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Abstract

Multiple obstacle avoidance algorithms have been proposed over
the past years but they were not tested using a common protocol.
Some were tested statistically by repeating a task in specific simulated
worlds. Others went through a number of real handmade obstacles.
The last ones did lengthy real flights in environments that are tough to
characterize. This paper proposes the BOARR benchmark that aims
to give a common framework to test and compare obstacle avoidance
algorithms for quadrotors. It offers multiple sensors and multiple in-
dicators relevant to all quadrotor obstacle avoidance algorithms. It
uses ROS, Gazebo and RotorS and can be easily deployed.

1 Introduction

Benchmarks are a lot less common in robotics than in other fields such as ma-
chine learning or computer vision. This can be easily explained considering
the numerous difficulties to reach conditions that are close enough from one
place to another to make the results of two experiments comparable. Among
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the difficulties, we can evoke the characterization of a precise environment
which very often is important for a mission to succeed. At the least, building
environments that anyone could reproduce in the lab would create conditions
that would be far from those of the outside world. At the same time, it would
be difficult to ask a research team to test numerous algorithms because it
is time consuming and involves risks in damaging costly robots. An alter-
native to benchmarks to compare robotics solutions are challenges such as
the DARPA robotics challenge or the Autonomous Drone Racing Competi-
tion [1]. However those challenges are costly and often considered as goals
for projects more than an opportunity for early test phases. Benchmarks are
appealing because they can be used both in the course of a research project
as well as to share results. They also allow for direct comparison between dif-
ferent solutions to a specific task. More importantly maybe, using a common
benchmark is a step towards compatibility between multiple algorithms and
therefore towards reproducibility. For all these reasons and despite the diffi-
culties, some benchmarks have been proposed in robotics. Some of them test
a single robotic function, like KITTI [2] that tests depth estimation in road
environments or the RGB-D dataset for SLAM [3]. Others consist in precise
test protocols to reduce real life test disparities [4, 5, 6]. Finally, another
common way to benchmark in robotics is to use simulation. Despite giving
results that are approximative when compared to those obtained in real con-
ditions, simulation can still give an idea of the advantages and drawbacks of
the proposed algorithms. Moreover, a full simulation-based benchmark en-
vironment is often of much help during the development phase of a project.
Finally, because of time constraints, statistical analysis are rarely done while
doing real experiments as it is much easier to do so in simulation [7]. To the
authors knowledge, there are no existing benchmarks for obstacle avoidance.
This is the reason why the BOARR benchmark has been developed. It can
be downloaded at https://github.com/Gipsa-lab-PFP/BOARR.

Obstacle avoidance is a core functionality that is needed when considering
high level tasks. For quadrotors, those high level tasks can be for instance
24/7 monitoring, package delivery or fire fighting. All projects trying to cre-
ate such an application would benefit from a local re-planner that is collision
free, allowing to focus on the specificity of the targeted application instead
of developing its own collision free local re-planner. If multiple works focus
solely on collision avoidance for quadrotors (see for instance the survey pa-
per [8] and the references therein), it remains complex for non specialists
to select the best existing algorithm in order to save time for higher level
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tasks. Is it for instance safer to choose an algorithm that can fly across 20
trees without any collision or is it safer to choose an algorithm that can fly
600 m before a collision ? There is an obvious lack of a generic comparison
framework for obstacle avoidance algorithms.

In this paper, the first obstacle avoidance benchmarking environment for
quadrotors is proposed. It is fully open since it is based on a simulator that
the authors believe to be one of the most commonly used by many teams
working on low level control features. Multiple sensors are also provided in
order to be really close to the different choices that have been made during
the last years. A forest was chosen as test environment. Indeed, it appears
to be the environment that is one of the more complex and undoubtedly the
most widely chosen for research to test navigation algorithms. This paper
is organized in three main sections. In the first one, the test environment
is presented. It includes the simulation engine choice, the frame and sensor
choices and the generated worlds. In the second section, a step by step use
of the benchmark is proposed. It starts by explaining how the check in a
fast and easy way the compatibility of an algorithm with the benchmark and
then details how to obtain advanced statistical results with the benchmark.
In the third and last section, all the indicators given by the benchmark are
explained as well as their statistical meanings. It has been chosen to have
multiple statistical indicators since the choice of a good obstacle avoidance
algorithm highly depends on the application and especially on the needed
ratio between efficiency and safety.

2 Test environment

2.1 Simulation engine

The state of the art shows that, to the exception of custom simulators
and MATLAB/Simulink which hardly manages simulated worlds, two open
source simulators are mainly used when working with simulated quadrotors:
Microsoft AirSim [9] for high level tasks and RotorS [10] for low level control
purpose. If both are ROS compatible-a feature that now appears essential
for research in the field-the integration of RotorS appears more convenient
because easier and faster. Microsoft AirSim allows for flight in environments
that are way more realistic than what RotorS-which is based on Gazebo [11]-
can offer. The main advantage of using those realistic environments is the
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greater quality of the visual outputs compared to what Gazebo can offer.
However, as Microsoft AirSim uses either Unity or Unreal engine-neither of
which is open-source-it restricts the use and distribution of AirSim-based
benchmarks as simulation engines. Moreover, since obstacle avoidance test-
ing requires high dynamics flights, the focus should be on closely approaching
the dynamics of the quadrotors as it is the case with RotorS. If, noisy sensing
is crucial to test robustness, it is not important for the noise be a realistic.
For all those reasons, RotorS has been chosen over Microsoft AirSim.

RotorS, and by extension the BOARR benchmark, uses ROS-kinetic and
Gazebo 7.0. It can simulate UAV frames of any number of rotors. In this
benchmark, the four rotors configuration known as the quadrotor was cho-
sen since it is by far the configuration which is the most commonly used
by researchers. Once the configuration has been chosen, the dimension of
the frame (size and weight) is the discriminating factor. In the quadrotor
literature, the frames diameters are usually comprised between 30 cm (e.g.
Parrot Bebop 2) and up to approximately 1 meter (e.g. Astec Pelican).
These recent years, a tendency to go with smaller frames and less expensive
sensors has been observed. To illustrate, one of the first papers on obstacle
avoidance for UAV featured a 95kg Helicopter [12], when in 2015/2016, one
of the most common frame in used to be the Asctec Pelican [13, 14] to reach
nowadays Bebop-like platforms as in [15, 16, 17, 18]. It is to be noted that
these works focused solely on monocular videos. In order to stay close to a
large number of used platforms in terms of size and weight, an Astec Hum-
mingbird frame-55cm diameter and 710 g weight-was chosen. These size and
weight characteristics are a trade-off between what has been observed in the
literature of the last years and the recent tendency to implement obstacle
avoidance algorithms on smaller frames. It is situated in the lower half of
what can be found in the literature.

The RotorS package includes multiple controllers that allow a control of
the simulated quadrotor either in position, in attitude or directly in motor
speed. To ease the use of the benchmark, all of these RotorS controllers are
available so that it is possible to control the system by using any of these
control approaches.

2.2 Generated worlds

Two types of environments are proposed. The first one is composed of ver-
tical, randomly positioned cylinders. It is a 40 m×40 m square that is sur-

4



rounded by walls constraining the quadrotor to stay close to the cylinders.
This environment is a simplified environment that has the advantage to be
really light to run. It can be used to check the compatibility of an obstacle
avoidance algorithm with the proposed benchmark. Figure 1 presents a view
of this environment.

Figure 1: A simple world with cylindrical obstacles.

The second and main testing environment consists in randomly generated
80 m×80 m square forests. Their ground reliefs are extracted from Digital El-
evation Model files of multiple locations in the US that can be found in The
National Map [19]. There are 5 realistic ground profiles of different types:
one profile is flat, another one is a constant slope, while the last three are
mixed terrain with valley and hills. 20 different low-poly models of trees
generated by a procedural tree generator are used [20]. Each tree is slightly
randomly tilted along the horizontal axes away from verticality and then ran-
domly rotated along the vertical axis. Thanks to these slight modifications
on the orientation of the trees, 20 models are enough to generate real-like
forests with sufficient diversity whether in shape or in color as shown in Fig-
ure 2. With those ground profiles and tree models, the forests are generated
by randomly selecting 100 trees and then by placing each one of the trees on
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a ground profile. This positioning is a sum of three Gaussian distributions
which have different standard deviations allowing to create a world that in-
cludes a low density part (when looking from above, less than 40% of the
space is occupied by a tree), a mid density forest (between 40 and 70% occu-
pation) and a high density forest (over 70% occupation). It is expected that
those high/medium/low density areas will play an important role in helping
to differentiate the tested algorithms. Some algorithms will outperform oth-
ers in low density areas whereas others may perform better in high density
areas.

Figure 2: A forest view from above. The high density area is inside the red
ellipse, the mid density area inside the orange one and the low density zone
is in green.

Finally some wind effect has been added in the forest environments using
a wind plugin that is slightly different from the one which is proposed by
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RotorS. Indeed, RotorS proposes either a constant wind with a single wind
gust or a static wind field. Neither of those scenarios is adapted to obstacle
avoidance tests which require challenging wind conditions changing over pe-
riod of several minutes. The proposed plugin consists in a continuous base
wind with changing speed and direction on which recurrent wind gusts are
added. It can be found in the gazebogazebo plugins directory.

In order to discover the environments and tools proposed in the bench-
mark, a dummy algorithm that will navigate in straight line is provided. This
algorithm can be started using the dummy perfect sensing benchmark and
the dummy noisy benchmark scripts. Its use will allow the user to see a
live report of the progress of the quadrotor in the environment alongside an
on-board view of one of the quadrotor cameras.

2.3 Sensors

The sensors used are mostly taken from the RotorS package which offers a
broad range of sensors. All the sensors, except cameras, are proposed in
an exact and a noisy version. The exact version gives, as its name indi-
cates, perfectly sensed values while the noisy version adds noises observed
on physical sensors. All the sensors are streaming the standard ROS mes-
sage dedicated to their type of output data. The simulated quadrotor is
always equipped with all the sensors, but, for practical reasons, all of them
are considered weightless (or of weight already included in the frame weight
considered above).

IMU/GPS/baro sensors: The detailed list of the chosen sensors is the
following. The IMU (Inertial Measurement Unit) is either a perfect IMU
running at 500 Hz or a simulated MPU-6000 limited at 500 Hz. A perfect
magnetometer running at 100 Hz is proposed while the noisy one corresponds
to a HMC5883L at 75 Hz. The perfect barometer runs at 50 Hz while the
noisy barometer corresponds to a MS5611 at the same frequency. For the
GPS, the perfect one runs at 10 Hz while the noisy one is a simulated version
of a neo-m8n GPS at the same frequency.

Cameras: Two cameras at 30 Hz are also available. One is looking down-
wards as some algorithms use such cameras to compute the visual odometry,
and the second one is looking frontward which is the appropriate direction to
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detect obstacles for monocular based algorithms. Those cameras are only pro-
posed in their perfect version since working on a noisy rendering on Gazebo
worlds seems clearly limited compared to Microsoft AirSim that already pro-
vides high quality rendering thanks to the Unreal Engine.

Collision sensor: In Gazebo, a collision sensor is dedicated to the detec-
tion of any collision between a single collision box and the rest of the world.
To keep a single collision sensor, a cylinder was defined so that it just in-
cludes the shape of the quadrotor as figure 3 shows. This collision box is
slightly bigger than the quadrotor itself but for in-flight safety reasons, this
is acceptable. A quadrotor that would fly less than 2 or 3 cm away from
obstacles would be vulnerable to wind gust and could not be considered safe.

Figure 3: In orange, the cylindrical collision box of the simulated quadrotor.

Depth sensors: Finally, focusing on the depth sensors, two frontward
looking depth sensors are proposed. The field of view of the first depth
sensor is 67◦ horizontal and 42◦ vertical while its depth range is [0.15m, 10m]
corresponding to an Intel R© RealSenseTM. A perfect version of this depth
sensor is available and a noised version has been created by adding some
localized gaussian noise in the depth image. This noise is proportional to
the square of the depth. Figure 4(a) shows the color image of a simulated
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scene. Figure 4(b) shows the depth perceived by what would be a perfect
Intel R© RealSenseTM. Figure 4(d) shows the artificially noised output. Fig-
ure 4(c) shows the color image of a real scene of an environment comparable to
(a) and (e) gives a real depth image perceived by a real Intel R© RealSenseTM.
The second depth sensor aims to simulate a Velodyne HDL-32E with a 41◦

vertical and 360◦ horizontal field of view at 10 Hz with a minimum depth of
1 m and a maximum depth of 100 m. A noised version that adds a point by
point Gaussian noise (σ = 2 cm) to the point cloud is also proposed.

(a) (b) (c)

(d) (e)

Figure 4: In (a), a Realsense RGB view of a simulated forest. (b) is the
perfect depth corresponding to the perception of a perfect Realsense and (d)
the noised detph perceived by the noised realsense. (c) and (e) are an RGB
and a depth image perceived by a Realsense in a real forest.

It is possible and quite fast to create a specific sensor setup. However
any sensor choice should be detailed when giving the statistical results of the
benchmark, whether it is in the proposed configurations or corresponds to a
specific setup.
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3 Step by step use of the benchmark

The benchmark is based on ROS. Its usage requires basic knowledge of this
middleware. A tutorial can be found at [21]. The benchmark has been cre-
ated with 3 progressive steps. The first step is a preliminary step that allows
to verify, particularly with the use a real-time video output, the compatibility
between any proposed algorithm and the benchmarking environment. The
second step focuses on visually verifying the performances before starting the
statistical analysis while the third step consists in the statistical analysis of
the algorithm itself.

3.1 Simple test in a perfect light-weight environment

After downloading the benchmark code from https://github.com/

Gipsa-lab-PFP/BOARR and RotorS forked sources from https://github.

com/Gipsa-lab-PFP/RotorS, the first step will consist in a compatibility
test using the light world with cylindrical obstacles that is displayed in Fig-
ure 1. The test in itself is quite simple, it simply consists in travelling 100 m
between three predefined waypoints in this world. There is no wind and no
noise on any sensors. The light weight of this environment allows for fast
restarts if needed until the quadrotor flies as expected. This phase consists
in three main tasks :

• editing your current launch files to remap to the defined topics, renam-
ing the files and placing them in a specific directory.

• editing the sole configuration file which consists in selecting your control
method

• adapting your inertial frame and sensors frames if needed

Those three simple actions are described in detail in the
doc/UseYourOwnAlgorithm.md file and should be sufficient to obtain
a compatible algorithm. Once your algorithm is compatible, the com-
patibility test can be executed using a single bash script as stated in the
documentation file.
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3.2 Unit test in the forest environment

After a couple of successful flights in the perfect world, a transition to a
Unit test in the forests is the last step before starting the statistical analysis.
What is called a Unit test is a single test from the hundred tests that will be
executed during the statistical analysis phase. It consists in attempting to
fly, using the noisy sensors, for exactly one kilometer between successive way-
points in a windy forest environment without the collision sensor detecting
any collision.

Sixteen waypoints have been defined, with the same layout, in each gen-
erated forest. They are represented as crosses in black, red, blue or green on
Figure 5. Starting from the bottom right waypoint and moving clock-wise,
each of them have been given an ID from 0 to 15. Each test randomly starts
at a waypoint. Lets note L the ID of this waypoint, the next waypoint is
then randomly selected between waypoints with the Id (L + 5 ∨ 6 ∨ 7)%16.
This process is repeated as long as needed to generate flight paths of the
desired length. After multiple tests, this was an efficient strategy to cover
the whole terrain while avoiding round trips. Figure 5 shows this process for
the first two waypoints of a test. The distance travelled by the quadrotor is
defined as the linear distance between all the previously reached waypoints
(distance between W1 and W2 in figure 5) added to the distance between the
last reached waypoint (W2 in figure 5) and the perpendicular projection of
the current position of the quadrotor on the straight line linking the previous
(W2 in figure 5) and the targeted waypoints (W3 in figure 5). Each test is
stopped either at the first detected collision or when this travelled distance
exceeds 1km.

For all tests, a video can be automatically generated and is available in
real time. This is particularly enlightening in this Unit test phase as it allows
to monitor the behavior induced by the tested algorithm and to correct it
if needed. As the first test presented in subsection 3.1, the latter can be
executed using a single bash script.

3.3 Multiple tests in the forest

This is the last step. It consists in doing all the tests that will then be
statistically analyzed to characterize your algorithm. As for the other phases,
the whole phase is launched using a single bash script. Its completion should
take around a week working with Gazebo running in real time. This is
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Figure 5: A schematic view from above of the waypoints and of the compu-
tation of the travelled distance.

most likely possible using a 500$ computer if the tested algorithm is not too
computationally expensive. It can even be faster using the Gazebo speed up
factor if your algorithm and computer performances allow it. Each Unit test
will append a line describing its results in a text file that is generated in the
result/generated files/<date of the test> directory. The generated file will
then be used as the source for the statistical analysis detailed in the next
section.

4 Statistical analysis of the benchmark re-

sults

The main goal of this analysis is to extract a number of indicators describing
the general performances of the tested algorithm from the previously saved
file describing each of the performed Unit tests. A primary indicator based
on the probability of a collision occurring for a given travelled distance is
calculated. This indicator will also determine the number of Unit tests needed
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to conduct this statistical analysis. Other indicators are also proposed to help
distinguish the advantages and drawbacks of each of the tested algorithms.

4.1 Collision probability and number of tests

As stated before, each Unit test consists in a flight of one linear kilometer
between successive way-points. Using a probabilistic approach, it is possible,
for N tests, to compute an estimation p̂ of the probability p to fly one linear
kilometer without collision as :

p̂ =
1

N

n∑
i=1

Xi with Xi =

{
1, if No Collision on Test i

0, otherwise
(1)

It is then natural to try to express a bound on the relative error between the
estimated probability and the real probability to complete a one kilometer
flight between waypoints without collision. In a probabilistic way, with ε
being the estimation error and λ being the probability that the estimation is
outside of this bound error, it can be expressed as followed :

Pr(|p− p̂| ≤ ε) ≥ 1− λ (2)

The Chernoff bound then gives an expression of a minimum bound Nmin on
the number of test needed N to ensure any λ and ε :

N >
ln
(
2
λ

)
2ε2

(3)

An arbitrary choice then needs to be made in order to find a trade off
between the precision on the bound ε, the probability to be inside this bound
λ and the number of test N . Table 1 shows the number of tests necessary to
ensure different precision and incertitude bounds.

ε 0.01 0.02 0.05 0.05 0.1
λ 0.01 0.01 0.01 0.05 0.01
Nmin 26 492 6 623 1 060 738 265

Table 1: Number of tests for different precision and incertitude bounds.

We chose a 5% probability bound with a 1% probability to be outside the
bound. As a consequence, the Chernoff bound indicates that at least 1 060
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tests ensure those bounds. For everyone to have exactly the same conditions
during the tests, the necessary 1 060 Gazebo worlds have all been generated
and are available in the gazebo/benchmark v1.0 worlds directory of the
benchmark package. For each world, a sequence of waypoints is generated
and saved in a yaml file associated to the world file.

4.2 Other indicators

While the collision probability p is the main indicator of the performance
of the proposed algorithm, other indicators play an important role and give
clear indications on how an algorithm performs. These indicators are listed
below:

Average completion time: This is the mean over the tests of the time
needed to travel the one kilometer. Lowering the mission execution
time of a task often comes as a very important matter, either to do
more with a single battery or to increase efficiency.

Average flying speed: This is not necessarily the same as the completion
time as some algorithm may do more detours than others. This indica-
tor will be particularly relevant when flying in sparse environments in
which the possible detours will have less importance compared to the
average flying speed.

Average flying distance: This indicator quantifies the detours that are
taken in dodging the obstacles in the environment. It will benefit the
algorithm that tends to fly close to the obstacles but may reduce the
quadrotor’s speed to do so.

Average energy spent to complete a test: Algorithms with low com-
pletion time should best perform in this category as they also lower the
cost of gravity compensation. This indicator quantifies the smoothness
of the pace of the UAV since higher accelerations have higher impact
on the energy consumption.

5 Conclusion

Multiple obstacle avoidance algorithms have been proposed over the years
and it is right now nearly impossible to compare one’s contribution to the
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existing algorithms. One reason is that some are closed-source and can not
be used by everyone. Another reason is that any comparison to an existing
code requires to reprogram/interface it and implies spending a great deal
of time and an important risk of making mistakes. Therefore, this paper
has been focused on proposing a statistical obstacle avoidance benchmark-
ing environment for quadrotors. By creating such a benchmark that is as
generic and as user-friendly as possible, we aim to help obstacle avoidance
algorithm creators to develop and test their own algorithms as well as to give
indicators to compare them with other existing algorithms. The proposed
benchmark being open-source, the modelling, sensors, quadrotor simulation
can be improved by the community which can in turn add tests to better fit
its particular needs. Also note that this kind of statistical testing could be
extended to other tasks such as grasping or short distance inspection.
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