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Abstract. The calculation of wave radiation in exterior domains by finite element meth-
ods can lead to large computations. A large part of the exterior domain is meshed and
this computational domain is truncated at some distance where local or global boundary
conditions are imposed at this artificial boundary. These conditions at finite distance must
simulate as closely as possible the exact radiation condition at infinity and are generally
obtained by discretizing an operator on the boundary.

Here, we propose a different approach, still based on the finite element method. Instead
of finding an absorbing operator and then discretizing it, we will estimate the absorbing
operator directly at the discrete level and build a sparse matrix approximating the absorb-
ing condition. This discrete absorbing matrix is added to the dynamic stiffness matrix
of the problem which is then solved in a classical way. The problem is considered for
acoustics in the frequency domain and is described by the Helmholtz equation. The coef-
ficients of the absorbing matrix are found from the solutions of small size linear systems
for each node on the radiating boundary. This is done using a set of radiating functions
for which a boundary condition is written. The precision of the method is estimated from
the number of functions in the test set and from the number of coefficients allowed in the
sparse matrix. Finally, some examples are computed to validate the method.

1 INTRODUCTION

Solving the Helmholtz equation in unbounded domains is important in many problems
of mechanics and physics, for instance for the acoustic radiation or the diffraction around
a body immersed in a fluid. Using the finite element method to solve the problem,
one has to define a finite truncated domain on which the solution should be as close as
possible to the solution on the unbounded domain. For this, it is necessary to define a
boundary condition at the exterior of this truncated domain. These conditions at finite
distance must simulate as closely as possible the exact radiation condition at infinity.
This boundary condition could be global or local depending if all the degrees of freedom
on the boundary are connected or if a given node is only coupled to a limited number of
nodes around it. Among the global approaches we find the Dirichlet to Neumann (DtN)
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proposed by [1, 2], or the boundary element method described in many classical textbooks
like [3, 4, 5]. Both methods lead to full matrices and generate heavy computations.

In local methods, on the contrary, the condition at a boundary node involves only a
limited number of neighbouring nodes. They can be classified into mainly three sets:
those involving only the degrees of freedom of the domain, those with additional degrees
of freedom at nodes on the boundary and those with an additional domain. Concerning
the absorption conditions which do not involve additional variables or domains, a first
possibility is using infinite elements as proposed by [6, 7, 8, 9]. These are elements extend-
ing at infinity and satisfying the Sommerfeld radiation condition. However, it needs the
development of special elements based on functions with outwarding propagation wave-
like behaviour in the radial direction. Other absorbing boundary conditions involving
differential operators of different orders on the boundary were proposed by different au-
thors [10, 11, 12]. These relations were improved by Bayliss and Turkel [13, 14] using
sequences of local non-reflecting boundary conditions in spherical and cylindrical coor-
dinates. However, all these conditions are difficult to implement above the second order
because of the high order derivatives involved in their formulations. More efficient bound-
ary conditions can be obtained by the addition of variables on the exterior surface such as
in [15, 16]. They involve only second derivatives of the auxiliary variables and so can be
efficiently implemented. Surrounding the computational domain by absorbing layers was
also proposed by [17, 18] with the perfectly matched layer in which the wave equation is
analytically continued into complex coordinates. This however can add a non negligible
number of degrees of freedom to the problem and the optimal parameters in the absorbing
layer are not so easy to find.

Most of the previous absorbing boundary conditions are written at the continuous
level, but it can be interesting to write them at the discrete level. For instance, boundary
conditions at the discrete level using the properties of periodic media were proposed by
[19]. In [20] boundary conditions based on the PLM were written after discretisation of
the equations and were found to be more efficient than their continuous versions. Such
a discrete approach is used in this paper. The following section presents the problem
formulation and the building of the discrete absorbing matrix. Then some examples are
presented before the conclusion.

2 PROBLEM FORMULATION

2.1 Helmholtz equation

We consider the two-dimensional acoustic equation in the frequency domain in the
exterior Ωe of a bounded domain Ωi of boundary Γi, see Fig.1. The Helmholtz equation
with a Neumann boundary condition on Γi and a radiation condition at infinity is

∆p+ k2p = f on Ωe

∂p

∂n
= g on Γi

∂p

∂r
− ikp = o(

1√
r
) when r → ∞ (1)
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Figure 1: Exterior domain.

with f and g given functions representing the sources in the domain and at the boundary.
The domain Ωe is truncated at some finite distance by the boundary Γe and the discrete
problem is posed on the bounded domain Ω located between the surfaces Γe and Γi. Its
variational formulation is

∫

Ω

(∆p+ k2p)qdx =

∫

Ω

fqdx (2)

−
∫

Γi

∂p

∂n
qds+

∫

Γe

∂p

∂n
qds+

∫

Ω

(−∇p.∇q + k2pq)dx =

∫

Ω

fqdx (3)

with q a test function and the exterior normals n on surfaces Γi and Γe. One assumes
that the absorbing boundary condition can be written on the surface Γe as

∂p

∂n
= Ap (4)

where A is an operator acting on the pressure p inside Ω. So the variational formulation
is now

∫

Γe

(Ap)qds+

∫

Ω

(−∇p.∇q + k2pq)dx =

∫

Ω

fqdx+

∫

Γi

∂p

∂n
qds (5)

2.2 Discretisation of the absorbing operator

The absorbing operator is such that
∫

Γe

∂p

∂n
(s)q(s)ds =

∫

Γe

(Ap)(s)q(s)ds

=

∫

Γe

∫

Ω

A(s, x)p(x)q(s)dxds (6)

The discrete form can be written as

Msq = MsAMvp (7)
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with

Ms
lj =

∫

Γe

N s
l (s)N

s
j (s)ds

Mv
im =

∫

Ω

Nv
i (x)N

v
m(x)dx (8)

q is the vector of the normal derivatives of the pressure at the nodes of Γe and p the
vector of the pressures at nodes in Ω. N s and Nv are the usual interpolation functions
on the boundary and in Ω respectively. Finally the vectors p and q are linked by

q = AMvp (9)

and one has to identify the matrix AMv.

2.3 Determination of the absorbing matrix

The solution of the problem can be expanded as

p(r, θ) =
+∞
∑

−∞

anHn(kr)e
inθ (10)

The completeness of the expansion on the boundary was proved by [21, 22, 23]. One
now has to find an approximation of the matrix Ã = AMv. One looks for a discrete
operator acting on the pressure at nodes inside Ω such that the matrix Ã is sparse and
the relation (9) is satisfied for outgoing waves.

For a node i at point xi on the boundary, one considers nodes ij at points xij in Ω with
j = 1...ni in the neighborhood of xi and such that xi1 = xi. So the line i of the matrix
Ã will have non zero coefficients only at nodes ij . To find these coefficients, one writes
equation (9) for Hankel functions of different orders n. Choosing a point o interior to Ωi,
one should have

∂

∂ni

(Hn(k|xi − o|)einθi) =
∑

j=1...ni

aij(Hn(k|xij − o|)einθij ) (11)

for −N ≤ n ≤ N and ni the exterior normal at node i. Denoting the vectors

fi =













∂
∂ni

(H−N(k|xi − o|)e−iNθi)

...
∂

∂ni
(H0(k|xi − o|)

...
∂

∂ni
(HN(k|xi − o|eiNθi))













and ai =





aii1
...
aiini



 (12)

and the matrix

Hi =













H−N(k|xi1 − o|)e−iNθi1 ... H−N(k|xini
− o|)e−iNθini

... ...
H0(k|xi1 − o|) ... H0(k|xini

− o|)
... ...

HN(k|xi1 − o|)eiNθi1 ... HN(k|xini
− o|eiNθini













(13)
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Relation (11) can be put under the form

fi = Hiai (14)

Its solution is
ai = (H∗

iHi)
−1H∗

i fi (15)

with ∗ denoting the hermitian transpose of a matrix. The vector ai gives the ith line of
the matrix Ã. Considering these relations for all nodes at the boundary, one gets the
sparse matrix Ã describing an approximate absorbing boundary condition on Γe.

The discretisation of the other parts of the variation formulation (5) leads to the final
discrete equation.

(K− Ã− k2M)p = f (16)

which can be solved by classical solvers.

3 NUMERICAL EXAMPLES

3.1 Test problem

As example we consider an annular domain limited by an interior circle of radius 0.15m
and an exterior circle of radius 0.3m (see Fig.2). The sound velocity is c = 340m/s. A
boundary condition is defined at the interior circle as the normal derivative of the sound
pressure generated by a point source located at point xs = (0.1, 0) and is given by

q(x) = −ik

4

n.(x− xs)

|x− xs|
H1(k|x− xs|) (17)

with x the position of a node on the interior boundary and xs the position of the point
source. The analytical solution is given by

p(x) =
i

4
H0(k|x− xs|) (18)

and will be compared to various numerical solutions.
We define the errors eg on the whole domain Ω and eb on the exterior boundary Γe by

e2g =

∑

i node on Ω

|pnumi − panai |2

∑

i node on Ω

|panai |2

e2b =

∑

i node on Γe

|pnumi − panai |2

∑

i node on Γe

|panai |2
(19)

with the superscripts ana and num denoting respectively the analytical and numerical
solutions.
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Figure 2: Annular domain.

3.2 Influence of different parameters

We begin by estimating the influence of the truncation order N on the error. In Fig.3
four solutions are plotted. The first one is obtained with the crude boundary condition
∂p

∂n
= ikp (denoted as the ik solution), two solutions are obtained by the present method

with respectively N = 0 and N = 1 and the last one is the analytical solution for the
frequency 100Hz. These solutions are obtained by taking ni = 20 coefficients for each
boundary node in the building of the matrix Ã. As can be seen the ik solution leads to
large errors while the solutions with the present method lead to rather good solutions
even for the simplest one with N = 0. The numerical errors are given in table 1 with
similar conclusions.

condition global error boundary error
ik 0.837 0.956
N=0 0.059 0.078
N=1 0.003 0.005

Table 1: Errors for the different boundary condition at 100Hz

In Fig.4 the solution is plotted versus the number of points ni used to build Ã with
N = 1. Using ni = 2 is clearly not enough. However, one can see that ni = 5 gives a
rather good solution which is still improved by using more points. Numerical values are
given in table 2.

Finally Fig.5 compares the analytical solutions and the numerical ones for different
frequencies. Only ni = 2 points are used which leads to crude estimates. While the
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(a) ik boundary condition (b) N=0

(c) N=1 (d) Analytical solution at 100Hz

Figure 3: Comparison of solutions at 100Hz

solution at 100Hz shows important errors, the results at 300Hz and 1000Hz are much
better. This shows that the condition is more efficient as the frequency increases as for
other absorbing boundary conditions.

4 CONCLUSION

A new numerical method has been presented for computing absorbing boundary con-
ditions for the Helmholtz equation. It builds a discrete absorbing matrix directly from
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(a) ni = 2 (b) ni = 5

(c) ni = 10 (d) ni = 20

Figure 4: Solutions for different numbers of nodes used to define the matrix Ã

the finite element discretisation of the problem. This can be applied to any shape and
does not require additional variables or additional domains. So the number of degrees of
freedom is the same as for the problem without absorbing boundary conditions. Examples
show the accuracy of the method. Similar approaches could be used for other wave prop-
agation problems such as for the propagation of elastic waves. Future works will include
comparisons with other classical absorbing boundary conditions and the consideration of
more complex domains such as domains with corners.
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Number of nodes global error boundary error
ni = 2 0.459 0.522
ni = 5 0.010 0.013
ni = 10 0.005 0.006
ni = 20 0.003 0.005

Table 2: Error for different numbers of nodes used to build the matrix Ã
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(a) Analytical solution 100Hz (b) Numerical solution 100 Hz

(c) Analytical solution 300Hz (d) Numerical solution 300 Hz

(e) Analytical solution 1000Hz (f) Numerical solution 1000 Hz

Figure 5: Solutions for different frequencies
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