI) problem:

Find θ? ∈ Θ such that F (θ?)
>(θ − θ?) > 0 ∀ θ ∈ Θ, (4)

where Ass. 1 ensures that the simultaneous gradient F is a monotone operator (see §A.2 for the link between
Nash equilibria and solutions of the VI).

Computational caveats. In systems with large number of players, an extra-gradient step may be compu-
tationally expensive due to the high number of backward passes necessary for gradient computations. Namely,
at each iteration, we are required to compute 2n gradients before performing a first update. This is likely to
be inefficient, as we could use the first computed gradients to perform a first extrapolation or update. This
remains true for games down to two players. In a different setting, stochastic gradient descent (Robbins and
Monro, 1951) updates model parameters before observing the whole data, assuming that partial observation
is sufficient for progress in the optimization loop. Similarly, partial gradient observation should be sufficient
to perform extrapolation and updates toward the Nash equilibrium. We therefore propose to compute a few
random player gradients at each iteration.

3.2 Partial extrapolation and update for extra-gradient
We present our main algorithm contribution in this section. While standard extra-gradient requires two
full passes over players, we propose to compute doubly-stochastic simultaneous gradient estimates. This
corresponds to evaluating a simultaneous gradient that is affected by two sources of noise. We sample a
mini-batch P of players of size b 6 n, and compute the gradients for this mini-batch only. Furthermore, we
assume that the gradients are noisy estimates, e.g., with noise coming from data sampling. We then compute
a doubly-stochastic simultaneous gradient estimate F̃ as

F̃ , (F̃ (1), . . . , F̃ (n))> ∈ Rd where F̃ (i)(θ,P) ,

{
n
b · gi(θ) if i ∈ P
0di otherwise

, (5)

where gi(θ) is a noisy unbiased estimate of ∇i`i(θ). The factor n/b in (5) ensures that the doubly-stochastic
simultaneous gradient estimate is an unbiased estimator of the simultaneous gradient. Doubly-stochastic
extra-gradient replaces the full update (3) by oracle (5), as detailed in Alg. 1.

Motivation. Sampling over players introduces a further source of noise in the average iterate sequence
(θ̄t)t. The convergence of this sequence is already slowed down by noisy gradients or by the non-smoothness
of the losses, that both introduce a term in 1/

√
t in the convergence bounds. It is therefore appealing to

introduce a further source of noise, hoping that the computational speed-ups provided at each iteration
mitigates the approximation errors introduced by player subsampling.
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Algorithm 2 Variance reduced estimate of the simultaneous gradient with doubly-stochastic sampling

1: Input: point θ ∈ Rd, mini-batch P, table of previous gradient estimates R ∈ Rd.
2: Compute F̃ (θ,P) as specified in equation (5).
3: for i ∈ P do
4: Compute F̄ (i) ← F̃ (i)(θ)− (1− b

n )R(i) and update R(i) ← F̃ (i)(θ)

5: for i /∈ P do
6: Set F̄ (i) ← R(i).
7: Return the estimate F̄ = (F̄ (1), ..., F̄ (n)), updated table R.

Variance reduction for player noise. To obtain faster rates in convex games with smooth losses, we
propose to compute variance reduced estimate of the simultaneous gradient. This mitigates the noise due
to player sampling. Variance reduction is a technique known to accelerate convergence under smoothness
assumptions in similar settings. While Chavdarova et al. (2019), Iusem et al. (2017), and Palaniappan and
Bach (2016) apply variance reduction on the noise coming from the gradient estimates, we apply it to the
noise coming from the sampling over the players. We implement this idea in Alg. 2. We keep an estimate of
∇i`i for each player in a table R, which we use to compute unbiased gradient estimates with lower variance,
similar to SAGA (Defazio et al., 2014).

Sampling strategies. In the basic version of the algorithm, the sampling over players can be performed
using any distribution with uniform marginals, i.e such that all players have equal probability of being
sampled. Sampling uniformly over b-subsets of [n] is a reasonable way to fulfill this condition as all players
have probability p = b/n of being chosen. One faster alternative is to perform importance sampling. Namely,
we sample each player i with a probability pi proportional to the uniform bound of ‖∇i`i‖. This technique
achieve faster convergence (see §B.3) when the gradient bounds for the different losses differ.

As a strategy to accelerate convergence, we propose to cycle over the n(n− 1) pairs of different players
(with b = 1). At each iteration, we extrapolate the first player of the pair and update the second one. We
shuffle the order of pairs once the block has been entirely seen. By excluding (i, i) pairs, we avoid players
extrapolating themselves, which is never useful to reduce `i. This scheme bridges extrapolation and alternated
gradient descent: for GANs, it corresponds to extrapolate the generator before updating the discriminator,
and vice-versa, cyclically. Sampling over players proves powerful for quadratic games (§5.1) and GANs (§5.2).
In App. C, we provide a first explanation for this fact, based on studying the spectral radius of recursion
operators (echoing recent work on understanding cyclic coordinate descent (X. Li et al., 2018)).

4 Sharp analysis of convergence rates
We state our main convergence results in this section. As announced, we derive rates for the algorithms
mentioned in §3.2 following the analysis by Juditsky et al. (2011). We compare them with the rates achieved
by stochastic extra-gradient introduced by Juditsky et al. (2011), which also assumes noisy gradients but no
player subsampling. While in the main paper the theorems are provided in the Euclidean setting, the proofs
in the appendices are written in the mirror setting. In the analysis, we separately consider the two following
assumptions on the losses.

Assumption 2a (Non-smoothness). For each i ∈ [n], the loss `i has a bounded subgradient, namely
maxh∈∂i`i(θ) ‖h‖2 6 Gi for all θ ∈ Θ. In this case, we also define the quantity G =

√∑n
i=1G

2
i /n.

Assumption 2b (Smoothness). For each i ∈ [n], the loss `i is once-differentiable and L-smooth, i.e.
‖∇i`i(θ)−∇i`i(θ′)‖2 6 L‖θ − θ′‖2, for θ, θ′ ∈ Θ.

Classically, similar to Juditsky et al. (2011) and Robbins and Monro (1951), we assume unbiasedness and
boundedness of the variance.
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Assumption 3. For each player i, the noisy gradient gi is unbiased and has bounded variance:

∀ θ ∈ Θ, E[gi(θ)] = ∇i`i(θ), E[‖gi(θ)−∇i`i(θ)‖22] 6 σ2.

In stochastic gradient-based methods, comparing rates in terms of number of iterations is not appropriate
since the complexity per iteration increases with the size b of player mini-batches. Instead, we define k(t) as the
number of gradients estimates gi computed up to iteration t. At each iteration in Alg. 1, the doubly-stochastic
simultaneous gradient estimate is computed twice and requires k gradient estimates. Therefore, k(t) = 2bt
which implies the number of iterations in terms of gradient computations is t(k) = k/2b. We give the rates
in terms of k in the statement of the theorems. We first state the convergence result for doubly-stochastic
extra-gradient under Ass. 2a.

Theorem 1. We consider a convex n-player game where Ass. 2a holds. Assume that Alg. 1 is run without
variance reduction and constant stepsize γ. The expected ErrN (θ̂t(k)) is upper bounded as

E
[
ErrN (θ̂t(k))

]
6 O

(√
Ωn

k
(nG2 + bσ2)

)
, setting γ ∈ O

(√
bΩ

n (nG2 + bσ2) t(k)

)
.

The following results holds when the losses are once-differentiable and smooth (Ass. 2b).

Theorem 2. We consider a convex n-player game where Ass. 2b holds. Assume that we run Alg. 1 with
variance reduction and constant stepsize γ. The expected ErrN (θ̂t(k)) is upper bounded as

E
[
ErrN (θ̂t(k))

]
6 O

(
ΩLn2

√
bk

+

√
Ωnbσ2

k

)
, setting γ ∈ min

{
O
( b3/2
Ln2

)
,O
(√ Ω

nσ2t(k)

)}
.

Those rates should be compared to the rate of Juditsky et al., 2011, Corollary 1, that we recall in §A.3
and Table 1. Corollary 3 and 7 in §B.2.2 and §B.4 contain the statements of Theorem 1 and 2 in more detail.
(i) Under Ass. 2a, Alg. 1 performs with a rate similar to stochastic extra-gradient. In both cases the rate is

1/
√
k, and the subgradient bound G and noise bound σ2 appear on the numerator. Doubly-stochastic

extra-gradient is more robust to noisy gradient estimates, because the dependency of its rate on σ2 is
weaker than for full extragradient.

(ii) Under Ass. 2b, the deterministic O(1/k) term of the rate is
√
n/b times larger compared to stochastic

extra-gradient while the noisy O(1/
√
k) term is

√
b/n times smaller. For long runs (large k), the noise

term dominates the deterministic one, which advocates for the use of small batch sizes: when b = 1,
the rate is asymptotically 1/

√
n times smaller. Setting σ to zero in the noise term, doubly-stochastic

extra-gradient with variance reduction recovers the rate from (Nemirovski, 2004).
To sum up, doubly-stochastic extra-gradient provides better convergence guarantees than stochastic extra-
gradient under high levels of noise (σ2 � 0), while it delivers similar or slightly worse theoretical results in
the non-noisy regime. Player randomness can be considered in the framework from Juditsky et al. (2011) by
including it in the noisy unbiased estimate gi (increasing σ2 in Ass. 3 accordingly). This coarse approach
does not yield the sharp bounds of Theorem 1 and 2 (see §A.4).

Importance sampling. Using importance sampling when choosing player mini-batches yields a better
bound by a constant factor (see §B.3). In the non-smooth case, this replaces the constant G with the strictly
smaller 1

n

∑n
i=1Gi, which is useful when the gradient magnitudes are skewed.

5 Applications
We show the performance of doubly-stochastic extra-gradient in the setting of quadratic games over the
simplex, and in the practical context of GAN training. A PyTorch/Numpy package is attached.
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Figure 2: Player sampled extra-gradient outperform vanilla extra-gradient for small noisy/non-noisy
smooth/non-smooth games. Cyclic sampling performs better than random sampling, especially for 5 players
(a). High noise regime, typical in machine learning, demands stronger subsampling (c). Curves averaged over
5 games and 5 runs for random algorithms.

5.1 Random quadratic games
We consider a game where n players can play d actions, with payoffs provided by a matrix A ∈ Rnd×nd, an
horizontal stack of matrices Ai ∈ R(d×nd) (one for each player). The loss function `i of each player is defined
as its expected payoff given the n mixed strategies (θ1, . . . , θn), i.e.

∀ i ∈ [n], ∀ θ ∈ Θ = 4d1 × · · · × 4dn , `i(θ
i, θ−i) = θi

>
Aiθ + λ‖θi − 1

d
‖1,

where λ is a regularization parameter that introduces non-smoothness and pushes strategies to snap to the
simplex center. The positivity of A is equivalent to Ass. 1, i.e. θ>Aθ > 0 for all θ ∈ Θ.

Experiments. We sample A as the weighted sum of a random symmetric positive definite matrix and
a skew matrix. We compare the convergence speeds of extra-gradient algorithms, with or without player
subsampling. We vary three parameters: the variance σ of the noise in the gradient oracle (we add a Gaussian
noise on each gradient coordinate, similar to Langevin dynamics (Neal et al., 2011)), the non-smoothness λ of
the loss, and the skewness of the matrix. We consider small games and large games (n ∈ {5, 50}). We use the
(simplex-adapted) mirror variant of doubly-stochastic extra-gradient, and a constant stepsize, selected among
a grid (see App. D). We use variance reduction when λ = 0 (smooth case). We compare random fixed-size
sampling with cyclic sampling (§3.2).

Results. Fig. 2 compares the convergence speed of player-sampled extra-gradient for the various settings
and sampling schemes. As predicted by Theorem 1 and 2, rates of convergence are comparable with and
without subsampling. Randomly subsampling players always brings a benefit in the convergence constant
(Fig. 2a-b), especially in the smooth noisy regime, using variance reduction (Fig. 2a column 2). Most
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Figure 3: Training curves and samples using doubly-stochastic extrapolation on WGAN-GP, with dataset
CIFAR10, for best learning rates. Doubly-stochastic extrapolation allows faster and better training, most
notably in term of Fréchet Inception Distance (10k). Curves averaged over 5 runs.

Method IS FID (50k)

EG (Gidel et al., 2019) 8.26± .16 19.69± 1.53
DSEG 8.38± .06 17.10± 1.07

Table 2: Effect of subsampling on training ResNet
WGAN-GP. FID and IS computed on 50k samples,
averaged over 5 runs (+ 10 folds for IS).

interestingly, cyclic player selection brings a significant improvement over random sampling for small number
of players, allowing larger gain in the rate constants (Fig. 2a).

Fig. 2c highlights the trade-offs in Theorem 2: as the noise increase, the size of player batches should be
reduced. Not that for skew-games with many players (Fig. 2b col. 3), which are the hardest games to solve
as averaging is needed (Mertikopoulos et al., 2019), our approach only becomes beneficial in the high-noise
regime (more relevant in ML). Full extra-gradient should be favored in the non-noisy regime (see App. D).

Spectral effect of sampling. To better understand the benefit of the cyclic selection scheme, we study
the linear “algorithm operator” A such that θt , A(θt−1) in non constrained two-player bilinear games. The
convergence speed of (θt)t is governed by the spectral radius of A, in light of Gelfand’s formula (Gelfand, 1941).
In App. C Fig. 4, we consider random matrix games. For these, the algorithm operator of extra-gradient
with cyclic player selection has on average a lower spectral radius than with random selection and a fortiori
full selection. This leads to faster convergence of cyclic schemes.

5.2 Generative adversarial networks (WGAN-GP + ResNet)
We evaluate the performance of the player sampling approach to train a generative model on CIFAR10
(Krizhevsky and Hinton, 2009). We use the WGAN-GP loss (Gulrajani et al., 2017), that defines a non-convex
two-player game. We compare the full extra-gradient approach advocated by Gidel et al. (2019) to the
cyclic sampling scheme proposed in §3.2 (i.e. extra. D, upd. G, extra. G, upd. D). We use the ResNet (He
et al., 2016) architecture from Gidel et al. (2019), and select the best performing stepsizes among a grid (see
App. D). We use the Adam (Kingma and Ba, 2015) refinement of extra-gradient (Gidel et al., 2019) for both
the baseline and proposed methods. We evaluate the Inception Score (Salimans et al., 2016) and Fréchet
Inception Distance (FID) (Heusel et al., 2017) along training.

Results. We report training curves versus wall-clock time in Fig. 3. Cyclic sampling allows faster and
better training, especially with respect to FID, which is more correlated to human appreciation (Heusel
et al., 2017). Table 2 compares our result to full extra-gradient with uniform averaging. It shows substantial
improvements in FID, with results less sensitive to randomness. Note that scores could be slightly improved
by leaving more time for training.

Interpretation. Without extrapolation, alternated training is known to perform better than simultaneous
updates in WGAN-GP (Gulrajani et al., 2017). Our approach allows to add extrapolation but keep an
alternated schedule. It thus performs better than extrapolating with simultaneous updates. It remains true
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across every learning rate we tested. Deterministic sampling is crucial for performance, as random player
selection performs poorly (best score 6.2 IS). This echoes the good results of cyclic sampling in §5.1.

6 Discussion and conclusion
We propose and analyse a doubly-stochastic extra-gradient approach for finding Nash equilibria. According to
our convergence analysis, updating/extrapolating subsets of players only is useful in high noise or non-smooth
settings, and equivalent otherwise. Numerically, doubly-stochastic extra-gradient leads to speed-ups and
improvements in convex and non-convex settings, especially using noisy gradients (as with GANs). Our
approach hence combines the advantages of alternated and extrapolation methods over simultaneous gradient
descent—we recommend it for training GANs.

Beyond demonstrating the usefulness of sampling, numerical experiments show the importance of sampling
schemes. We take a first step towards understanding the good performance of cyclic player extrapolation and
update. A better theoretical analysis of this phenomenon is left for future work.

We foresee interesting developments using player sampling and extrapolation in reinforcement learning:
the policy gradients obtained using multi-agent actor critic methods (Lowe et al., 2017; Mnih et al., 2016) are
highly noisy estimates, a setting in which sampling over players proves beneficial.
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The appendices are structured as follows: App. A presents the setting and the existing results. In
particular, we start by introducing the setting of the mirror-prox algorithm in §A.1. After detailing the
relation between solving this problem and finding Nash equilibria in convex n-player games §A.2, we recall
the rates for stochastic mirror-prox obtained by (Juditsky et al., 2011) in §A.3. We then present the proofs
of our theorems in App. B. We analyze the doubly-stochastic algorithm (Alg. 1) and separately study two
variants of the latter, adding importance sampling (§B.3) and variance-reduction (§B.4). App. C investigates
the difference betwen random and cyclic player sampling. App. D presents further experimental results and
details.
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A Existing results

A.1 Mirror-prox
Mirror-prox and mirror descent are the formulation of the extra-gradient method and gradient descent for
non-Euclidean (Banach) spaces. Bubeck (2015) (which is a good reference for this subsection) and Juditsky
et al. (2011) study extra-gradient/mirror-prox in this setting. We provide an introduction to the topic for
completeness.

Setting and notations. We consider a Banach space E and a compact set Θ ⊂ E. We define an open
convex set D such that Θ is included in its closure, that is Θ ⊆ D̄ and D ∩Θ 6= ∅. The Banach space E is
characterized by a norm ‖ · ‖. Its conjugate norm ‖ · ‖∗ is defined as ‖ξ‖∗ = maxz:‖z‖61〈ξ, z〉. For simplicity,
we assume E = Rn.

We assume the existence of a mirror map for Θ, which is defined as a function Φ: D → R that is
differentiable and µ-strongly convex i.e.

∀x, y ∈ D, 〈∇Φ(x)−∇Φ(y), x− y〉 > µ‖x− y‖2.

We can define the Bregman divergence in terms of the mirror map.

Definition 2. Given a mirror map Φ: D → R, the Bregman divergence D : D ×D → R is defined as

D(x, y) , Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉.
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Note that D(·, ·) is always non-negative. For more properties, see e.g. Nemirovsky and Yudin (1983) and
references therein. Given that Θ is compact convex space, we define Ω = maxx∈D∩Θ Φ(x)−Φ(x1). Lastly, for
z ∈ D and ξ ∈ E∗, we define the prox-mapping as

Pz(ξ) , argmin
u∈D∩Θ

{Φ(u) + 〈ξ −∇Φ(z), u〉} = argmin
u∈D∩Θ

{D(z, u) + 〈ξ, u〉}. (6)

The mirror-prox algorithm is the most well-known algorithm to solve convex n-player games in the mirror
setting (and variational inequalities, see §A.2). An iteration of mirror-prox consists of:

Compute the extrapolated point:

{
∇Φ(yτ+1/2) = ∇Φ(θτ )− γF (θτ ),

θτ+1/2 = argminx∈D∩Θ D(x, yτ+1/2),

Compute a gradient step:

{
∇Φ(yτ+1) = ∇Φ(θτ )− γF (θτ+1/2),

θτ+1 = argminx∈D∩Θ D(x, yτ+1).
.

(7)

Remark that the extra-gradient algorithm defined in equation (3) corresponds to the mirror-prox (7) when
choosing Φ(x) = 1

2‖x‖22.
Lemma 1. By using the proximal mapping notation (6), the mirror-prox updates are equivalent to:

Compute the extrapolated point: θτ+1/2 = Pθτ (γF (θτ )),

Compute a gradient step: θτ+1 = Pθτ (γF (θτ+1/2)).

Proof. We just show that θτ+1/2 = Pθτ (γF (θτ )), as the second part is analogous.

θτ+1/2 = argmin
x∈D∩Θ

D(x, yτ+1/2)

= argmin
x∈D∩Θ

Φ(x)− 〈∇Φ(yτ+1/2), x〉

= argmin
x∈D∩Θ

Φ(x)− 〈∇Φ(θτ )− αF (θτ ), x〉

= argmin
x∈D∩Θ

〈αF (θτ ), x〉+D(x, θτ ).

The mirror framework is particularly well-suited for simplex constraints i.e. when the parameter of each
player is a probability vector. Such constraints usually arise in matrix games. If Θi is the di-simplex, we
express the negative entropy for player i as

Φi(θ
i) =

di∑
j=1

θi(j) log θi(j).

We can then define D , int Θ = int Θ1 × · · · × int Θn and the mirror map as

Φ(θ) =

n∑
i=1

Φi(θ
i).

We used this mirror map in the experiments for random quadratic games (§5.1).

A.2 Link between convex games and variational inequalities
Finding a Nash equilibrium in a convex n-player game is related to solving a variational inequality (VI).
Consider a space of parameters Θ ⊆ Rd that is compact and convex, and consider a scalar product 〈·, ·〉 in
Rd. The strong form of the VI associated to the operator F : Θ→ Rd is

find θ∗ ∈ Θ such that 〈F (θ∗), θ − θ∗〉 > 0 ∀θ ∈ Θ. (8)
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The weak form of the VI is

find θ∗ ∈ Θ such that 〈F (θ), θ − θ∗〉 > 0 ∀θ ∈ Θ. (9)

We define the concept of monotone operator.

Definition 3. An operator F : Θ→ Rd is monotone if ∀θ, θ′ ∈ Θ, 〈F (θ)− F (θ′), θ − θ′〉 > 0.

If F is monotone, a solution of the strong form of the VI is a solution of the weak form. The reciprocal
implication is true when F is continuous.

For convex n-player games (Ass. 1), the simultaneous (sub)gradient F (Eq. 3.1) is a monotone operator.
Moreover, if we assume continuity of the losses li, the set of weak solutions to the VI (9) coincides with the
set of Nash equilibria. Solving the VI is therefore sufficient to find Nash equilibria (Harker and Pang, 1990;
Nemirovski et al., 2010). The intuition behind this result is that equation (8) corresponds to the first-order
necessary optimality condition applied to the losses of players.

The quantity that is used in the literature to quantify the inaccuracy of a solution θ is the dual VI gap
defined as ErrVI(θ) = maxu∈Θ〈F (u), θ − u〉. However, the functional Nash error (2) is the usual performance
measure for convex games. In this article we give the convergence rates for the functional Nash error but they
also apply to the dual VI gap. That is because the bound in Lemma 4 applies to the dual VI gap as well.

A.3 Convergence rates for the stochastic mirror-prox
In this section, we recall the stochastic mirror-prox algorithm and its analysis by (Juditsky et al., 2011).
Stochastic mirror-prox corresponds to Alg. 1 without subsampling over players i.e. setting the mini-batch
size b = n. We start by giving the rates in terms of the number of iterations under Ass. 2a and Ass. 2b.

Theorem 3 (From Juditsky et al. (2011)). We consider a convex n-player game where Ass. 2a and Ass. 3
hold. Assume that Alg. 1 is run for t iterations without subsampling (b = n) and with the optimal constant
stepsize γ, the expected ErrN (θ̂t) is upper bounded as

E
[
ErrN (θ̂t)

]
6 7

√
2Ωn

3t
(G2 + 2σ2).

Assuming Ass. 2b (instead of Ass. 2a) and setting the optimal constant stepsize γ,

E
[
ErrN (θ̂t)

]
6 max

{
7

2

ΩL

t
, 14

√
Ωnσ2

3t

}
.

To obtain a fair comparison with our results, we state these results in terms of the number of full gradients
computations k.

Corollary 1 (From Juditsky et al. (2011)). We consider a convex n-player game where Ass. 2a and Ass. 3
hold. Assume that Alg. 1 is run for t iterations without subsampling (b = n) and with the optimal constant
stepsize γ, the expected ErrN (θ̂k(t)) is upper bounded as

E
[
ErrN (θ̂t(k))

]
6 14n

√
Ω

3k
(G2 + 2σ2). (10)

Assuming Ass. 2b (instead of Ass. 2a) and setting the optimal constant stepsize γ,

E
[
ErrN (θ̂t(k))

]
6 max

{
7ΩLn3/2

k
, 14n

√
2Ωσ2

3k

}
. (11)
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A.4 Player randomness as noise
The easiest way to treat player randomness on the theoretical level is to incorporate it in the unbiased
gradient estimate. Indeed, in equation (5) F̃i(θ,P) is an unbiased estimate of ∇ili(θ).

E
[
F̃i(θ,P)

]
= Prob(i ∈ P)

n

b
E [gi(θ)] = E [gi(θ)] = ∇i`i(θ).

If gi has variance bounded by σ2, we can bound the variance of F̃i(θ,P).

E
[
‖F̃i(θ,P)−∇ili(θ)‖2

]
= E

[
‖F̃i(θ,P)− gi(θ) + gi(θ)−∇ili(θ)‖2

]
6 2E

[
‖F̃i(θ,P)− gi(θ)‖2

]
+ 2E

[
‖gi(θ)−∇ili(θ)‖2

]
6 2E

[
‖F̃i(θ,P)− gi(θ)‖2

]
+ 2σ2

= 2E
[
b

n

∥∥∥(n
b
− 1
)
gi(θ)

∥∥∥2

+

(
1− b

n

)∥∥∥(n
b
− 1
)
gi(θ)

∥∥∥2
]

+ 2σ2

6 2
n− b
b

E
[
‖gi(θ)‖2

]
+ 2σ2

6 2
n− b
b

G2 + 2σ2.

Substituting σ2 by 2n−bb G2 + 2σ2 on equations (10) and (11) yields:

E
[
ErrN (θ̂t(k))

]
6 14n

√
Ω

3k

(
4n− 3b

b
G2 + 2σ2

)
= O

(
n

√
Ω

k

(n
b
G2 + σ2

))
.

E
[
ErrN (θ̂t(k))

]
6 max

{
7ΩLn3/2

k
, 28n

√
Ω((n− b)G2 + bσ2)

3kb

}

= O
(

ΩLn3/2

k
+ n

√
Ω(nG2 + bσ2)

kb

)
.

These bounds are clearly worse than the ones in Corollary 1 when b� n, which motivates the theoretical
work in App. B that yields Theorem 1 and 2.
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B Proofs and mirror-setting algorithms

B.1 Useful lemmas
In this section, we present lemmas that will be frequently used in the analysis of the algorithms in §B.2, §B.3
and §B.4. We first present the following two technical lemmas that are used and proven by Juditsky et al.
(2011).

Lemma 2. Let z be a point in X , let χ, η be two points in the dual E∗, let w = Pz(χ) and r+ = Pz(η). Then,

‖w − r+‖ 6 ‖χ− η‖∗ .
Moreover, for all u ∈ E, one has

D(u, r+)−D(u, z) 6 〈η, u− w〉+
1

2
‖χ− η‖2∗ −

1

2
‖w − z‖2 .

Lemma 3. Let ξ1, ξ2, . . . be a sequence of elements of E∗. Define the sequence {yτ}∞τ=0 in X as follows:

yτ = Pyτ−1
(ξτ ).

Then yτ is a measurable function of y0 and ξ1, . . . , ξτ such that:

∀u ∈ Z,
〈 t∑
τ=1

ξt, yτ−1 − u
〉

6 D(u, y0) +
1

2

t∑
τ=1

‖ξτ‖2∗.

The following lemma provides an upper bound on the Nash functional error ErrN . The following lemma
provides an upper bound on the that the Nash functional error ErrN have the same upper bounds.

Lemma 4. We consider a convex n-player game with players losses `i where i ∈ [n]. Let a sequence of points

(zτ )τ∈[t] ∈ Θ, the stepsizes (γτ )τ∈[t] ∈ (0,∞). We define the average iterate ẑτ =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτzτ .

The functional Nash error evaluated in ẑt is upper bounded by

ErrN (ẑt) , sup
u∈Z

n∑
i=1

`i(ẑt)− `i(ui, ẑ−it ) 6 sup
u∈Z

(
t∑

τ=0

γτ

)−1 t∑
τ=0

〈γτF (zτ ), zτ − u〉.

Proof. By using the convexity of `i in its parameter and its concavity in the others parameters and applying
Jensen’s inequality, we obtain:

n∑
i=1

`i(ẑt)− `i(ui, ẑ−it ) =

n∑
i=1

`i

(∑t
τ=0 γτzτ∑t
τ=0 γτ

)
− `i

(
ui,

∑t
τ=0 γτz

−i
τ∑t

τ=0 γτ

)

6

(
t∑

τ=0

γτ

)−1 t∑
τ=0

γτ

n∑
i=1

`i(zτ )− `i(ui, z−iτ ). (12)

As a consequence of the convexity of `i with respect to its parameter, we have `i(zτ ) − `i(u
i, z−iτ ) 6

〈hi(zτ ), ziτ − ui〉 where hi(zτ ) ∈ ∂i`i(zτ ). Remark that F = (h1, ..., hn). By plugging this inequality in (12),
we obtain

n∑
i=1

`i(ẑt)− `i(ui, ẑ−it ) 6

(
t∑

τ=0

γτ

)−1 t∑
τ=0

n∑
i=1

〈γτhi(zτ ), ziτ − ui〉

=

(
t∑

τ=0

γτ

)−1 t∑
τ=0

〈γτF (zτ ), zτ − u〉.
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Lemma 5. Let (γt)t∈N be a sequence in (0,∞) and A,B > 0. For any t ∈ N, we define the function ft to be

ft(α) ,
A∑t

τ=0 αγτ
+
B
∑t
τ=0(αγτ )2∑t
τ=0 αγτ

.

Then, it attains its minimum for α > 0 when both terms are equal. Let us call α∗ the point at which the
minimum is reached. The value of ft evaluated at α∗ is

ft(α∗) = f

(√
A

B
∑t
τ=0 γ

2
τ

)
=

2
√
AB

∑t
τ=0 γ

2
τ∑t

τ=0 γτ
.

Proof. It is sufficient to derive the first-order optimality condition of f :

− 1

α2∗

A∑t
τ=0 γτ

+
B
∑t
τ=0 γ

2
τ∑t

τ=0 γτ
= 0,

and the result follows.

Lemma 6. Let (X1, ‖·‖X1
), . . . , (Xn, ‖·‖Xn) be Banach spaces where for each i, ‖·‖Xi is the norm associated

to Xi. The Cartesian product is X = X1×X2×· · ·×Xn and has a norm ‖·‖X defined for y = (y1, . . . , yn) ∈ X
as

‖y‖X ,

√√√√ n∑
i=1

‖yi‖2Xi .

It is known that (X, ‖·‖X) is a Banach space. Moreover, we define the dual spaces (X∗1 , ‖·‖X∗1 , . . . , (X∗n, ‖·‖X∗n).
The dual space of X is X∗ = X∗1 ×X∗2 × ...×X∗n and has a norm ‖ · ‖X∗ . Then, for any a = (a1, ..., an) ∈ X∗,
the following inequality holds

‖a‖2X∗ =

n∑
i=1

‖ai‖2X∗i .

Proof. We first prove that the LHS is smaller than the RHS. By definition of the dual norm, we have

‖a‖2X∗ = sup
y∈X

|ay|2
‖y‖2X

= sup
y∈X

(
∑n
i=1 aiyi)

2

‖y‖2X
6 sup
y∈X

(∑n
i=1 ‖ai‖X∗i ‖yi‖Xi

)2

‖y‖2X
, (13)

where we used Cauchy-Schwarz inequality. By applying again this inequality in (13), we obtain

‖a‖2X∗ 6 sup
y∈X

(∑n
i=1 ‖ai‖2X∗i

) (∑n
i=1 ‖yi‖2Xi

)
‖y‖2X

=

n∑
i=1

‖ai‖2X∗i ,

which proves the result. To prove the other inequality we define Zi =
{
yi ∈ Xi|‖yi‖X = ‖ai‖X∗i

}
.

‖a‖2X∗ = sup
y∈X

|ay|2
‖y‖2X

> sup
y∈Z1×···×Zn

|ay|2
‖y‖2X

=

(∑n
i=1 supyi∈Zi aiyi

)2∑n
i=1 ‖ai‖2X∗i

=

(∑n
i=1 ‖ai‖2X∗i

)2

∑n
i=1 ‖ai‖2X∗i

=

n∑
i=1

‖ai‖2X∗i .
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B.2 Doubly-stochastic mirror-prox
In this section, we present a more general version of Alg. 1. This algorithm (Alg. 3) is then analyzed in the
rest of this section and in §B.3.

B.2.1 Algorithm

While Alg. 1 presents the doubly-stochastic algorithm in the Euclidean setting, we consider here its mirror
version.

Algorithm 3 Doubly-stochastic mirror-prox

1: Input: initial point θ0 ∈ Rd, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].
2: for τ = 0, . . . , t do
3: Sample the random matrices Mτ ,Mτ+1/2 ∈ Rd×d.
4: Compute F̃τ+1/2 = n

b ·Mτ F̂ (θτ ).

5: Extrapolation step: θτ+1/2 = Pθτ (γτ F̃τ+1/2).
6: Compute F̃τ+1 = n

b ·Mτ+1/2F̂ (θτ+1/2).

7: Gradient step: θτ+1 = Pθτ (γτ F̃τ+1).

8: Return θ̂t =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτθτ .

Notation. We introduce the noisy simultaneous gradient F̂ (θ) defined as

F̂ (θ) = (F̂ (1)(θ), . . . , F̂ (n)(θ))> , (g1, . . . , gn)> ∈ Rd,

where gi is a noisy unbiased estimate of ∇ili(θ) with variance bounded by σ2. We are abusing the notation
because F̂ (θ) is a random variable indexed by Θ and not a function, but we do so for the sake of clarity.

For our convenience, we also define the ratio p = b/n.

Differences with Alg. 1 The notation in Alg. 3 differs in a few aspects. First, we model the sampling
over the players by using the random block-diagonal matrices Mτ and Mτ+1/2 in Rd×d. More precisely, at
each iteration, we select according to a uniform distribution b diagonal blocks and assign them to the identity
matrix. Remark that we add a factor n/b in front of the random matrices to ensure the unbiasedness of the
gradient estimates F̃τ and F̃τ+1/2. Note that the matrices Mτ and Mτ+1/2 are just used for the convenience
of the analysis. In practice, sampling over players is not performed in this way.

Moreover, while the update in Alg. 1 involve Euclidean projections, we use the proximal mapping (6)
in Alg. 3. The new notation will be used throughout the appendix.

We first proceed to the analysis of Alg. 3 in the case of non-smooth losses.

B.2.2 Convergence rate under Assumption 2a (non-smoothness)

Theorem 4. We consider a convex n-player game where Ass. 2a holds. Assume that Alg. 3 is run with
stepsizes (γτ )τ∈t. In terms of the number of iterations t, the rate of convergence in expectation is

E
[
ErrN (θ̂t)

]
6

(
t∑

τ=0

γτ

)−1(
2Ω +

t∑
τ=0

γ2
τn

(
(3n− b)G2

b
+ σ2

))
. (14)

Proof. The strategy of the proof is similar to the proof of Theorem 2 and part of Theorem 1 from Juditsky
et al. (2011). It consists in bounding

∑t
τ=0〈γτF (θτ+1/2), θτ+1/2 − u〉, which by Lemma 4 is itself a bound of

the functional Nash error.
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By using Lemma 2 with z = θτ , χ = γτ F̃τ+1/2, η = γτ F̃τ+1 (so that w = θτ+1/2 and r+ = θτ+1), we have
for any u ∈ Θ

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ ) 6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗ −

1

2
‖θτ+1/2 − θτ‖2∗

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗. (15)

When summing up from τ = 0 to τ = t in equation (15), we get

t∑
τ=0

〈γτ F̃τ+1, θτ+1/2 − u〉 6 D(u, θ0)−D(u, θt+1) +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗. (16)

By decomposing the right-hand side (16), we obtain

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉 6 D(u, θ0)−D(u, θt+1) +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗

+

t∑
τ=0

〈
γτ (F (θτ+1/2)− F̃τ+1), θτ+1/2 − u

〉

6 Ω +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗

+ γτ

t∑
τ=0

〈
F (θτ+1/2)− F̃τ+1, θτ+1/2 − yτ

〉

+ γτ

t∑
τ=0

〈
F (θτ+1/2)− F̃τ+1, yτ − u

〉
,

(17)

where we used D(u, θ0) 6 Ω and defined yτ+1 = Pyτ (γτ∆τ ) with y0 = θ0 and ∆τ = F (θτ+1/2)− F̃τ+1. So far,
we followed the same steps as Juditsky et al. (2011). We aim at bounding the left-hand side of equation (17)
in expectation. To this end, we will now bound the expectation of each of the right-hand side terms. These
steps represent the main difference with the analysis in Juditsky et al., 2011.

We first define the filtrations Fτ = σ(θτ ′ : τ ′ 6 τ + 1/2) and Fτ = σ(θτ ′ : τ ′ 6 τ). We now bound the
third term on the right-hand side of (17) in expectation.

E
[
‖F̃τ+1 − F̃τ+1/2‖2∗

]
6 2

(
E
[
‖F̃τ+1‖2∗

]
+ E

[
‖F̃τ+1/2‖2∗

])
=

2

p2

(
E
[
E
[
‖Mτ+1/2F̂ (θτ+1/2)‖2∗|Fτ

]]
+ E

[
E
[
‖Mτ F̂ (θτ )‖2∗|F ′τ

]])
=

2

p2

n∑
i=1

(
E
[
E
[
‖M (i)

τ+1/2F̂
(i)(θτ+1/2)‖2∗|Fτ

]]
(18)

+E
[
E
[
‖M (i)

τ F̂ (i)(θτ )‖2∗|F ′τ
]])

6
2

p

n∑
i=1

E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ E

[
‖F̂ (i)(θτ )‖2∗

]
6

4nG2

p
,

where we used ‖a+ b‖2∗ 6 2‖a‖2∗+ 2‖b‖2∗ in the first inequality and applied Lemma 6 in the second equality.
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Now, we compute the expectation of the fourth term of equation (17).

E

[
γτ

t∑
τ=0

〈
F (θτ+1/2)− F̃τ+1, yτ − u

〉]
(19)

= E

[
t∑

τ=0

E
[〈
γτ

(
I − Mτ+1/2

p

)
F̂ (θτ+1/2), θτ+1/2 − yτ

〉∣∣∣∣Fτ]
]

= E

[
t∑

τ=0

〈
γτE

[(
I − Mτ+1/2

p

) ∣∣∣∣Fτ]E [F̂ (θτ+1/2)

∣∣∣∣Fτ] , θτ+1/2 − yτ
〉]

= 0,

where we used the independence property of the random variables in the second equality and E[ kn ·Mτ+1/2] = Id
in the third equality. Regarding the fifth term of (17), by using the sequences {yτ} and {ξτ = γτ∆τ} in
Lemma 3 (as done in Juditsky et al. (2011)), we obtain:

t∑
τ=0

〈γτ∆τ , yτ − u〉 6 D(u, θ0) +
t∑

τ=0

γ2
τ

2
‖∆τ‖2∗ 6 Ω +

t∑
τ=0

γ2
τ

2
‖F (θτ+1/2)− F̃τ+1‖2∗. (20)

We now bound the expectation of ‖F (θτ+1/2)− F̃τ+1‖2∗ using the filtration Fτ . By using Lemma 6 in the
first equality, ‖a+ b‖2∗ 6 2‖a‖2∗ + 2‖b‖2∗ in the second inequality and the bound on the variance (Ass. 3) in
the third inequality, we obtain

E
[
‖F (θτ+1/2)− F̃τ+1‖2∗

]
=

n∑
i=1

E
[
‖F (i)(θτ+1/2)− F̃ (i)

τ+1‖2∗
]

=

n∑
i=1

E

[∥∥∥∥F (i)(θτ+1/2)− M
(i)
τ+1

p
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]

6
n∑
i=1

2E

[∥∥∥∥
(
I − M

(i)
τ+1

p

)
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]
+

n∑
i=1

2E

[∥∥∥∥F (i)(θτ+1/2)− F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]

6
n∑
i=1

2E

[
p

∥∥∥∥p− 1

p
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗
+ (1− p)‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

=

n∑
i=1

2

(
1− p+

(1− p)2

p

)
E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

=

n∑
i=1

2

(
1

p
− 1

)
E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

6
2nG2(1− p)

p
+ 2nσ2. (21)

Therefore, by taking the expectation in equation (17) and plugging (18), (19), (20) and (21), we finally get:

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 2Ω +

t∑
τ=0

γ2
τn

(
(3− p)G2

p
+ σ2

)
(22)

Applying Lemma 4 to equation (22) yields an upper bound on the functional Nash error and hence equation (14).
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Setting the constant stepsize that minimizes the rate in (14) implies the following corollary.

Corollary 2. In Theorem 4, the constant stepsize γτ minimizing the rate (14) is

γτ = γ =

√√√√ 2Ω

n
(

(3n−b)G2

b + σ2
)
t
. (23)

Under this optimal stepsize choice, the rate (14) becomes

E
[
ErrN (θ̂t)

]
6

√√√√8Ωn
(

(3n−b)G2

b + σ2
)

t
. (24)

Proof. For finding the optimal constant stepsize, we apply Lemma 5 to (14). This amounts to substituting
γτ = 1 for all τ ∈ [t], A = 2Ω and

B = n

(
(3n− b)G2

b
+ σ2

)
.

Using the notation from Lemma 5, α∗ yields the stepsize γ in equation (23) and the minimum ft(α∗) is the
value of the bound (24).

Remark 1. For constant stepsizes, Corollary 2 implies that with an appropriate choice of t and γ we can
achieve a value of the Nash error arbitrarily close to zero at time t. However, from Equation 14 we see that
constant stepsizes do not ensure convergence; the bound has a strictly positive limit. Stepsizes decreasing as
1/
√
τ do ensure convergence but we do not make a detailed analysis of this case.

Corollary 3. Setting γτ as in Corollary 2, the expected convergence rate in terms of the number of gradient
computations k is

E
[
ErrN (θ̂t(k))

]
= 4

√
Ωn (3G2n+ b(σ2 −G2))

k
.

Proof. The number of iterations t be expressed in terms of the number of gradient computations k as
t(k) = k/(2b). Plugging this expression into (24), we get

E
[
ErrN (θ̂t(k))

]
=

√
8Ωn

(
3G2n
b + σ2 −G2

)
k
2b

,

which yields the desired result after simplification.

B.2.3 Convergence rate under Assumption 2b (smoothness)

In this subsection, we provide a convergence rate for Alg. 3 in the case where the losses are smooth (Ass. 2b).
Remark that by continuity of ∇ili and compactness of Ω, ∀i ∈ [n], ∃Gi such that ‖∇i`i‖∗ 6 Gi. As in §B.2,
we define the quantity G =

√∑n
i=1G

2
i /n.

This result is not presented in the main paper because it is worse than the rate obtained under similar
assumptions in Juditsky et al. (2011) (cf. §A.3). Having weaker guarantees for doubly-stochastic extra-gradient
than for stochastic extra-gradient in the smooth case motivates the development of the variance reduction
scheme in §B.4. Variance reduction achieves to similar rates to stochastic extra-gradient.

Theorem 5. We consider a convex n-player game where Ass. 2b holds. Assume that Alg. 3 is run with
stepsizes (γτ )τ∈[t] such that γτ < 1/(L

√
3n). In terms of the number of iterations t, the rate of convergence

in expectation is

E
[
ErrN (θ̂t)

]
6

(
t∑

τ=0

γτ

)−1(
2Ω +

t∑
τ=0

13γ2
τn

2

(
G2(n− b)

b
+ σ2

)
.

)
(25)
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Proof. This proof is based on the same steps as in Theorem 4. By starting from equation (26), we obtain

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ )

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗ −

1

2
‖θτ+1/2 − θτ‖22

6
3γ2
τ

2
‖F̃τ+1 − F (θτ+1/2)‖2∗ +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2∗ +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2∗

− 1

2
‖θτ+1/2 − θτ‖22

6
3γ2
τ

2
‖F̃τ+1 − F (θτ+1/2)‖2∗ +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2∗ +

3nγ2
τL

2

2
‖θτ+1/2 − θτ‖2∗

− 1

2
‖θτ+1/2 − θτ‖22

6
3γ2
τ

2
‖F̃τ+1 − F (θτ+1/2)‖2∗ +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2∗, (26)

where in the last inequality we have used that γt 6 1/(L
√

3n). We now apply the same reasoning to upper
bound the expectation terms. These calculations lead to

E
[
‖F̃τ+1 − F (θτ+1/2)‖2∗

]
6

2nG2(1− p)
p

+ 2nσ2, (27)

E
[
‖F (θτ )− F̃τ+1/2‖2∗

]
6

2nG2(1− p)
p

+ 2nσ2. (28)

Therefore, by plugging the upper bounds obtained in (27) and (28) into equation (20) we get

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 2Ω +

t∑
τ=0

13γ2
τn

2

(
G2(1− p)

p
+ σ2

)
.

By applying Lemma 4, we obtain equation (25).

Corollary 4. In Theorem 4, the constant stepsize γτ minimizing the rate (25) is

γτ = γ = min

 1

L
√

3n
, 2

√√√√ Ω

13n
(
G2(n−b)

b + σ2
)
t

 . (29)

Under this optimal stepsize choice, the rate (25) becomes

E
[
ErrN (θ̂t)

]
6 max


4LΩ
√

3n

t
, 2

√√√√13Ωn
(
G2(n−b)

b + σ2
)

t

 . (30)

Proof. We apply Lemma 5 to Theorem 5. We substitute γτ = 1, A = 2Ω and

B =
13

2
n

(
G2(n− b)

b
+ σ2

)
.

The second term of the minimum in the RHS of equation (29) is equal to α∗ (using the notation from
Lemma 5). If γ = α∗, inequality (30) holds because the second term of the maximum is equal to ft(α∗).

In the case γ = 1/(L
√

3n), we know α∗ > γ. Since A/(α∗t) = Bα∗ by Lemma 5, we deduce A/(γt) > Bγ.
Therefore,

E
[
ErrN (θ̂t)

]
6
A

γt
+Bγ 6

2A

γt
=

4LΩ
√

3n

t
.
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Corollary 5. Setting γτ as in Corollary 4, the expected convergence rate in terms of the number of gradient
computations k is

E
[
ErrN (θ̂t(k))

]
6 max

{
8bLΩ

√
3n

k
, 2

√
26Ω (G2n(n− b) + σ2nb)

k

}
Proof. It is sufficient to plug t(k) = k/2b into (30) to get the result.

B.3 Doubly-stochastic mirror-prox with importance sampling
B.3.1 Setting

Different sampling strategies over players can be chosen in Alg. 3. In this section, we consider importance
sampling and derive convergence rates in this setting. We assume that we select one player among n (b = 1).
We choose player i with probability

pi =
Gi∑n
k=1Gk

. (31)

More formally, this mean that we choose one identity block among n according to the distribution D in the
random matrices Mτ and Mτ+1/2.

B.3.2 Analysis

Theorem 6. We consider a convex n-player game where Ass. 2a holds. Assume that Alg. 3 is run with
importance sampling and stepsizes (γτ )τ∈[t]. In terms of the number of iterations t, the rate of convergence in
expectation is

E
[
ErrN (θ̂t)

]
6

(
t∑

τ=0

γτ

)−1
2Ω +

t∑
τ=0

γ2
τ

3

(
n∑
i=0

Gi

)2

− nG2 + nσ2

 . (32)

Proof. The proof strategy is similar to the proof of Theorem 4. The only difference lies in the bounds of the
expectations terms E

[
‖F̃τ+1 − F̃τ+1/2‖2?

]
and E

[
‖F (θτ+1/2)− F̃τ+1‖2?

]
.

We use the same filtrations Fτ and F ′τ defined in the proof of Theorem 4. We start by bounding the first
expectation term. By using Lemma 6 in the first equality, ‖a+ b‖2∗ 6 2‖a‖2∗ + 2‖b‖2∗ in the second inequality,
we obtain

E
[
‖F̃τ+1 − F̃τ+1/2‖2?

]
=

n∑
i=1

E
[
‖F̃ (i)

τ+1 − F̃
(i)
τ+1/2‖2?

]
6

n∑
i=1

2
(
E
[
‖F̃ (i)

τ+1‖2?
]

+ E
[
‖F̃ (i)

τ+1/2‖2?
])

=

n∑
i=1

2

p2
i

(
E
[
E
[
‖M (i)

τ+1/2F̂
(i)(θτ+1/2)‖2?|Fτ

]]
+E

[
E
[
‖M (i)

τ F̂ (i)(θτ )‖2?|F ′τ
]])

6
n∑
i=1

2

pi

(
E
[
‖F̂ (i)(θτ+1/2)‖2?

]
+ E

[
‖F̂ (i)(θτ )‖2?

])
6

n∑
i=1

2
∑n
k=1Gk
Gi

· 2G2
i

= 4

(
n∑
i=1

Gi

)2

, (33)
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where we used (31) in the last equality. Regarding the second expectation term, by exactly applying the
same steps as above, we obtain

E
[
‖F (θτ+1/2)− F̃τ+1‖2?

]
=

n∑
i=1

E
[
‖F (i)(θτ+1/2)− F̃ (i)

τ+1‖2?
]

=

n∑
i=1

E

[∥∥∥∥F (i)(θτ+1/2)− M
(i)
τ+1

pi
F̂ (i)(θτ+1/2)

∥∥∥∥2

?

]

6
n∑
i=1

2E

[∥∥∥∥
(
I − M

(i)
τ+1

pi

)
F̂ (i)(θτ+1/2)

∥∥∥∥2

?

]

+

n∑
i=1

2E

[∥∥∥∥F (i)(θτ+1/2)− F̂ (i)(θτ+1/2)

∥∥∥∥2

?

]

6
n∑
i=1

2E

[
pi

∥∥∥∥pi − 1

pi
F̂ (i)(θτ+1/2)

∥∥∥∥2

?

+ (1− pi)‖F̂ (i)(θτ+1/2)‖2?

]
+ 2nσ2

=

n∑
i=1

2

(
1− pi +

(1− pi)2

pi

)
E
[
‖F̂ (i)(θτ+1/2)‖2?

]
+ 2nσ2

=

n∑
i=1

2

(
1

pi
− 1

)
G2
i + 2nσ2

6
n∑
i=1

2
∑n
k=1Gk
Gi

G2
i − 2G2

i + 2nσ2

6 2

(
n∑
i=1

Gi

)2

− 2nG2 + 2nσ2. (34)

Combining the equations (18) and (19) from the proof of Theorem 4 and the upper bounds obtained in (33)
and (34), we finally get the result (32).

Remark 2. By arithmetic mean-quadratic mean inequality,
n∑
i=1

G2
i >

(
∑n
i=1Gi)

2

n
.

This implies that the bound with importance sampling (32) is lower or equal than the one with uniform
sampling (14).

Remark 3. Corollary 2 and Corollary 3 hold when we substitute n2G2/b by (
∑n
i=1Gi)

2.

B.4 Doubly-stochastic mirror-prox with variance reduction
B.4.1 Algorithm

Analogously to previous sections, we present a version of Alg. 1 with variance reduction in the mirror
framework and in the new notation.

F̃ (θ) is defined as in Alg. 3. The random matrices Mτ ,Mτ+1/2 are also sampled the same way.
In Alg. 4 we leverage information from a table (Rτ )τ∈[t] to produce doubly-stochastic simultaneous

gradient estimates with lower variance than in Alg. 3. The table Rτ is updated when possible.
This algorithm is relevant because its convergence rate in the smooth case is very similar to the one

derived by Juditsky et al. (2011) under the same assumptions (see Theorem 3 and Corollary 1).
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Algorithm 4 Mirror prox with variance reduced player randomness

1: Input: initial point θ0 ∈ Rd, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].
2: Set R0 = F̂ (θ0) ∈ Rd
3: for τ = 0, . . . , t do
4: Sample the random matrices Mτ ,Mτ+1/2 ∈ Rd×d.
5: Compute F̃τ+1/2 = Rτ + n

bMτ (F̂ (θτ )−Rτ )

6: Set Rτ+1/2 = Rτ +Mτ (F̂ (θτ )−Rτ )

7: Extrapolation step: θτ+1/2 = Pθτ (γτ F̃τ+1/2).
8: Compute F̃τ+1 = Rτ+1/2 + n

bMτ+1/2(F̂ (θτ+1/2)−Rτ+1/2)

9: Set Rτ+1 = Rτ+1/2 +Mτ+1/2(F̂ (θτ+1/2)−Rτ+1/2)

10: Extra-gradient step: θτ+1 = Pθτ (γτ F̃τ+1).

11: Return θ̂t =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτθτ .

B.4.2 Convergence rate under Assumption 2b (smoothness)

Preliminaries. We define Kj , a random variable that will be used in Lemma 11.

Definition 4. For a given j, let us define Kj as the random variable indicating the highest q ∈ N strictly
lower than j such that M (i)

q/2 is the identity (and Kj = 0 if there exists no such q).

In other words, Kj is the last step q before j at which the sequence (R
(i)
q/2)q∈N was updated with a new

value F̂ (i)(θq/2). That is, Rj/2,i = F̂ (i)(θKj/2).

Remark 4. For a given j, j −Kj is a random variable that has a geometric distribution with parameter p
and support between 1 and j, i.e., for all q such that j − 1 > q > 1,

P (Kj = q) = p(1− p)j−1−q,

and P (Kj = 0) = 1−∑j−1
q=1 P (Kj = q) = (1− p)j−1.

The following inequality will be used in Lemma 11.

Lemma 7. The following inequality holds for any j ∈ N, p ∈ R such that p > 0:

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j

p2
6

2− p
p2

.

Proof. For j even, we can write

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j = 2(1− p)p+ 2(1− p)2 = 2(1− p).
For j odd,

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j = p+ 1− p+ 1− p = 2− p.
Since p > 0, 2− p > 2(1− p).

Lemma 8. For all |α| < 1,
∞∑
s=q

αs−1s =
qαq−1(1− α) + αq

(1− α)2
.

Proof.
∞∑
s=q

αs−1s =

( ∞∑
s=q

αs

)′
=

(
αq

1− α

)′
=
qαq−1(1− α) + αq

(1− α)2
.
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Proof. We provide an outline of the proof:

• Lemma 9 follows the structure of the proof in §B.2.2 and in (Juditsky et al., 2011). The rest of the
proof is particular to variance reduction and not related to the arguments in (Juditsky et al., 2011).

• Lemma 12 provides a bound for E
[∑t

τ=0 γ
2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?
]
, which is

one of the terms that appear in the bound of Lemma 9. Lemma 10 and 11 are intermediate steps in the
proof of 12.

• Theorem 7 follows from Lemma 9 and 12. It provides the convergence rate for generic stepsize sequences
and it is analogous to Theorem 4 from the non-smooth case.

• Corollary 6 provides the convergence rate for constant stepsizes and Corollary 7 gives the convergence
rate for constant stepsizes in terms of χ. They are analogous to Corollary 2 and 3.

Lemma 9. The following holds:

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 E

[
sup
u∈Z

2D(u, θ0)−D(u, θt+1)−
t∑

τ=0

1

2
‖θτ+1/2 − θτ‖22

]

+ E

[
t∑

τ=0

2γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2? +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2?

]

Proof. We rewrite equation (17):

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ )

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2? −

1

2
‖θτ+1/2 − θτ‖2

6
3γ2
τ

2
‖F̃τ+1 − F (θτ+1/2)‖2? +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2? +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2?

− 1

2
‖θτ+1/2 − θτ‖2.

We rewrite equation (20). We have ∆τ = F (θτ+1/2)− F̃τ+1 and yτ+1 = Pyτ (γτ∆τ ) with y0 = θ0.

t∑
τ=0

〈γτ∆τ , yτ − u〉 6 D(u, θ0) +

t∑
τ=0

γ2
τ

2
‖∆τ‖2?

= D(u, θ0) +

t∑
τ=0

γ2
τ

2
‖F (θτ+1/2)− F̃τ+1‖2?. (35)

Using equation (35) and the analogous equation to (19), we get the desired inequality.

The main challenge is to bound E
[∑t

τ=0 γ
2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?
]
, which we can

also express as

E

[
t∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?

]

= E

[
t∑

τ=0

n∑
i=1

γ2
τ‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2? + γ2
τ‖F (i)(θτ )− F̃ (i)

τ+1/2‖2?

]
, (36)

where we use Lemma 6.
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Lemma 10. The following equalities hold:

E
[
‖F (i)(θτ )− F̃ (i)

τ+1/2‖2?
]

=
2(1− p)

p
E
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

+ 2σ2,

E
[
‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2?
]

=
2(1− p)

p
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2.

Proof. Using the conditional expectation with respect to the filtration up to wτ ,

E
[
‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2?
]

= 2E

∥∥∥∥R(i)
τ+1/2 +

M
(i)
τ+1/2

p
(F̂ (i)(θτ+1/2)−R(i)

τ+1/2)− F̂ (i)(θτ+1/2)

∥∥∥∥2

?


+ 2E

[
‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2?

]
= 2E

∥∥∥∥
I − M

(i)
τ+1/2

p

 (R
(i)
τ+1/2 − F̂ (i)(θτ+1/2))

∥∥∥∥2

?

+ 2σ2

= 2E

[
p

∥∥∥∥p− 1

p
(R

(i)
τ+1/2 − F̂ (i)(θτ+1/2))

∥∥∥∥2

?

+ (1− p)‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2?

]
+ 2σ2

= 2

(
1− p+

(1− p)2

p

)
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2

=
2(1− p)

p
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2.

The second equality is derived analogously.

Let us define the change of variables j = 2τ . Parametrized by j, the sequences that we are dealing with
are (M

(i)
j/2)j∈N, (R

(i)
j/2)j∈N and (θj/2)j∈N. In this scope i is a fixed integer between 1 and n.

Lemma 11. Let us define h : R→ R as

h(p) ,
2− p
p2

. (37)

Assume that (γτ )τ∈N is non-increasing. Then, the following holds:

t∑
τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]
6

2t−1∑
j=0

h(p)γ2
bj/2cE

[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
, (38)

t∑
τ=0

γ2
τE
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]
6

2t−1∑
j=0

h(p)γ2
bj/2cE

[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.
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Proof. We can write

E
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

= E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
]

(39)

= E
[
E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
∣∣∣∣K2τ

]]
=

2τ−1∑
q=0

P (K2τ = q)E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
∣∣∣∣K2τ = q

]

=

2τ−1∑
q=1

p(1− p)2τ−1−qE
[
‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2?

]
+ (1− p)2τ−1E

[
‖F̂ (i)(θ0)− F̂ (i)(θ2τ/2)‖2?

]
.

As seen in equation (39), the point of conditioning with respect to the sigma-field generated by K2τ is that
we can write the expression for R2τ/2,i.

Now, using the rearrangement inequality,

E
[
‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2?

]
= E

∥∥∥∥ 2τ−1∑
j=q

F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)

∥∥∥∥2

?

 (40)

6
2τ−1∑
j=q

(2τ − q)E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.

Using equations (39) and (40) we can now write

t∑
τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

(41)

=

t∑
τ=0

γ2
τ

2τ−1∑
q=1

p(1− p)2τ−1−qE
[
‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2?

]
+ γ2

τ (1− p)2τ−1E
[
‖F̂ (i)(θ0)− F̂ (i)(θ2τ/2)‖2?

]
6

t∑
τ=0

γ2
τ

2τ−1∑
q=1

p(1− p)2τ−1−q
2τ−1∑
j=q

(2τ − q)E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]

+ γ2
τ (1− p)2τ−1

2τ−1∑
j=0

2τE
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.

Given j between 0 and 2t − 1 the right hand side of equation (41) contains the term
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E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖22

]
multiplied by

t∑
τ=d(j+1)/2e

γ2
τ

(
j∑
r=1

(2τ − r)p(1− p)2τ−1−r + 2τ(1− p)2τ−1

)

6 γ2
bj/2c

t∑
τ=d(j+1)/2e

j∑
r=1

(2τ − r)p(1− p)2τ−1−r + 2τ(1− p)2τ−1

= γ2
bj/2c

t∑
τ=d(j+1)/2e

p

j−1∑
r′=0

(1− p)2τ−1−j+r′(2τ − j + r′) + 2τ(1− p)2τ−1

6 γ2
bj/2c

t∑
τ=d(j+1)/2e

p

∞∑
r′=2τ−j

(1− p)r′−1r′ = (∗).

Using Lemma 8 twice:

(∗) = γ2
bj/2c

t∑
τ=d(j+1)/2e

p
(2τ − j)(1− p)2τ−1−jp+ (1− p)2τ−j

p2

= γ2
bj/2c

t∑
τ=d(j+1)/2e

(2τ − j)(1− p)2τ−1−jp+ (1− p)2τ−j

p

6 γ2
bj/2c

∞∑
τ=2d(j+1)/2e

(τ − j)(1− p)τ−1−j +
γ2
bj/2c
p

∞∑
τ=2d(j+1)/2e

(1− p)τ−j

= γ2
bj/2c

∞∑
τ=2d(j+1)/2e−j

τ(1− p)τ−1 +
γ2
bj/2c
p

∞∑
τ=2d(j+1)/2e−j

(1− p)τ

= γ2
bj/2c

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j

p2
.

By Lemma 7 we have

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j

p2
. 6 h(p)

Hence, from equation (41) we get

t∑
τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]
6

2t−1∑
j=0

γ2
bj/2ch(p)E

[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.
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Analogously to equation (39):

E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

= E
[
‖R(i)

(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2?
]

= E
[
E
[
‖R(i)

(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2?
∣∣∣∣K2τ+1

]]
=

2τ∑
k=0

P (K2τ+1 = k)E
[
‖R(i)

(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2?
∣∣∣∣K2τ+1 = k

]

=

2τ∑
k=1

p(1− p)2τ−kE
[
‖F̂ (i)(θk/2)− F̂ (i)(θ(2τ+1)/2)‖2?

]
+ (1− p)2τE

[
‖F̂ (i)(θ0)− F̂ (i)(θ(2τ+1)/2)‖2?

]
.

Using the same reasoning we get an inequality that is analogous to (38):

t∑
τ=0

γ2
τE
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]
6

2t∑
j=0

γ2
bj/2ch(p)E

[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
.

Lemma 12. Assume that for all i between 1 and n, the gradients ∇i`i are L-Lipschitz. Assume that for all
τ between 0 and t, γτ 6 γ. Let

χ(p, γ) = 1− 36
1− p
p

nh(p)L2γ2.

If γ is small enough that χ(p, γ) is positive, then

E

[
t∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?

]

6 104nσ2
t∑

τ=0

γ2
τ +

1− p
pχ(p, γ)

(12L2 + 36L4γ2)nh(p)

t∑
τ=0

γ2
τE
[
‖θτ − θτ+1/2‖2?

]
.

Proof. We first want to bound the terms E
[
‖F (i)(θj/2)− F (i)(θ(j+1)/2)‖22

]
. When j is even we can make the

change of variables j/2 = τ (just for simplicity in the notation) and use smoothness. We get

E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
= E

[
‖F̂ (i)(θτ )− F̂ (i)(θτ+1/2)‖2?

]
(42)

6 3E
[
‖F (i)(θτ )− F (i)(θτ+1/2)‖2?

]
+ 3E

[
‖F̂ (i)(θτ )− F (i)(θτ+1/2)‖2?

]
+ 3E

[
‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2?

]
6 3L2E

[
‖θτ − θτ+1/2‖2?

]
+ 6σ2.

When j is odd, we can write j/2 = τ + 1/2. We use smoothness and the fact that the prox-mapping is
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1-Lipschitz (Lemma 2):

E
[
‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2?

]
= E

[
‖F̂ (i)(θτ+1/2)− F̂ (i)(θτ+1)‖2?

]
(43)

6 3E
[
‖F (i)(θτ+1/2)− F (i)(θτ+1)‖2?

]
+ 3E

[
‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2?

]
+ 3E

[
‖F̂ (i)(θτ+1)− F (i)(θτ+1)‖2?

]
6 3L2E

[
‖θτ+1/2 − θτ+1‖2?

]
+ 6σ2

= 3L2E
[
‖Pθτ (γτ F̃τ+1/2)− Pθτ (γτ F̃τ+1)‖2?

]
+ 6σ2

6 3L2γ2
τE
[
‖F̃τ+1/2 − F̃τ+1‖2?

]
+ 6σ2

6 9L2γ2
τ

(
E
[
‖F̃τ+1/2 − F (θτ )‖2?

]
+E

[
‖F (θτ+1/2)− F̃τ+1‖2?

]
+E

[
‖F (θτ )− F (θτ+1/2)‖2?

])
+ 6σ2.

Hence, from equation (36) and Lemma 10 and 11:

E

[
t∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? + γ2

τ‖F (θτ )− F̃τ+1/2‖2?

]

6 4nσ2
t∑

τ=0

γ2
τ +

2(1− p)
p

E

[
t∑

τ=0

n∑
i=1

γ2
t ‖R(i)

τ − F̂ (i)(θτ )‖2 + ‖R(i)
τ+1/2 − F̂ (i)(θτ )‖2

]

6 4nσ2
t∑

τ=0

γ2
τ +

2(1− p)
p

n∑
i=1

2t∑
j=0

2γ2
bj/2ch(p)E

[
‖Fi(θj/2)− Fi(θ(j+1)/2)‖2?

]
= (∗∗).

We split the last term in summands corresponding to even and odd j, we change variables from j to τ and

32



we apply equations (42) and (43):

(∗∗) = 4nσ2
t∑

τ=0

γ2
τ +

2(1− p)
p

n∑
i=1

2t∑
j=0, j even

2γ2
bj/2ch(p)E

[
‖Fi(θj/2)− Fi(θ(j+1)/2)‖2?

]
+

2(1− p)
p

n∑
i=1

2t∑
j=0, j odd

2γ2
bj/2ch(p)E

[
‖Fi(θj/2)− Fi(θ(j+1)/2)‖2?

]
= 4nσ2

t∑
τ=0

γ2
τ +

2(1− p)
p

n∑
i=1

t∑
τ=0

2γ2
τh(p)E

[
‖Fi(θτ )− Fi(θτ+1/2)‖2?

]
+

2(1− p)
p

n∑
i=1

t∑
τ=0

2γ2
τh(p)E

[
‖Fi(θτ+1/2)− Fi(θτ+1)‖2?

]
6 52nσ2

t∑
τ=0

γ2
τ +

1− p
p

t∑
τ=0

12nγ2
τh(p)L2E

[
‖θτ − θτ+1/2‖2?

]
+

1− p
p

t∑
τ=0

36nh(p)L2γ4
τ

(
E
[
‖F̃τ+1/2 − F (θτ )‖2?

]
+ E

[
‖F (θτ+1/2)− F̃τ+1‖2?

])
+

1− p
p

t∑
τ=0

36nh(p)L4γ4
τE
[
‖θτ − θτ+1/2‖2?

]
= (∗ ∗ ∗).

We use that γτ 6 γ:

(∗ ∗ ∗) 6 52nσ2
t∑

τ=0

γ2
τ +

1− p
p

(12L2 + 36L4γ2)nh(p)

t∑
τ=0

γ2
τE
[
‖θτ − θτ+1/2‖2?

]
+ 36

1− p
p

nh(p)L2γ2
t∑

τ=0

γ2
τ

(
E
[
‖F̃τ+1/2 − F (θτ )‖2?

]
+ E

[
‖F (θτ+1/2)− F̃τ+1‖2?

])
.

Rearranging and using χ(p, γ) > 0 yields the desired result.

Theorem 7. Assume that for all i between 1 and n, the gradients ∇i`i are L-Lipschitz. Let (θ̂t)t∈N be defined
as in Alg. 4. Choose (γt)t∈N such that γt 6 γ, with γ defined as

γ , min

{
p3/2√

(1− p)(2− p)
1

12L
√
n
,

1

L

√
5

27n+ 12

}
, (44)

where p , b/n. Then,

ErrN (θ̂t) 6

(
t∑

τ=0

γτ

)−1(
2Ω + 104nσ2

t∑
τ=0

γ2
τ

)
.

Proof. It is easy to see that

γ 6
p3/2√

(1− p)(2− p)
1

12L
√
n
⇐⇒ χ(p, γ) > 3/4 > 0.
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Hence, the assumptions of Lemma 12 are fulfilled. Starting from the result in Lemma 9 and using Lemma 12,

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]

(45)

6 E
[

sup
u∈Z

2D(u, θ0)−D(u, θt)

]
+ 32nσ2

t∑
τ=0

γ2
τ

+ 2
1− p
pχ(p, γ)

(12L2 + 36L4γ2)nh(p)

t∑
τ=0

γ2
τE
[
‖θτ − θτ+1/2‖2?

]
+

3nL2

2

t∑
τ=0

γ2
τE
[
‖θτ − θτ+1/2‖2?

]
− 1

2

t∑
τ=0

E
[
‖θτ − θτ+1/2‖2?

]
6 2Ω + 104nσ2

t∑
τ=0

γ2
τ

+

(
(24L2 + 72L4γ2)nh(p)γ2 1− p

pχ(p, γ)
+

3nγ2L2

2
− 1

2

) t∑
τ=0

E
[
‖θτ − θτ+1/2‖2?

]
.

Recalling the definition of h(p) in Equation (37), the conditions χ(p, γ) > 3/4 and

γ 6
1

L

√
5

27n+ 12
,

imply

(24L2 + 72L4γ2)nh(p)γ2 1− p
pχ(p, γ)

+
3nγ2L2

2
− 1

2
6 0. (46)

We show this development because it is not entirely trivial:

(24L2 + 72L4γ2)n
2− p
p2

γ2 1− p
pχ(p, γ)

+
3nγ2L2

2
− 1

2

χ>3/4

6 (24L2 + 72L4γ2)n
2− p
p2

γ2 4(1− p)
3p

+
3nγ2L2

2
− 1

2

=
24 + 72L2γ2

27
(1− χ(p, γ)) +

3nγ2L2

2
− 1

2

6
2 + 6L2γ2

9
+

3nγ2L2

2
− 1

2

= γ2 (9n+ 4)L2

6
− 5

18
.

Using Equation (46) on (45) yields

E

[
sup
u∈Z

t∑
τ=1

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 2Ω + 104nσ2

t∑
τ=0

γ2
τ .

We conclude by Lemma 4.

Corollary 6. Set γ as in Equation (44). For all τ between 1 and t, let

γτ = min

{
γ,

1

2

√
Ω

13nσ2t

}
,
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Then,

E
[
ErrN (θ̂t)

]
6 max

{
4Ω

γt
, 8

√
13Ωnσ2

t

}
. (47)

Proof. Same proof as Corollary 4.

Corollary 7. Setting γτ as in Corollary 6, the expected convergence rate in terms of the number of gradient
computations k is

E
[
ErrN (θ̂t(k))

]
6 max

{
96
√

2ΩLn2

√
bk

, 8ΩbL

√
27n+ 12

5

1

k
, 8

√
26Ωnbσ2

k

}
.

Proof. Plugging t(k) = k/2b into (47), we get

E
[
ErrN (θ̂t(k))

]
6 max


4Ω

( bn )
3/2

√
(1− b

n )(2− b
n )

1
12L
√
n
k
2b

,
4Ω

1
L

√
5

27n+12
k
2b

, 8

√
26Ωnbσ2

k

 .

If we bound 1− b/n < 1 and 2− b/n < 2 (for simplicity) we get the desired result.
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C Spectral convergence analysis for non-constrained 2-player games
We observed in the experimental section that player sampling tended to be empirically faster than full
extra-gradient, and that cyclic sampling had a tendency to be better than random sampling.

To have more insight on this finding, let us study a simplified version of the random two-player quadratic
games. Let A ∈ R2d×2d be formed by stacking the matrices Ai ∈ Rd×2d for each i ∈ [d]. We assume that A is
invertible and has a positive semidefinite symmetric part. For i ∈ {1, 2}, we define the loss of the i-th player
`i as

`i(θ
i, θ−i) = θi

>
Aiθ −

1

2
θi
>
Aiiθ

i,

where Aii ∈ Rd and θi ∈ Rdi . Contrary to the random quadratic games setting in §5.1, we do not enforce
here any parameter constraints nor regularization. Therefore, this places us in the extra-gradient (Euclidean)
setting. We restrict our attention to the non-noisy regime.

C.1 Recursion operator for the different sampling schemes
We study the "algorithm" operator A that transforms θt+1 = A(θt) for the different sampling schemes.

Full extrapolation and update. We have ∇i`i(θ) = Aiθ. Since A is invertible, θ = 0 is the only Nash
equilibrium. The full extra-gradient updates with constant stepsize are{

θfull
τ+1/2 = θfull

τ − γAθfull
τ ,

θfull
τ+1 = θfull

τ − γAθfull
τ+1/2.

(48)

By introducing A(γ)
full := I − γA+ γ2A2, (48) is simply θfull

τ+1 = A(γ)
fullθ

full
τ .

Cyclic sampling. Defining the matrices M1,M2 ∈ R2d×2d

M1 =

[
Id 0d×d

0d×d 0d×d

]
, M2 =

[
0d×d 0d×d
0d×d Id

]
,

the updates becomes 
θcyc
τ+1/4 = θcyc

τ − γM1Aθ
cyc
τ ,

θcyc
τ+1/2 = θcyc

τ − γM2Aθ
cyc
τ+1/4,

θcyc
τ+3/4 = θcyc

τ+1/2 − γM2Aθ
cyc
τ+1/2,

θcyc
τ+1 = θcyc

τ+1/2 − γM1Aθ
cyc
τ+3/4.

. (49)

Remark that (49) contains two iterations of Alg. 1; θτ+1/4 and θτ+3/4 are extrapolations and θτ+1/2 and θτ+1

are updates. The reason behind this change is that computing θτ+1 from θτ now requires the same amount of
gradient computations in the full and alternated extra-gradient. If we define A(γ)

ij := I − γMiA+ γ2MiAMjA

and A(γ)
cyc := Aγ12A

(γ)
21 , we can write θcyc

τ+2 = A(γ)
cycθcyc

τ .

Random sampling. Extra-gradient with random subsampling (b = 1) rewrites as
θrand
τ+1/4 = θrand

τ − γMSτ+1/4
Aθrand

τ ,

θrand
τ+1/2 = θrand

τ − γMSτ+1/2
Aθrand

τ+1/4,

θrand
τ+3/4 = θrand

τ+1/2 − γMSτ+3/4
Aθrand

τ+1/2,

θrand
τ+1 = θrand

τ+1/2 − γMSτ+3/4
Aθrand

τ+3/4.

.
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where Sτ+1/4, Sτ+1/2, Sτ+3/4, Sτ+1 take values 1 and 2 with equal probability and pairwise are independent.
Note that we also enroll two iterations of sampled extra-gradient, for consistency with cyclic sampling. Let
Fτ = σ(Sτ ′ : τ ′ 6 τ). For extra-gradient with random subsampling, we can write

E
[
θrand
τ+1

]
= E

[
A(γ)
Sτ+1Sτ+3/4

A(γ)
Sτ+1/2Sτ+1/4

θrand
τ

]
= E

[
E
[
A(γ)
Sτ+1Sτ+3/4

A(γ)
Sτ+1/2Sτ+1/4

θrand
τ

∣∣∣∣Fτ]]
= E

[
E
[
A(γ)
Sτ+1Sτ+3/4

A(γ)
Sτ+1/2Sτ+1/4

∣∣∣∣Fτ] θrand
τ

]
= E

[
A(γ)
Sτ+1Sτ+3/4

A(γ)
Sτ+1/2Sτ+1/4

]
E
[
θrand
τ

]
.

Let us define A(γ)
rand := E

[
A(γ)
Sτ+1Sτ+3/4

A(γ)
Sτ+1/2Sτ+1/4

]
= 1

16

∑
j1,j2,j3,j4∈{1,2}A

(γ)
j1j2
A(γ)
j3j4

. It is easy to see that

A(γ)
rand = 1

16

(
4I − 2γA+ γ2A2

)2. We then have E
[
θrand
τ+2

]
= A(γ)

randE
[
θ

rand

τ

]
.

C.2 Convergence behavior through spectral analysis
The following well-known result proved by Gelfand (1941) relates matrix norms with spectral radii.

Theorem 8 (Gelfand’s formula). Let ‖ · ‖ be a matrix norm on Rn and let ρ(A) be the spectral radius of
A ∈ Rn (the maximum absolute value of the eigenvalues of A). Then,

lim
t→∞

‖At‖1/t = ρ(A).

In our case, we thus have the following results, that describes the expected rate of convergence of the last
iterate sequence (θt)t towards 0. It is governed by the spectral radii ρ(A(η)) whenever the later is strictly
lower than 1.

Corollary 8. The behavior of θfull
t , θcyc

t and θrand
t is related to the corresponding operators by the following

expressions:

lim
t→∞

(
sup

θfull
0 ∈R2d

‖θfull
t ‖2
‖θfull

0 ‖2

)1/t

= ρ
(
A(γ)

full

)
,

lim
t→∞

(
sup

θcyc
0 ∈R2d

‖θcyc
t ‖2
‖θcyc

0 ‖2

)1/t

= ρ
(
A(γ)

cyc

)
,

lim
t→∞

(
sup

θrand
0 ∈R2d

‖E
[
θrand
t

]
‖

2

‖θrand
0 ‖2

)1/t

= ρ
(
A(γ)

rand

)
.

Proof. The proof is analogous for the three cases. Using the definition of operator norm,

lim
t→∞

(
sup

θfull
0 ∈R2d

‖θfull
t ‖
‖θfull

0 ‖

)1/t

= lim
t→∞

 sup
θfull
0 ∈R2d

∥∥∥∥(A(γ)
full

)t
θfull

0

∥∥∥∥
‖θfull

0 ‖


1/t

= lim
t→∞

∥∥∥∥(A(γ)
full

)t∥∥∥∥1/t

,

which is equal to ρ
(
A(γ)

full

)
by Gelfand’s formula.
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Figure 4: Spectral radii distribution of the algorithmic operator associated to doubly-stochastic and full
extra-gradient, in the non-constrained bi-linear two-player game setting, for various conditioning and skewness.
Random and cyclic sampling yields lower radius (hence faster rates) for most problem geometry. Cyclic
sampling outperforms random sampling in most settings, especially for better conditioned problems.

C.3 Empirical distributions of the spectral radii
Comparing the cyclic, random and full sampling schemes thus requires to compare the values

A?full , min
γ∈R+

ρ(A(γ)
full), A?cyc , min

γ∈R+
ρ(A(γ)

cyc), A?rand , min
γ∈R+

ρ(A(γ)
rand), (50)

for all matrix games with positive payoff matrix A ∈ R2d×2d. This is not tractable in closed form. However,
we may study the distribution of these values for random games, in the setting of §5.1, detailed in App. D.

Experiment. Matrices A in R2d×2d, with d = 3, are sampled as the weighted sum of a random positive
definite matrix Asym and of a random skew matrix Askew. We vary the weight α ∈ [0, 1] of the skew matrix
and the lowest eigenvalue µ of the matrix Asym. We sample 300 different games and compute A(η) on a grid
of step sizes η, for the three different methods. We thus estimate the best algorithmic spectral radii defined
in (50).

Results and interpretation. The distributions of algorithm spectral radii are presented in Fig. 4. We
observe that the algorithm operator associated with sampling one among two players at each update is
systematically more contracting than the standard extra-gradient algorithm operator, providing a further
insight for the faster rates observed in §5.1, Fig. 2. Radius tend to be smaller for cyclic sampling than random
sampling, in most problem geometry. This is especially true in well conditioned problem (high µ), little-skew
problems (skewness α < .5) and completely skew problems α = 1. The later gives insights to explain the
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good performance of cyclic player sampling for GANs (§5.2), as the GAN game is skew (almost zero-sum
notwithstanding the discriminator penalty).

On the other hand, we observe that the distribution of radii is more spread using cyclic sampling for
intermediary skew problerm (α = .75), hinting that worst-case rates may be better for random sampling.
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Figure 5: 50-player completely skew smooth game with increasing noise (sampling with variance reduction).
In the non-noisy setting, player sampling reduces convergence speed. On the other hand, it provides a
speed-up in the high noise regime.

D Experimental results and details
We provide the necessary details for reproducing the experiments of §5.

D.1 Quadratic games
Generation of random matrices. We sample two random Gaussian matrix G and F in Rnd×nd, where
each coefficient gij , fij ∼ N (0, 1) is sampled independently. We form a symmetric matrix Asym = 1

2 (G+GT ),
and a skew matrix Askew = 1

2 (F − FT ). To make Asym positive definite, we compute its lowest eigenvalue µ0,
and update Asym ← Asym + (µ− µ0)Ind×nd, where µ regulates the conditioning of the problem and is set to
0.01. We then form the final matrix A = (1− α)Asym + αAskew, where α is a parameter between 0 and 1,
that regulates the skewness of the game.

Parameters for quadratic games. Fig. 2 compare rates of convergence for doubly-stochastic extra-
gradient and extra-gradient, for increasing problem complexity. Used parameters are reported in Table 3.
Note that the conclusion reported in §5.1 regarding the impact of noise and the impact of cyclic sampling holds
for all configurations we have tested; we designed increasingly complex experiments for concisely showing the
efficiency and limitations of doubly-stochastic extra-gradient.

Grids. For each experiment, we sampled 5 matrices (Ai)i with skewness parameter α. We performed a
grid-search on learning rates, setting η ∈ {10−5, · · · , 1}, with 32 logarithmically-spaced values, making sure

Table 3: Parameters used in Fig. 2 for increasing problem complexity.

Figure Players # Exp. Skewness α Noise σ Reg. λ

Fig. 2a 5 Smooth, no-noise 0.9 0 0
Smooth, noisy 0.9 1 0.
Skew, non-smooth, noisy 1. 1 2 · 102

Fig. 2b 50 Smooth, no-noise 0.9 0 0
Non-smooth, noisy 0.9 1 2 · 10−2

Skew, non-smooth, noisy 1. 1 2 · 10−2

Fig. 2c 50 Smooth, skew, lowest-noise 0.95 1 0.
0.95 10 0.

Smooth, skew, highest-noise 0.95 100 0.

Fig. 5 50 Smooth, skew, no-noise 1 0 0.
1 10 0.

Smooth, skew, highest-noise 1 50 0
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that the best performing learning rate is always strictly in the tested range.

Limitations in skew non-noisy games. As mentioned in the main section, player sampling can hinder
performance in completely skew games (α = 1) with non-noisy losses. Those problems are the hardest and
slower to solve. They corresponds to fully adversarial settings, where sub-game between each pair is zero-sum.
We illustrate this finding in Fig. 5, showing how the performance of player sampling improves with noise. We
emphasize that the non-noisy setting is not relevant to machine learning or reinforcement learning problems.

D.2 Generative adversarial networks
Models and loss. We use the Residual network architecture for generator and discriminator proposed
by Gidel et al. (2019). We use a WGAN-GP loss, with gradient penalty λ = 10. As advocated by Gidel et al.
(2019), we use a 10 times lower stepsize for the generator. We train the generator and discriminator using
the Adam algorithm (Kingma and Ba, 2015), and its straight-forward extension to extrapolation methods
proposed by Gidel et al. (2019).

Grids. We perform 5 · 105 generator updates. We average each experiments with 5 random seeds, and
select the best performing generator learning rate η ∈ {2 · 10−5, 5 · 10−5, 8 · 10−5, 1 · 10−4, 2 · 10−4}, which
turned out to be 5 · 10−5 for both subsampled and non-subsampled extra-gradient.
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