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Abstract. Based on the finite element method, the wave finite element method (WFE)
permits to analyze the dynamics of a periodic structure by using a wave decomposition of
one period. This method reduces the number of DOF and it has advantages in calculation
time. However, it cannot be applied easily to a railway track because this structure is
subjected by moving loads which are not considered in a classical WFE. In this article,
we present a technique to deal with moving loads applying in a railway track where the
track components are modeled by 3D continuous media. By using the classical WFE for
one track period in frequency domain, we can rewrite the vector of DOF and loads in a
wave base. Then, we can calculate the wave amplitudes of the moving loads from their
representation in this base. Thereafter, we apply the wave analyze of WFE to the hold
structure. The result shows that the moving loads lead to a sum of wave amplitudes.
Finally, we apply this method for a railway track subjected to constant moving loads
with numerical application. The new technique permits to analyze the dynamic of railway
tracks by considering only one track period.

1 INTRODUCTION

The dynamic of railway track has been studied with different methods. The analytical
methods permit to calculate very fast track responses for different types of tracks [1-6].
These methods base on the model of beams supported by viscoelastic foundation or the
model of periodically supported beams [6]. The numerical methods have been developed
by using the finite element method (FEM). The advantage of this method is to give a
complete analysis. However, it can not take easily the whole length of the railway track
and the calculation time is long. Some reduced techniques have been developed for the
FEM. Recently, the wave finite element method [7-10] has been applied to the railway
track analysis. This method is based on the wave decomposition of one track period then
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using the wave analysis to compute the response of the whole track. However, the classical
WFE can not take into account the moving loads of a train applied to the rail and this
article deals with this problem.

By rewriting the dynamic equation of one period (a substructure) of the railway track
subjected to a load in the frequency domain, we obtain a relation of the vector of DOF
and nodal loads at the left and right boundary of the substructure and this relation is
including the moving loads. Then, we use the WFE technique to rewrite the expression of
the track response. In the other side, we present a bounded limit for an infinite periodic
railway track which leads to a simple expression of the response. The applications have
been developed then for a normal railway track and ones with a defect zone or a transition
zone.

1.1 Dynamic equation

Consider a railway track with a periodic interval as shown in Figure 1. This interval
is represented by one period (a substructure) with all components of the tracks (rails,
pads, supports, fondations...). The track is subjected to dynamic loads of a train and we
consider that all loads are given.

Left boundary

Right  boundary

Figure 1: Periodic railway track represented by a substructure

By using the finite element method for a substructure, the dynamic equation can be
written as follows

Dtotq = F (1)

where Dtot = K+ jωC−ω2M is the dynamic stiffness matrix (DSM) of the substructure.
We note that the aforementioned equation holds for all type of modeling (beam, 2D or
3D). Then, we can rewrite the DSM as follows D̃II D̃IL D̃IR

D̃LI D̃LL D̃LR

D̃RI D̃RL D̃RR

 qI
qL
qR

 =

 FI

FL

FR

 (2)

where L,R and I denote for the left, right boundaries and inner nodes of the substructure
as shown in Figure 1. Then, we can reduce the inner nodes qI of the cell from the first
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row of equation (2) and we obtain[
DLIFI

DRIFI

]
+

[
DLL DLR

DRL DRR

] [
qL
qR

]
=

[
FL

FR

]
(3)

where
DLL = D̃LL − D̃LID̃

−1
II D̃IL DLR = D̃LR − D̃LID̃

−1
II D̃IR

DRL = D̃RL − D̃RID̃
−1
II D̃IL DRR = D̃RR − D̃RID̃

−1
II D̃IR

DLI = D̃LID̃
−1
II DRI = D̃RID̃

−1
II

(4)

We see that equation (3) presents a relation between the loads and displacements at
the left and right boundaries of a cell. This equation contains a term of FI which is zero
when the substructure has non external loads.

1.2 Boundary conditions

We denote (n) for the substructure number n in the track interval. For the two consec-
utive substructures, the right boundary of (n) is the left boundary of (n+ 1). Therefore,
we have

q
(n)
R = q

(n+1)
L

F
(n)
R + F

(n+1)
L = F

(n)
∂R

(5)

where F
(n)
∂R is the external load at the right boundary R of the substructure (n). By

combining equations (3) and (5), we obtain[
q
(n+1)
L

−F
(n+1)
L

]
=

[
DqIF

(n)
I

DfIF
(n)
I − F

(n)
∂R

]
+ S

[
q
(n)
L

−F
(n)
L

]
(6)

where

S =

[
−D−1LRDLL −D−1LR

DRL −DRRD−1LRDLL −DRRD−1LR

]
, (7)

and [
DqI

DfI

]
=

[
−D−1LRDLI

DRI −DRRD−1LRDLI

]
(8)

We can rewrite equation (6) as follows

u(n+1) = Su(n) + b(n) (9)

where

u(n) =

[
q
(n)
L

−F
(n)
L

]
, b(n) =

[
DqIF

(n)
I

DfIF
(n)
I − F

(n)
∂R

]
(10)

Equation (9) presents a relation between DOF (displacements and loads) of a sub-
structure (n) and its next substructures (n + 1). Here b(n) presents the external loads
on the substructures (n) (hence, when the substructure is free, b(n) = 0). For a series
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of substructures, this equation presents a geometric series which can be reduced to the
following results

u(n) = Snu(0) +
n∑
k=1

Sn−kb(k) (11)

u(0) = Snu(−n) +
n−1∑
k=0

Skb(−k) (12)

Equations (11) and (12) give the relations of the responses at the substructure (n) and
(−n) respectively, and the response at the reference origin. Note that the origin can be
placed at any substructure because the railway track is periodic.

1.3 Load of a train

The load of a train applying on one period (n) of the track is presented by a dynamic
force fn(x, t) with x is local position and t is the time. In the frequency domain, when
using the finite element method, the nodal load on the rail at the period n in the moving
reference is presented by fn(ω). In the fixed reference, the load on the period (n) is
presented by fn

(
x, t+ nl

v

)
with l is the length of one period and v is the train speed.

Thus, the nodal load in the frequency domain is given by

F(n)
∗ (ω) = eiω

nl
v f (n)∗ (ω) (13)

where F∗ can be FI or F∂R. We see that when the train load is stable, f
(n)
∗ (ω) does not

depend on n and the load on all period has the same spectrum but different phases given
by the first term eiω

nl
v .

Bounded conditions: We suppose that the train move on an limited interval of the
track and therefore, the track response at infinity are bounded

lim
n→±∞

{q(n),F(n)} are bounded (14)

2 WAVE DECOMPOSITION

2.1 Calculation of wave base

We will now calculate the eigenvalues and eigenvectors {µj, φj}j of the matrix S given
by equation (9). By definition, we have

Sφj = µjφj (15)

Due to the symplectic nature of the matrix S, we consider the eigenproblem of the trans-
formation S + S−1 which yields eigenvalues of the form λj = µj + 1/µj given by [9][(

N′JL′
T

+ L′JN′
T
)
− λjL′JL′

T
]

zj = 0 (16)
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where

L′ =

[
0 In

DLR 0

]
, N′ =

[
DRL 0

−(DLL + DRR) −In

]
, J =

[
0 In
−In 0

]
(17)

Thereafter, each pair of eigenvalues (µj, µ
?
j) can be computed analytically by the quadratic

equation (x2 − λjx + 1 = 0). Also, the eigenvectors corresponding to these eigenvalues
are computed by the closed-form expressions

φj =

[
In 0

DRR In

]
w′j, φ?j =

[
In 0

DRR In

]
w′

?
j (18)

where w′j = J(L′T − µ?jN′
T )zj and w′?j = J(L′T − µjN′T )zj.

If we note Φ = [φ1 · · ·φn] and Φ? = [φ?1 · · ·φ?n], we have a wave base {Φ,Φ?} of the
transformation S. We can also separate the components of the wave base corresponding
to q,F as follows

Φ =

[
Φq

ΦF

]
Φ? =

[
Φ?
q

Φ?
F

]
(19)

Orthogonality and normalisation: the wave base is symplectic orthogonal in the
meaning of φTj Jφi = φ?Tj Jφ?i = 0 (∀i, j) and φ?Tj Jφi = φTj Jφ?i = 0 (∀i 6= j)(see [9]).
However, the base is not normalized automatically after computation of the eigenproblem.
We can calculate the weighting matrix as follows

Ψ = Φ?TJΦ = Φ?T
q ΦF −Φ?T

F Φq

Ψ? = ΦTJΦ? = ΦT
q Φ?

F −ΦT
FΦ?

q

(20)

The matrices Ψ,Ψ? are diagonal and satisfying Ψ? = −ΨT . Thus, we can normalize
the wave base by calculating a matrix T = Ψ1/2 where T is a diagonal matrix with the
diagonal equals to the square root of the diagonal of Ψ. The normalized wave base is
presented by ΦT and Φ?T.

2.2 Wave decomposition

We can decompose each vector of equation (9) in this wave base as follows

u(n) = ΦQ(n) −Φ?Q?(n)

b(n) = ΦQ
(n)
E −Φ?Q

?(n)
E

(21)

where Q(n),Q?(n) are the wave amplitudes of u(n) and Q
(k)
E ,Q

?(k)
E are the wave amplitudes

of the external loads on the intermediate substructures b(n).
Remark: the wave decomposition in equation (21) is different to usual expression for

WFE by the minus sign on the right to left waves. The avantage of this expression is that
we can calculate directly the wave amplitudes by using the symplectic orthogonality of
the wave base as the following

Q(n) = Φ?TJu(n), Q?(n) = ΦTJu(n)

Q
(n)
E = Φ?TJb(n), Q

?(n)
E = ΦTJb(n)

(22)
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By substituting equation (10) into equation (22), we obtain

Φ?TJb(n) =
(
ΦΦΦ?T
q DfI −ΦΦΦ?T

F DqI

)
F

(k)
I −ΦΦΦ?T

q F
(k)
∂R

ΦTJb(n) =
(
ΦΦΦT
q DfI −ΦΦΦT

FDqI

)
F

(k)
I −ΦΦΦT

q F
(k)
∂R

(23)

In addition, we have the relation between the ΦΦΦq and ΦΦΦF as follows (see [?])

ΦΦΦF = DRRΦΦΦq + DRLΦΦΦqµµµ
? = − (DLLΦΦΦq + DLRΦΦΦqµµµ)

ΦΦΦ?
F = DRRΦΦΦ?

q + DRLΦΦΦ?
qµµµ = −

(
DLLΦΦΦ?

q + DLRΦΦΦ?
qµµµ

?
) (24)

By combining equations (22) and (23) into equation (24), we obtain

Q
(k)
E =

[(
µµµΦΦΦ?T

q DLI + ΦΦΦ?T
q DRI

)
F

(k)
I −ΦΦΦ?T

q F
(k)
∂R

]
Q
?(k)
E =

[(
µµµ?ΦΦΦT

q DLI + ΦΦΦT
q DRI

)
F

(k)
I −ΦΦΦT

q F
(k)
∂R

] (25)

Equation (25) show that the wave amplitude of external loads on one substructure can
be calculated directly from its loads and it does not depend on the other substructures.

Now we will calculate the amplitude from the wave amplitudes {Q(n),Q?(n)}. By
replacing equation (21) with n = 0 into equation (11), we obtain

u(n) = ΦQ(n) −Φ?Q?(n) = ΦµµµnQ−Φ?µµµ?nQ? +
n∑
k=1

Φµµµn−kQ
(k)
E −Φ?µµµ?n−kQ

?(k)
E (26)

Then, by substituting equation (22) into the aforementioned equation, we obtain

Q(n) = µµµn

(
Q +

n∑
k=1

µµµ?kQ
(k)
E

)

Q?(n) = µµµ?n

(
Q? +

n∑
k=1

µµµkQ
?(k)
E

) (27)

In a similar way, by combining equations (21) into equation (12), we obtain the follow-
ing result

Q(−n) = µµµ?n

(
Q −

n−1∑
k=0

µµµkQ
(−k)
E

)

Q?(−n) = µµµn

(
Q? −

n−1∑
k=0

µµµ?kQ
?(−k)
E

) (28)

Equations (27) and (28) present the relations between the wave amplitudes of the
external loads and the amplitudes {Q,Q?} of u(0). In the next section, we will develop
the wave analysis by using this result and the boundary condition for an infinite periodic
track.
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3 ANALYSIS OF A COMPLETE RAILWAY TRACK

3.1 Response of an infinite periodic railway track

We consider a railway without defects as show in Figure 1. The track is an infinite
periodic structure subjected to moving dynamic loads which can be different from one
period to another. We will find the response by using the bounded condition.

By substituting equations (27) and (28) into equation (21), we obtain

u(n) = Φµµµn

(
Q +

n∑
k=1

µµµ?kQ
(k)
E

)
−Φ?µµµ?n

(
Q? +

n∑
k=1

µµµkQ
?(k)
E

)

u(−n) = Φµµµ?n

(
Q−

n−1∑
k=0

µµµkQ
(−k)
E

)
−Φ?µµµn

(
Q? −

n−1∑
k=0

µµµ?kQ
?(−k)
E

) (29)

For a damped structure, ‖µµµ‖ < 1 and ‖µµµ?‖ > 1 (see [8]). Therefore, we have µµµn → 0 and
µµµ?n →∞ when n tends to infinity. Therefore, in order to get u(n) and u(−n) in equation
(29) satisfying the bounded condition (14), the coefficients corresponding to µµµ?n must
tend to zeros when n→∞. That means

Q =
∞∑
k=0

µµµkQ
(−k)
E , Q? = −

∞∑
k=1

µµµkQ
?(k)
E (30)

By substituting the aforementioned equation into equation (21) with n = 0, we obtain

q(0) = Φq

∞∑
k=0

µµµkQ
(−k)
E + Φ?

q

∞∑
k=1

µµµkQ
?(k)
E

F(0) = ΦF

∞∑
k=0

µµµkQ
(−k)
E + Φ?

F

∞∑
k=1

µµµkQ
?(k)
E

(31)

Equation (31) is the expression of the response of the substructure at n = 0. For the
others substructures n 6= 0, we can calculate the response by using equation (29). There
is another way to calculate the responses u(n) by translating the reference origin and using
again the formulation (31).

3.2 Remarks

• We see that the response u(0) is the combination of two terms corresponding to the
sum of left and right waves generated by the external forces from the two sides.
If the structure is subjected by an external load at only one side of a period, the
expressions in equation (31) have only one term and the eigenvalue µµµ is exactly
the rate of the wave amplitudes between the left and right boundary of one period.
Therefore, the eigenvalues µµµ plays a role as a structural damping factor of a
periodic structure.
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Table 1: Parameters of a periodically supported beam

Rail section mass (ρS) kg/m 60
Rail stiffness (EI) MNm2 6.3
Distance of sleepers (l) m 0.6
Block mass (M) kg 100
Damping factor of rail pad (η1) MNsm-1 1.97
Stiffness of rail pad (k1) MNm-1 192
Damping coeff. under support (η2) MNsm-1 0.17
Stiffness under support (k2) MNm-1 26.4

• This method does not need to inverse any matrix, the responses can be calculated
directly from the wave decompositions. Therefore, we have reduced the DOF of all
structure to only one substructure.

• When the moving load is the same for all substructure, by combining equations (13)
and (25) we obtain

Q
?(n)
E = eiω

nl
v Q

?(0)
E , Q

(k)
E = eiω

nl
v Q

(0)
E ∀n (32)

In addition, µµµ is a diagonal matrix, we can use a formula of the geometric series∑∞
k=0 (aµµµ)k = 1

1−aµµµ provided that ‖aµµµ‖ < 1 (this is a diagonal matrix with the

values calculated by the formulas in the expression). Therefore, we can rewritten
equation (31) as follows

q(0) = Φq
1

1− µµµe−iω
l
v

Q
(0)
E + Φ?

q

µµµeiω
l
v

1− µµµeiω
l
v

Q
?(0)
E

F(0) = ΦF
1

1− µµµe−iω
l
v

Q
(0)
E + Φ?

F

µµµeiω
l
v

1− µµµeiω
l
v

Q
?(0)
E

(33)

• We can decompose the real loads of a train into dynamic and statique loads. Because
the statique loads are constant, we can apply the formula (33) for this term and
then apply the formula (31) for the dynamic loads.

4 NUMERICAL APPLICATIONS

Consider a periodically supported beam subjected to a constant moving load as shown
in Figure 2, where the rail is modeled by Euler-Bernoulli beam and the support systems
are the mass-springs. The beam is subjected to a constant moving load Q = 100kN .The
parameters of the railway track are given in Table 1. Now we will compare the analytic
solution [6] and the numerical method. From the finite element method with element
type B21 in Abaqus, we obtain the dynamic stiffness matrix of the beam for one period of
length l. In order to take into account the supports, we add the support dynamic stiffness
into the beam stiffness matrix at the term in the diagonal corresponding to the DOF of
the contact point between the beam and the spring-mass. Figure 3 shows a comparison
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l

Figure 2: Periodically supported beam subjected to a moving load
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Figure 3: Response of the periodically supported beam by the analytical and numerical methods

of the analytic and numerical results with element B21 of size 1cm in Abaqus. In this
example, the calculation times of the numerical method is almost the same time of the
analytical method. We note that this result is for an infinite beam for the both two
methods and it does not exist for the classical FEM. In addition, Figure 4 presents the
structural damping factor µµµ.
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Figure 4: Structural damping factor of a railway track

Moreover, the numerical method permits to calculate the response of the track sub-
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jected to dynamic forces as shown in Figure 5. Here we consider a random dynamic
force occurs at one point on the track with an amplitude Qdyna = 100kN in an frequency
bandwidth [25− 50]Hz. The track response is the sum of the response to the static load
calculated by equation (33) and the dynamic load calculated by equation (31).

10
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Figure 5: Response of the track to a dynamic load

Now we consider an example of a non-ballasted railway track where the supports con-
tains a rail pad, a concrete block and an elastic pad under the block. All the component
of the support and the concrete slab are simulated by the element finit method with the
mesh shown in Figure 6. In this model, we have 16.075 elements C3D8R. The base of the
slab is fixed and the track is subjected by moving force Q = 100kN at a row of nodes on
the rail.

Figure 7 presents the response of the loaded point by WFE for beam and 3D models
and the analytic result. The calculation time for 3D model is 21.6h and for other model is
about 0.2s. We see that the responses by different methods are coherent. The 3D model
response has noise because it cause by the error of the eigenvalue calculation.

Figure 6: Example of a non-ballasted railway track
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Figure 7: Response of the track subjected to a dynamic load

5 CONCLUSION

By using the wave finite element method, we demonstrate that the wave amplitude
at the boundary of one period of the track can be represented by a sum of the wave
amplitude which corresponds to the moving loads. This characteristics comes from the
bounded condition of the infinite periodic structure. This method permits to reduce the
DOF of the railway track to only one track period while remaining all the dynamic load.
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