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Abstract Parametric shape optimization aims at minimizing an objective function f(x) where x are CAD
parameters of a shape. This task is difficult when f(·) is the output of an expensive-to-evaluate numerical
simulator and the number of CAD parameters is large.

Most often, the set of all considered CAD shapes reside in a manifold of lower effective dimension in which it
is preferable to build the surrogate model and perform the optimization. In this work, we uncover the manifold
through a high-dimensional shape mapping and build a new coordinate system that we call the eigenshape space.
The surrogate model is learned in the space of eigenshapes: a regularized likelihood maximization provides the
most relevant dimensions for the output. The final surrogate model is detailed (anisotropic) with respect to the
most sensitive eigenshapes and rough (isotropic) in the remaining dimensions. Last, the optimization is carried
out with a focus on the critical variables, the remaining ones being coarsely optimized through an embedding
strategy. At low budgets, the methodology leads to a more accurate model and a faster optimization than the
classical approach of directly working with the CAD parameters.
Keywords: Dimension Reduction, Principal Component Analysis, Parametric Shape Optimization, Gaussian
Processes, Bayesian Optimization

1 Introduction

The most frequent approach to shape optimization is to describe the shape by a vector of d Computer Aided
Design (CAD) parameters, x ∈ X ⊂ Rd and to search for the parameters that minimize the objective function,
x∗ = arg min

x∈X
f(x). In the CAD modeling process, the set of all possible shapes has been reduced to the space

of parameterized shapes, ΩΩΩ := {Ωx,x ∈ X}.
It is common for d to be large, d & 50. Optimization in such a high-dimensional design space is difficult,

especially when f(·) is the output of a high fidelity numerical simulator that can only be run a restricted number
of times. In computational fluid dynamics for example, simulations easily take 12 to 24 hours and evaluation
budgets range between 100 and 200 calls. Surrogate-based approaches [1] have proven their effectiveness to
tackle optimization problems in a few calls to f(·). They rely on a surrogate model (or metamodel, e.g.,
Gaussian Processes [2]) built upon n past observations of yi = f(x(i)). The metamodel is utilized by an
acquisition function such as the Expected Improvement [1] to decide what will be the next parametric design
x(n+1) evaluated. However, such techniques suffer from the curse of dimensionality when d is large. The budget
is also typically too narrow to perform sensitivity analysis and select variables prior to optimizing. A further
issue is that the CAD parameters x commonly have heterogeneous impacts on the shapes Ωx: many of them are
intended to refine the shape locally whereas others have a global influence so that shapes of practical interest
involve interactions between all the parameters.

Most often, the set of all CAD generated shapes, ΩΩΩ, can be approximated in a δ-dimensional manifold,
δ � d. In [3,4] this manifold is accessed through an auxiliary description of the shape, φ(Ω), φ being either
its characteristic function or the signed distance to its contour. The authors aim at minimizing an objective
function using diffuse approximation and gradient-based techniques, while staying on the manifold of admissible
shapes. Another way to handle shapes is the Point Distribution Model, in which the contour of the shape is
discretized [5,6]. In [7], a kriging surrogate is built in the space of the first Partial Least Squares axes. The
consideration of modes of discretized shapes is further pursued in [8] where bounds on the modes coefficients
are enforced and the gradient of the metamodel used for optimization purposes.

Following the same route, in Section 2, we retrieve a shape manifold with dimension δ � d by principal
component analysis of shapes described in an ad hoc manner. Section 3 is devoted to the construction of a
kriging surrogate model in reduced dimension (but the remaining dimensions are not completely omitted). In
Section 4, we employ the metamodel to perform global optimization [1] via the maximization of the Expected
Improvement. A reduction of the space dimension is achieved through a random embedding technique [9] and
a pre-image problem is solved to keep the correspondence between the eigenshapes and the CAD parameters.
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2 From CAD description to shape eigenbasis

CAD parameters are usually set up by engineers to automate shape generation. These parameters may be
Bézier or Spline control points which locally readjust the shape. Other CAD parameters, such as the overall
width or the length of a component, have a more global impact on the shape. While these parameters are
intuitive to a designer, they are not chosen to achieve any specific mathematical property and in particular do
not let themselves interpret to reduce dimensionality.

In order to define a better behaved description of the shapes that will help in reducing dimensionality, we
exploit the fact that the time to generate a shape Ωx is negligible in comparison with the evaluation time of
f(x).

In the spirit of kernel methods [10,11], we analyze the designs x in a high-dimensional feature space Φ ⊂ RD,
D � d (potentially infinite dimensional) that is defined via a mapping φ(x), φ : X → Φ. With an appropriate
φ, it is possible to distinguish a lower dimensional manifold embedded in Φ. As we deal with shapes, natural
candidates for φ are shape representations. In the literature, shapes have been described by the characteristic
function [3] (a grid of 0’s or 1’s whether we are inside or outside the shape, cast as a vector), the signed distance
to its contour ∂Ωx [4] (again on a spatial grid which is transformed into a vector), or the discretization of ∂Ωx

[5] (the coordinates of nodes on the contour in a given order and transformed into a vector). We map a large
number (N) of uniformly sampled designs x(i) ∈ X to Φ and build the matrix ΦΦΦ ∈ RN×D which contains the
centered φ(x(i)) ∈ RD in rows. Next, we perform a Principal Component Analysis (PCA) on ΦΦΦ: the eigenvectors
of ΦΦΦ>ΦΦΦ, written vj , form an ordered orthonormal basis of Φ with decreasing importance as measured by the
PCA’s eigenvalues λj , j = 1, . . . , D. The vj ’s are orthonormal directions in Φ that explain the most the
dispersion of the high-dimensional representations of the shapes, φ(x(i)). Any design x can now be expressed

in the eigenbasis1 V := (v1, . . . ,vD) since φ(x) = φφφ +
∑D
j=1 αjv

j , where (α1, . . . , αD)> =: ααα = V>(φ(x) − φφφ)

are the coordinates in the V basis (principal components). αj is a deviation from the mean shape, φφφ ∈ Φ, in
the direction of the eigenshape vj .

In experiments that are partially reported here due to space limitations, we have generated shapes of known
low intrinsic dimension: in the example of Fig. 1, the shapes are a set of circular holes of varying centers and
radii, therefore described by 1, 2 or 3 parameters. PCAs were then carried out on the ΦΦΦ’s associated to the
three mappings (characteristic function, signed contour distance and contour discretization). We have observed
the drop in eigenvalues λj and plotted the ααα’s manifolds.

The discretization of ∂Ωx was the only mapping φ for which the intrinsic shape dimension was equal to the
number of non-zero eigenvalues, i.e., the shape intrinsic dimension was recovered. With this φ, the manifold
of ααα(i)’s was better unfolded, which is advantageous for metamodeling and the eigenshapes vj were physically
meaningful. For these reasons in the following, we will only consider the ααα’s obtained using the contour
discretization as φ mapping.

The three first eigenshapes v1, v2 and v3 as well as the mean shape φφφ of the NACA 22 airfoil can be seen
in Figure 2. The NACA 22 benchmark is a data set made of airfoils described by d = 22 CAD parameters with
the associated lift and drag coefficients as outputs [12]. Notice that even though the NACA 22 shapes contain
bumps, the three first eigenvectors do not include them. Bumps, which correspond to local refinements of the
shapes, appear from the 4th eigenshape on.

3 GP model for reduced eigenspace

Building a surrogate-model in the space of principal components has already been investigated to construct
reduced order models [13]. In most applications, the dimension reduction is carried out in the output space,
which has large dimension when it corresponds to values on a finite element mesh. The response is approximated
by a linear combination of a small number of modes, and the metamodel is a function of the modes coefficients.

Here, we aim at reducing the dimension of the input space by building a surrogate of the design principal
components, ααα. A first idea to reduce the dimension of the problem is to conserve the δ first eigenvectors vj

according to some reconstruction quality criterion measured by the eigenvalues. Given a threshold T (e.g.,

0.99), only the first δ modes such that
∑δ
j=1 λj∑D
j=1 λj

> T are retained for the surrogate-based optimization process

because they contribute for 100× T% of the variance in Φ.
But such an approach relies only on considerations about the shape geometry. The output y is not taken

into account for the dimension reduction even though some vj , j ∈ {1, . . . , δ} may influence y or not. Two

1In a slight abuse of notation, we use V for both the basis and the matrix made of the v’s.
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Figure 1: Three first eigencomponents of the ααα(i)’s for three parametric test cases (columns) with low effective
dimension equal to 1 (left), 2 (center) and 3 (right). The rows correspond to different φ’s which are the
characteristic function (top), the signed distance to the contour (middle) and the discretization of the contour
(bottom).

shapes which differ in the αj components with j ≤ δ may behave similarly in terms of output y, so that further
dimension reduction is possible. Vice versa, eigencomponents that have a small geometrical effect and were
neglected may be reintroduced because they matter for y.

A second idea is thus to select the eigencomponents that impact y the most. This is done by maximizing
the penalized log-likelihood [14] of a Gaussian process (GP) in the high (D) dimensional space of ααα’s,

max
ϑ

plλ(ααα(1:n),y1:n;ϑ) where plλ(ααα(1:n),y1:n;ϑ) := l(ααα(1:n),y1:n;ϑ)− λ‖θθθ−1‖1 (1)

The ϑ are the GP’s hyper-parameters which include the length-scales of the GP, θj . l stands for the log-
likelihood of the GP and θθθ−1 := (1/θ1, . . . , 1/θD)> is the vector containing the inverse length-scales of the
GP. It is indeed known [15] that if θj → +∞, the direction vj has no influence on y. The L1 penalty term
applied to the θj ’s performs variable selection: this Lasso-like procedure promotes zeros in the vector of inverse
length-scales, hence sets many θj ’s to +∞. In the end, the directions with small enough θj , denoted αααa ∈ Rδ,
are declared to be active with regard to y, and have to be emphasized during metamodeling and optimization:
if θj ≤ 10 × min

i=1,...,D
θi , then αj is a component of the active αααa. Even if the maximization of plλ is carried

out in a D-dimensional space, the problem is tractable since the gradients of plλ are analytically known, and
because the L1 penalty convexifies the problem. Most local optima to this problem solely differ in θj ’s that are
already too large to be relevant and efficient local optimizers consistently yield the same set of active variables
αααa. In our implementation, we have modified the likelihood maximization of the kergp package [16] to include
the penalization term. After a dimensional anaysis of plλ, we have chosen to take λ = n

D to balance both terms.
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Other techniques such as cross-validation or the use of different λ’s for obtaining a pre-defined number of active
components can also be considered. On the NACA 22 benchmark with few observations of f(·) (n = 15 here),
Figure 2 shows that only few active components among the D = 600 are selected by the penalized maximum
likelihood procedure. The three first principal axes, v1, v2 and v3 are retained when considering the drag (top).
Indeed, these are the eigenshapes that globally impact the shape the most and change its drag. When the
output y is the lift (bottom), only the second principal axis is selected. This eigenshape modifies the camber of
the shape, which is known to highly impact the lift. The other eigenvectors are detected to be less critical for
y’s variations. When n grows, more eigenshapes get selected because they also slightly impact the output. For
instance when n = 50, some eigenshapes that contain bumps (the 4th, the 5th, the 8th, etc.) are selected for
modeling the lift. They also contribute to changing the camber of the airfoil, hence its lift.

Figure 2: Variable selection on the NACA 22 benchmark by penalized maximum likelihood. For the drag (top),
the three first eigenshapes that act on the shape, hence on its drag, are selected (red coefficients). For the lift,
only the second eigencomponent (v2) is selected (bottom). Indeed v2 modifies the camber of the airfoil, hence it
plays a major role on the lift. The other eigenbasis vectors (green coefficients) are estimated to be less influent
on y.

Completely omitting the “non-active” dimensions, αααa ∈ RD−δ, and building the surrogate model Y (·) in the
sole αααa space is not satisfactory however, as it is equivalent to erasing some geometric patterns of the shapes
which may contribute to small variations of y. For this reason, an additive GP with zonal anisotropy [17]
between the active eigenshapes and the residual ones is considered: Y (ααα) = Y a(αααa) + Y a(αααa). Y a(αααa) is the
anisotropic main-effect GP which works in the reduced space of active variables. It requires the estimation of
δ + 1 hyper-parameters (the length-scales θj and a GP variance) and aims at capturing most of y’s variation,
related to αααa’s effect. Y a(αααa) is a GP over the large space of inactive components. It is a GP which solely
aims at taking residual effects into account. Thus, a modeling assumption to keep it tractable is to consider it
isotropic, i.e., it only has 2 hyper-parameters, a unique length-scale and a variance. In the end, even though
Y (ααα) operates with ααα’s ∈ RD and there are fewer observations than dimensions, n � D, it remains tractable
since only a total of δ+3 hyper-parameters have to be learned, which remains affordable even when the number
of observations is small. This additive model can be interpreted as a GP in the αααa space, with an inhomogeneous
noise fitted by the Y a GP.

The effect of this refined surrogate model is a better predictive capacity, demonstrated by its increased
performance on the NACA 22 test set shown in Figure 3. The additive GP over the space of active and
inactive variables (left “Selection” boxes) achieves better performance than the GP which only uses the δ = 3
first principal components (central “3 first” boxes). It also outperforms the classical approach of building
the metamodel in the space of CAD parameters (right “CAD params” boxes). An interesting phenomenon is
visible in the two rightmost plots of Figure 3 where lift is the output: even though the three first eigenvectors
V1:3 = (v1,v2,v3) contribute to 98.5% of the shape discretizations variability, metamodeling in the space they
span leads to a deteriorated performance, the prediction being even worse than in the 22-dimensional CAD
parameters space. This is explained by the fact that none of these eigenshapes contains bumps, which appear
from the 4th one. Since the bumps contribute to the airfoils camber hence to the lift, critical information is lost
and performance is degraded. This highlights the benefits of selecting the variables that impact y for the main
effect GP, and of not completely disregarding the remaining variables.

4 Optimization in reduced dimension

We now turn to the problem of finding the shape that minimizes an expensive objective function f(·). To
this aim, we employ the previous additive GP, which works in the space of eigencomponents ααα, in an Efficient
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Global Optimization procedure [1]: at each iteration, a new shape is determined given the previous observations
{(ααα(1), y1), . . . , (ααα(n), yn)} by maximizing the Expected Improvement (EI) as calculated with the GP Y (ααα):
ααα(n+1) = arg maxααα∈RD EI(Y (ααα)). Although no call to the expensive f(·) is needed at this step, optimizing the
EI is tricky as it is a multi-modal and high (D) dimensional function.

We can however take advantage of the dimension reduction beyond the construction of Y : αααa ∈ Rδ are the
variables that affect y the most and should be prioritized for the optimization of f(·). Maximizing the EI solely
with respect to Y a(αααa) is nonetheless not an option, as the full GP Y (·) requires the knowledge of ααα = [αααa,αααa].
Moreover, αααa act as local refinements to the shape that contribute a little to y, and should be optimized also.

For these reasons, instead of maximizing EI([αααa,αααa]) , we maximize the EI with respect to αααa and use a
random embedding [9] to coarsely optimize the components αααa: we maximize EI([αααa, α′A]), where α′ ∈ R is the
coordinate along a random line in the αααa space, A. Since αααa have been classified as inactive, it is not necessary
to make a large effort for their optimization. The EI maximization is hence carried out in a much more tractable
δ + 1 -dimensional space and still has analytical gradients. From its optimum ααα∗ = (αααa∗, α′∗) ∈ Rδ+1 arises a
D-dimensional vector, ααα(n+1) = (αααa∗, α′∗A1, . . . , α

′∗AD−δ) to be evaluated by the true function.
A last point needs however to be fixed: the expensive simulator neither works with shapes nor with ααα’s but

with CAD parameters x. We have to solve the pre-image problem, that is to say to find the CAD parameter
vector x whose representation in the V basis equals ααα(n+1). Because there are more ααα’s than x’s, D � d, a
strict equality may not be feasible and the pre-image problem is relaxed into: x(n+1) = arg min

x∈X
‖V>(φ(x)−φφφ)−

ααα(n+1)‖2. To complete an iteration, x(n+1), the parametric shape that resembles ααα(n+1) the most, is evaluated
by the computer code, which returns yn+1 = f(x(n+1)). Notice that the surrogate model is updated with yn+1

and ααα(n+1) and not with the x(n+1).
Figure 3 shows an optimization run for the minimization of the NACA 22’s drag. The main advantage of our

approach (bottom left) is that it enables an early search for low drag airfoils. The standard approach (bottom
center) needs much more function evaluations for building the initial surrogate model (black dots) because the
inputs live in a space of higher dimension. Furthermore, the approach introduced in this paper would gain in
importance in problems with much more than d = 22 CAD parameters, where it would almost be impossible
to build a large enough initial design of experiments.

Figure 3: Top row: mean absolute prediction errors in drag (left) and lift (right) of the additive GP with zonal
anisotropy and mode selection based on penalized likelihood (“Selection”), of an anisotropic GP using the first
3 eigenshapes (“3 first”) and of an anisotropic GP built in the space of CAD parameters (“CAD params”).
Bottom row: Drag optimization of the NACA 22 airfoil in the reduced eigenbasis (left) or carried out in the
CAD parameters space (center). Low-drag airfoils are found while the classical method still evaluates the airfoils
of the initial design of experiments (right).
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5 Conclusions

In this paper we have proposed a new methodology to apply Bayesian optimization techniques to parametric
shapes. Instead of working directly with the CAD parameters, which are too numerous for an efficient op-
timization and may not be the best representation of the underlying shape, we unveil the lower dimensional
manifold of shapes through an auxiliary mapping. The dimensions of this manifold that contribute the most
to the variation of the output are prioritized for building a surrogate model, which is utilized for Bayesian
optimization. A significant dimension reduction and speed-up is achieved on an aerodynamic CAD benchmark.
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