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FINITE ELEMENT APPROXIMATION OF ELLIPTIC
HOMOGENIZATION PROBLEMS IN NONDIVERGENCE-FORM

YVES CAPDEBOSCQ∗, TIMO SPREKELER†, AND ENDRE SÜLI‡

Abstract. We use uniform W 2,p estimates to obtain corrector results for periodic
homogenization problems of the form A(x/ε) : D2uε = f subject to a homoge-
neous Dirichlet boundary condition. We propose and rigorously analyze a numer-
ical scheme based on finite element approximations for such nondivergence-form
homogenization problems. The second part of the paper focuses on the approxima-
tion of the corrector and numerical homogenization for the case of nonuniformly
oscillating coefficients. Numerical experiments demonstrate the performance of
the scheme.
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1. Introduction

In this work we consider second-order elliptic equations of nondivergence struc-
ture, involving rapidly oscillating coefficients, of the form

A
( ·
ε

)
: D2uε :=

n∑
i,j=1

aij

( ·
ε

)
∂2
ijuε = f in Ω,(1.1)

subject to the homogeneous Dirichlet boundary condition

uε = 0 on ∂Ω.(1.2)

Here we assume that Ω ⊂ Rn is a sufficiently regular bounded domain, ε > 0 is
small, and that A = (aij) : Rn → Rn×n is a symmetric, uniformly elliptic and
(0, 1)n-periodic matrix-valued function such that

A ∈ W 1,q(Y ) for some q > n,

where Y := (0, 1)n denotes the unit cell, see (2.1). The main goal of this paper is
to propose and analyze a numerical homogenization scheme for (1.1), (1.2) that is
based on finite element approximations.

The theory of periodic homogenization is concerned with the limiting behavior of
the solutions as the oscillation parameter ε tends to zero. For the problem (1.1), (1.2)
under consideration a classical homogenization theorem (see [6, Sec. 3, Theorem
5.2]) states that the solution sequence (uε)ε>0 converges in an appropriate Sobolev
space to the solution u0 to the problem{

A0 : D2u0 = f in Ω,

u0 = 0 on ∂Ω.
(1.3)

Here A0 ∈ Rn×n is the constant matrix given by

A0 =

ˆ
Y

Am,(1.4)

and m : Rn → R is the invariant measure, i.e. the solution to the problem{
D2 : (Am) = 0 in Y,

m is Y -periodic,
´
Y
m = 1;

see Section 2 for further details. The task of numerical homogenization is the nu-
merical approximation of the matrix A0 and the solution u0 to the homogenized
problem (1.3). As it turns out, u0 provides a good approximation to uε in H1(Ω),
and by adding corrector terms it is possible to obtain an H2(Ω)-norm approxima-
tion. Note that the approximation of (1.1), (1.2) by a standard H2(Ω)-conforming
finite element method does not yield error bounds independent of ε, since for s > 0
one has that

‖uε‖H2+s(Ω) = O
(
ε−s
)
.

The motivation for investigating second-order elliptic problems in nondivergence-
form comes from physics, engineering, as well as mathematical areas such as sto-
chastic analysis. A notable example of a nonlinear PDE of nondivergence structure
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is the Hamilton–Jacobi–Bellman equation, which arises in stochastic control the-
ory. The asymptotic behavior of PDEs with rapidly oscillating coefficients is also of
importance when micro-inhomogeneous media are investigated.

Over the past decades significant work has been done on periodic homogenization
of elliptic problems in divergence-form; numerical homogenization for nondivergence-
form problems is however less developed.

The theory of homogenization of divergence-form problems such as

∇ ·
(
A
( ·
ε

)
∇uε

)
+ b
( ·
ε

)
· ∇uε = f in Ω(1.5)

with periodic and sufficiently regular A : Rn → Rn×n and b : Rn → Rn is extensively
covered in the books [1, 6, 9, 20]. For divergence-form problems, various multiscale
finite element methods (MsFEM) have been developed, which have the advantage
over classical finite element methods of providing accurate approximations for very
small values of ε even for moderate values of the grid size. The book [10] by Efendiev
and Hou contains a detailed overview of these methods.

It is important to note that although, if A is sufficiently smooth, equation (1.1)
can be rewritten in divergence-form,

∇ ·
(
A
( ·
ε

)
∇uε

)
− 1

ε
(divA)

( ·
ε

)
· ∇uε = f in Ω,(1.6)

this equation does not fit into the framework of divergence-form homogenization
problems such as (1.5), because of the ε−1 term in front of the first-order term in
(1.6).

For the theory of homogenization of nondivergence-form problems such as (1.1)
we refer to the monograph [6] by Bensoussan, Lions and Papanicolaou, to the paper
[2] by Avellaneda and Lin, and the references therein. In [5], Bensoussan, Boccardo
and Murat study the more general problem involving a Hamiltonian with quadratic
growth. Numerical homogenization for nondivergence-form problems using finite
difference schemes has been considered in [11] by Froese and Oberman.

The first step in the development of the proposed numerical homogenization
scheme is the construction of a finite element method to obtain approximations
(mh)h>0 ⊂ H1

per(Y ) to the invariant measure with optimal order convergence rate

‖m−mh‖L2(Y ) + h‖m−mh‖H1(Y ) . h inf
ṽh∈M̃h

‖m− (ṽh + 1)‖H1(Y ),

where M̃h denotes the finite-dimensional subspace of H1
per(Y ) consisting of continu-

ous Y -periodic piecewise linear functions on the triangulation with zero mean over
Y ; see Theorem 3.1.

Throughout this work, we use the notation a . b for a, b ∈ R to denote that
a ≤ Cb for some constant C > 0 that does not depend on ε and the discretization
parameters.

The second step is to obtain approximations (A0
h)h>0 ⊂ Rn×n to the constant

matrix A0; see Lemma 3.1. To this end, the integrand in (1.4) is replaced by its
continuous piecewise linear interpolant and the invariant measure m is replaced by
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the approximation mh, i.e.,

A0
h :=

ˆ
Y

Ih(Amh),

which can be computed exactly using an appropriate quadrature rule.
The third step is to perform an Hs(Ω)-conforming (s ∈ {1, 2}) finite element

approximation for the problem{
A0
h : D2uh0 = f in Ω,

uh0 = 0 on ∂Ω,

on a family of triangulations of the computational domain Ω, parametrized by a
discretization parameter k > 0, measuring the granularity of the triangulation, to
obtain (uh,k0 )h,k>0 ⊂ Hs(Ω) ∩H1

0 (Ω) with∥∥∥uh0 − uh,k0

∥∥∥
Hs(Ω)

. k‖f‖Hs−1(Ω),

where the constant is independent of h; see Lemma 3.3. Note that for the sake of
approximating u0, an H1(Ω)-conforming finite element method is sufficient.

The approximation (uh,k0 )h,k>0 ⊂ Hs(Ω) ∩H1
0 (Ω) obtained by this procedure ap-

proximates u0, i.e., the solution to (1.3), with convergence rate∥∥∥u0 − uh,k0

∥∥∥
Hs(Ω)

. (h+ k)‖f‖Hs−1(Ω),

which can be improved to O(h2 + k) for more regular A; see Theorem 3.2, Theorem
3.3 and Remark 3.3.

Concerning the approximation of uε, i.e., the solution to (1.1), (1.2), we show in
Section 2 that under certain assumptions on the domain and the right-hand side,
one has that∥∥∥∥∥uε − u0 − ε2

n∑
i,j=1

χij

( ·
ε

)
∂2
iju0

∥∥∥∥∥
H2(Ω)

.
√
ε‖u0‖W 2,∞(Ω) + ε‖u0‖H4(Ω),

where the corrector functions χij : Rn → R, i, j = 1, . . . , n, are defined as the
solutions to {

A : D2χij = a0
ij − aij in Y,

χij is Y -periodic,
´
Y
χij = 0.

This provides us with the estimate

‖uε − u0‖H1(Ω) +
n∑

k,l=1

∥∥∥∥∥∂2
kluε −

(
∂2
klu0 +

n∑
i,j=1

(
∂2
klχij

) ( ·
ε

)
∂2
iju0

)∥∥∥∥∥
L2(Ω)

= O(
√
ε),

which shows that u0 is a good H1(Ω) approximation to uε for small ε, and we show
in Sections 3.2 and 3.3 how the above estimate can be used to obtain approximations
to D2uε. Note that in order to approximate uε in the H1(Ω)-norm, it is sufficient to
approximate u0 in the H1(Ω)-norm. However, for an approximation of D2uε based
on the above corrector estimate, we need to approximate u0 in the H2(Ω)-norm.
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In Section 3.4, we extend our results to the case of nonuniformly oscillating coef-
ficients, i.e., to problems of the form{

A
(
·, ·
ε

)
: D2uε = f in Ω,

uε = 0 on ∂Ω,
(1.7)

where A = A(x, y) : Ω×Rn → Rn×n is a symmetric, uniformly elliptic matrix-valued
function that is Y -periodic in y for fixed x ∈ Ω, and such that

A ∈ W 2,∞(Ω;W 1,q(Y )) for some q > n.

We prove the corrector estimate∥∥∥∥∥uε − u0 − ε2

n∑
i,j=1

χij

(
·, ·
ε

)
∂2
iju0

∥∥∥∥∥
H2(Ω)

.
√
ε‖u0‖W 2,∞(Ω) + ε‖u0‖H4(Ω),

where u0 is the solution to the homogenized problem corresponding to (1.7) and χij
are certain corrector functions. We then discuss the numerical approximation of uε
based on this corrector estimate, see Section 3.4.

2. Homogenization of Elliptic Problems in Nondivergence-Form

2.1. Framework. We denote the unit cell in Rn by

Y := (0, 1)n,

and consider a symmetric matrix-valued function

A = AT : Rn → Rn×n

with the properties
A ∈ W 1,q(Y ) for some q ∈ (n,∞],

A is Y -periodic,

∃ λ,Λ > 0 : λ|ξ|2 ≤ A(y)ξ · ξ ≤ Λ|ξ|2 ∀ ξ, y ∈ Rn.

(2.1)

By Sobolev embedding, we then have that

A ∈ C0,α(Rn) for some 0 < α ≤ 1.

For ε > 0, we are concerned with the problem{
A
( ·
ε

)
: D2uε = f in Ω,

uε = 0 on ∂Ω,
(2.2)

where the triple (Ω, A, f) satisfies one of the following sets of assumptions.

Definition 2.1 (Sets of assumptions Gm,p, Hm). For m ∈ N0 and p ∈ (1,∞), we
define the set of assumptions Gm,p as

(Ω, A, f) ∈ Gm,p ⇐⇒


Ω ⊂ Rn is a bounded C2,γ domain, γ ∈ (0, 1),

A = AT : Rn → Rn×n satisfies (2.1),

f ∈ Wm,p(Ω),
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and the set of assumptions Hm as

(Ω, A, f) ∈ Hm ⇐⇒



Ω ⊂ Rn is a bounded convex domain,

A = AT : Rn → Rn×n satisfies (2.1),

∃ δ ∈ (0, 1] :
|A|2

(trA)2
≤ 1

n− 1 + δ
in Rn,

f ∈ Hm(Ω).

Remark 2.1. For n = 2, the Cordes condition, i.e., that there exists a δ ∈ (0, 1]
such that

|A(y)|2

(trA(y))2
≤ 1

n− 1 + δ
∀ y ∈ Rn,(2.3)

is a consequence of the uniform ellipticity condition. Indeed, for A = AT : R2 →
R2×2 satisfying (2.1), we have that

|A(y)|2

(trA(y))2
= 1− 2 detA(y)

(trA(y))2
≤ 1− 2λ2

4Λ2
=

1

1 + δ
∀ y ∈ Rn

with δ = λ2

2Λ2−λ2 ∈ (0, 1]. Therefore, when n = 2, the set Hm can be simplified to

(Ω, A, f) ∈ Hm ⇐⇒


Ω ⊂ Rn is a bounded convex domain,

A = AT : Rn → Rn×n satisfies (2.1),

f ∈ Hm(Ω).

The following theorem asserts well-posedness of the problem (2.2); see [12, The-
orem 9.15] and [19, Theorem 3].

Theorem 2.1 (Existence and uniqueness of strong solutions). Assume either that
(Ω, A, f) ∈ G0,p for some p ∈ (1,∞), or that (Ω, A, f) ∈ H0 and p = 2. Then, for
any ε > 0, the problem (2.2) admits a unique solution uε ∈ W 2,p(Ω) ∩W 1,p

0 (Ω).

2.2. Transformation into Divergence-Form. We recall a well-known procedure
to transform the problem (2.2) into divergence-form; see [2, 6]. We use the notation

Wper(Y ) :=

{
u ∈ H1

per(Y ) :

ˆ
Y

u = 0

}
.

Let us start by introducing the notion of invariant measure; see [6].

Lemma 2.1 (Invariant measure and solvability condition). Let A = AT : Rn →
Rn×n satisfy (2.1). Then, there exists a unique solution m : Rn → R to the problem{

D2 : (Am) = 0 in Y,

m is Y -periodic,
´
Y
m = 1.

The function m is called the invariant measure. There holds m ∈ W 1,q(Y ), see [7, 8],
and there exist constants m̄,M > 0 such that

0 < m̄ ≤ m(y) ≤M ∀ y ∈ Rn.(2.4)
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Moreover, for a Y -periodic function g ∈ L2(Rn), the (adjoint) problem{
A : D2u = g in Y,

u is Y -periodic,
´
Y
u = 0,

admits a solution u ∈ Wper(Y ) if and only if

〈g,m〉L2(Y ) = 0.(2.5)

With the invariant measure at hand, we can easily convert the problem into
divergence-form as follows. We define a matrix-valued function B = (bij)1≤i,j≤n :
Rn → Rn×n by

bij := ∂ivj − ∂jvi, (1 ≤ i, j ≤ n),

with vl ∈ Wper(Y ) denoting the solution to{
−∆vl = div(Am) · el in Y,

vl is Y -periodic,
´
Y
vl = 0,

for 1 ≤ l ≤ n. Since A ∈ W 1,q(Y ) and m ∈ W 1,q(Y ), by elliptic regularity one has
that vl ∈ W 2,q(Y ) for any 1 ≤ l ≤ n. Hence, we have

B ∈ W 1,q(Y ).

Further, we observe that B is skew-symmetric, Y -periodic with zero mean over Y ,
and that

div(B) = −div(Am) a.e. on Rn.

Now we let

Adiv := Am+B ∈ W 1,q(Y ).

Then, since

div(Adiv) = 0,

and using the fact that B is skew-symmetric, we obtain

∇ ·
(
Adiv

( ·
ε

)
∇uε

)
= Adiv

( ·
ε

)
: D2uε = (Am)

( ·
ε

)
: D2uε,

i.e., we have converted (2.2) into divergence-form{
∇ ·
(
Adiv

( ·
ε

)
∇uε

)
= f m

( ·
ε

)
in Ω,

uε = 0 on ∂Ω,
(2.6)

and it is straightforward to check that Adiv is Y -periodic, Hölder continuous on Rn

and uniformly elliptic.
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2.3. Uniform W 2,p Estimates and Homogenization Theorem. The transfor-
mation described in the previous section can be used to obtain uniform W 2,p(Ω) a
priori estimates for the solution of (2.2), which are crucial in deriving homogeniza-
tion results.

Theorem 2.2 (Uniform W 2,p a priori estimates). Assume either that (Ω, A, f) ∈
G0,p for some p ∈ (1,∞), or that (Ω, A, f) ∈ H0 and p = 2. Then, for ε ∈ (0, 1],
the solution uε ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) to (2.2), whose existence and uniqueness are
guaranteed by Theorem 2.1, satisfies

‖uε‖W 2,p(Ω) . ‖f‖Lp(Ω)

with the constant absorbed into the notation . being independent of ε.

Proof. Let us first assume that (Ω, A, f) ∈ G0,p for some p ∈ (1,∞). We showed in
the previous section that we can transform problem (2.2) into the divergence-form
problem (2.6), where Adiv : Rn → Rn×n is a Y -periodic, Hölder continuous, and
uniformly elliptic matrix-valued function satisfying

div(Adiv) = 0.

Therefore, we can apply [3, Theorem D] to problem (2.6) to obtain

‖uε‖W 2,p(Ω) .
∥∥∥f m( ·

ε

)∥∥∥
Lp(Ω)

. ‖f‖Lp(Ω)

with constants independent of ε, where we have used the property (2.4) of the
invariant measure in the second inequality.

Let us now assume that (Ω, A, f) ∈ H0. Noting that (2.3) implies the Cordes
condition for A

( ·
ε

)
with the same constant δ ∈ (0, 1] for any ε > 0, the proof of [19,

Theorem 3] yields the estimate

‖uε‖H2(Ω) ≤
C(n, diam(Ω))

1−
√

1− δ

∥∥∥γ ( ·
ε

)∥∥∥
L∞(Rn)

‖f‖L2(Ω),(2.7)

where γ is the function given by

γ : Rn → R, γ(y) :=
trA(y)

|A(y)|2
.

We observe that by (2.1), there exist constants γ̄,Γ > 0 such that

0 < γ̄ ≤ γ(y) ≤ Γ ∀ y ∈ Rn.

Therefore, we obtain from (2.7) the bound

‖uε‖H2(Ω) . ‖f‖L2(Ω)

with a constant that is independent of ε. �

This leads to a simple proof of the homogenization theorem for problem (2.2),
using the compactness of the embedding W 2,p(Ω) ↪→ W 1,p(Ω) and the fact that we
can rewrite the problem as (2.6).
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Theorem 2.3 (Homogenization theorem for nondivergence-form problems). As-
sume either that (Ω, A, f) ∈ G0,p for some p ∈ (1,∞), or that (Ω, A, f) ∈ H0 and
p = 2. Then the solution uε ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) to (2.2) converges weakly in
W 2,p(Ω) to the solution u0 ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) of the homogenized problem{
A0 : D2u0 = f in Ω,

u0 = 0 on ∂Ω,
(2.8)

with A0 = (a0
ij)1≤i,j≤n ∈ Rn×n being the constant matrix whose entries are given by

a0
ij :=

ˆ
Y

aijm (1 ≤ i, j ≤ n),

where m is the invariant measure, as defined in Lemma 2.1.

Proof. By Theorem 2.2, the reflexivity of W 2,p(Ω), the compactness of the embed-
ding W 2,p(Ω) ↪→ W 1,p(Ω), and the properties of the trace operator, there exists a
u0 ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) such that (for a subsequence, not indicated,)

uε ⇀ u0 weakly in W 2,p(Ω), and

uε → u0 strongly in W 1,p(Ω).

We can transform (2.2) as in Section 2.2 into the divergence-form problem (2.6) with

Adiv = Am+B

being Y -periodic, Hölder continuous and uniformly elliptic on Rn. Recalling that B
is of mean zero over Y , we have

Adiv
( ·
ε

)
∗
⇀

ˆ
Y

Am = A0 weakly-∗ in L∞(Ω).

Since we have that

∇uε → ∇u0 strongly in Lp(Ω),

we can pass to the limit in the weak formulation of (2.6) to obtain that u0 ∈
W 2,p(Ω) ∩W 1,p

0 (Ω) solves (2.8). We conclude the proof by noting that (2.8) admits
a unique strong solution in W 2,p(Ω) ∩W 1,p

0 (Ω). �

2.4. Correctors. We show that by adding corrector terms to the solution u0 of the
homogenized problem, we obtain a W 2,p convergence result.

Theorem 2.4 (Corrector estimate I). Assume either that (Ω, A, f) ∈ G2,p for some
p ∈ (1,∞), or that (Ω, A, f) ∈ H2 and p = 2. Let ε ∈ (0, 1] and assume that

u0 ∈ W 4,p(Ω).

Introducing the corrector function χij, 1 ≤ i, j ≤ n, as the solution to{
A : D2χij = a0

ij − aij in Y,

χij is Y -periodic,
´
Y
χij = 0,

(2.9)
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and a boundary corrector θε, as the solution to
A
( ·
ε

)
: D2θε = 0 in Ω,

θε = −
n∑

i,j=1

χij

( ·
ε

)
∂2
iju0 on ∂Ω,

the following bound holds:∥∥∥∥∥uε − u0 − ε2

(
n∑

i,j=1

χij

( ·
ε

)
∂2
iju0 + θε

)∥∥∥∥∥
W 2,p(Ω)

. ε‖u0‖W 4,p(Ω).(2.10)

Proof. First, we note that since A ∈ C0,α(Rn), we have χij ∈ C2,α(Rn) for any
1 ≤ i, j ≤ n by elliptic regularity theory. A direct computation shows that the
function

ũε := u0 + ε2

n∑
i,j=1

χij

( ·
ε

)
∂2
iju0

solves the problem
A
( ·
ε

)
: D2ũε = f + εFε in Ω,

ũε = ε2

n∑
i,j=1

χij

( ·
ε

)
∂2
iju0 on ∂Ω,

where

Fε :=
n∑

i,j,k,l=1

aij

( ·
ε

)(
2∂iχkl

( ·
ε

)
∂3
jklu0 + εχkl

( ·
ε

)
∂4
ijklu0

)
.

Note that since u0 ∈ W 4,p(Ω), one has that

‖Fε‖Lp(Ω) . ‖u0‖W 4,p(Ω),

with the constant being independent of ε. We then have that dε := ũε − uε satisfies
A
( ·
ε

)
: D2dε = εFε in Ω,

dε = ε2

n∑
i,j=1

χij

( ·
ε

)
∂2
iju0 on ∂Ω.

Therefore, by the definition of the boundary corrector,A
( ·
ε

)
: D2

(
dε + ε2θε

)
= εFε in Ω,

dε + ε2θε = 0 on ∂Ω.

We conclude using the estimate from Theorem 2.2 that

‖dε + ε2θε‖W 2,p(Ω) . ε‖Fε‖Lp(Ω) . ε‖u0‖W 4,p(Ω),

and (2.10) holds. �
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The following theorem shows that if u0 ∈ W 4,p(Ω)∩W 2,∞(Ω), then we can absorb
the term involving the boundary corrector into the right-hand side at the cost of
powers of ε.

Theorem 2.5 (Corrector estimate II). Assume either that (Ω, A, f) ∈ G2,p for some
p ∈ (1,∞), or that (Ω, A, f) ∈ H2 and p = 2. Let ε ∈ (0, 1] and assume that

u0 ∈ W 4,p(Ω) ∩W 2,∞(Ω).(2.11)

Then,∥∥∥∥∥uε − u0 − ε2

n∑
i,j=1

χij

( ·
ε

)
∂2
iju0

∥∥∥∥∥
W 2,p(Ω)

. ε
1
p‖u0‖W 2,∞(Ω) + ε‖u0‖W 4,p(Ω).

Proof. Let η ∈ C∞c (Rn) be a cut-off function with 0 ≤ η ≤ 1,

η ≡ 1 in
{
x ∈ Ω : dist(x, ∂Ω) <

ε

2

}
,

η ≡ 0 in {x ∈ Ω : dist(x, ∂Ω) ≥ ε} ,

and let η satisfy

|∇η|+ ε|D2η| . 1

ε
in Ω.

We introduce the function

θ̃ε := θε + η
n∑

i,j=1

χij

( ·
ε

)
∂2
iju0,

and verify that

A
( ·
ε

)
: D2θ̃ε =

n∑
i,j,k,l=1

aij

( ·
ε

)
∂2
ij

(
η χkl

( ·
ε

)
∂2
klu0

)
=

1

ε2
S1 +

1

ε
S2 + S3,

where S1, S2 and S3 are given by

S1 :=
n∑

i,j,k,l=1

aij

( ·
ε

)
η ∂2

ijχkl

( ·
ε

)
∂2
klu0,

S2 := 2
n∑

i,j,k,l=1

aij

( ·
ε

)(
∂iη ∂jχkl

( ·
ε

)
∂2
klu0 + η ∂iχkl

( ·
ε

)
∂3
jklu0

)
,

S3 :=
n∑

i,j,k,l=1

aij

( ·
ε

)(
∂2
ijη χkl

( ·
ε

)
∂2
klu0 + 2∂iη χkl

( ·
ε

)
∂3
jklu0 + η χkl

( ·
ε

)
∂4
ijklu0

)
.

Therefore, θ̃ε satisfiesA
( ·
ε

)
: D2θ̃ε =

1

ε2
S1 +

1

ε
S2 + S3 in Ω,

θ̃ε = 0 on ∂Ω.
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Since u0 ∈ W 4,p(Ω)∩W 2,∞(Ω) by assumption, the right-hand side belongs to Lp(Ω),
and we have by Theorem 2.2 that∥∥∥θ̃ε∥∥∥

W 2,p(Ω)
.

1

ε2
‖S1‖Lp(Ω) +

1

ε
‖S2‖Lp(Ω) + ‖S3‖Lp(Ω).

We look at the terms on the right-hand side separately and start with S1. Using the
boundedness of A and the fact that χij ∈ W 2,∞(Rn), we have

‖S1‖Lp(Ω) =

∥∥∥∥∥
n∑

i,j,k,l=1

aij

( ·
ε

)
η ∂2

ijχkl

( ·
ε

)
∂2
klu0

∥∥∥∥∥
Lp(Ω)

. ‖u0‖W 2,∞(Ω)‖η‖Lp(Ω)

. |{x ∈ Ω : dist(x, ∂Ω) < ε}|
1
p ‖u0‖W 2,∞(Ω)

. ε
1
p‖u0‖W 2,∞(Ω).

For S2, we obtain similarly that

‖S2‖Lp(Ω) =

∥∥∥∥∥2
n∑

i,j,k,l=1

aij

( ·
ε

)(
∂iη ∂jχkl

( ·
ε

)
∂2
klu0 + η ∂iχkl

( ·
ε

)
∂3
jklu0

)∥∥∥∥∥
Lp(Ω)

. ‖∇η‖Lp(Ω)‖u0‖W 2,∞(Ω) + ‖η‖L∞(Ω)‖u0‖W 4,p(Ω)

.
1

ε
|{x ∈ Ω : dist(x, ∂Ω) < ε}|

1
p ‖u0‖W 2,∞(Ω) + ‖u0‖W 4,p(Ω)

.
1

ε1− 1
p

‖u0‖W 2,∞(Ω) + ‖u0‖W 4,p(Ω).

Finally, for S3, we have that

‖S3‖Lp(Ω) =

∥∥∥∥∥
n∑

i,j,k,l=1

aij

( ·
ε

)(
∂2
ijη χkl

( ·
ε

)
∂2
klu0

+2∂iη χkl

( ·
ε

)
∂3
jklu0 + η χkl

( ·
ε

)
∂4
ijklu0

)∥∥∥
Lp(Ω)

. ‖D2η‖Lp(Ω)‖u0‖W 2,∞(Ω) +
(
‖∇η‖L∞(Ω) + ‖η‖L∞(Ω)

)
‖u0‖W 4,p(Ω)

.
1

ε2
|{x ∈ Ω : dist(x, ∂Ω) < ε}|

1
p ‖u0‖W 2,∞(Ω) +

1

ε
‖u0‖W 4,p(Ω)

.
1

ε2− 1
p

‖u0‖W 2,∞(Ω) +
1

ε
‖u0‖W 4,p(Ω).

Altogether, we have shown that∥∥∥θ̃ε∥∥∥
W 2,p(Ω)

.

(
ε

1
p

ε2
+

1

ε · ε1− 1
p

+
1

ε2− 1
p

)
‖u0‖W 2,∞(Ω) +

(
1

ε
+

1

ε

)
‖u0‖W 4,p(Ω)

.
1

ε2− 1
p

‖u0‖W 2,∞(Ω) +
1

ε
‖u0‖W 4,p(Ω).
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By direct computation, using the bounds

‖η‖Lp(Ω) . ε
1
p , ‖∇η‖Lp(Ω) .

1

ε1− 1
p

, ‖D2η‖Lp(Ω) .
1

ε2− 1
p

,

we can show that∥∥∥∥∥η
n∑

i,j=1

χij

( ·
ε

)
∂2
iju0

∥∥∥∥∥
W 2,p(Ω)

.
1

ε2− 1
p

‖u0‖W 2,∞(Ω) +
1

ε
‖u0‖W 4,p(Ω).

Therefore, using the triangle inequality, we obtain that

‖θε‖W 2,p(Ω) .
1

ε2− 1
p

‖u0‖W 2,∞(Ω) +
1

ε
‖u0‖W 4,p(Ω).

We conclude that

‖ε2θε‖W 2,p(Ω) . ε
1
p‖u0‖W 2,∞(Ω) + ε‖u0‖W 4,p(Ω).

The claim now follows from (2.10). �

Let us remark that W 4,p(Ω) ↪→ W 2,∞(Ω) for p > n
2
, i.e., assumption (2.11) is a

consequence of u0 ∈ W 4,p(Ω); in particular, for dimensions n ∈ {2, 3} and p = 2,
one can replace condition (2.11) by u0 ∈ H4(Ω).

Let us recall that u0 is the solution to the elliptic constant-coefficient problem
(2.8). For bounded convex polygonal domains (n = 2), u0 ∈ H4(Ω) can be ensured
by assuming that f ∈ H2(Ω) satisfies certain compatibility conditions at the corners
of the domain. In the case of Poisson’s equation on Ω = (0, 1)2, a necessary and
sufficient condition for u0 ∈ H4(Ω) ∩ H1

0 (Ω) is that f ∈ H2(Ω) and f = 0 at the
corners of Ω, see [15]. We note that these conditions are satisfied for functions
f ∈ H2(Ω) such that supp(f) b Ω, see [13].

3. The Numerical Scheme

3.1. Numerical Homogenization Scheme. The first step is to approximate the
invariant measure.

3.1.1. Approximation of m. For the approximation of the invariant measure m, we
consider a shape-regular triangulation of Y into triangles with longest edge h > 0
and let

M̃h ⊂ Wper(Y ) =

{
v ∈ H1

per(Y ) :

ˆ
Y

v = 0

}
be the finite-dimensional subspace of Wper(Y ) consisting of continuous Y -periodic
piecewise linear functions on the triangulation with zero mean over Y . We assume
that

Wper(Y ) =
⋃
h>0

M̃h.

Then we have the following approximation result for m.
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Theorem 3.1 (Approximation of the invariant measure). Let A = AT : Rn → Rn×n

satisfy (2.1). Then, for h > 0 sufficiently small, there exists a unique m̃h ∈ M̃h such
that ˆ

Y

(A∇m̃h + m̃h divA) · ∇ϕh = −
ˆ
Y

(divA) · ∇ϕh ∀ϕh ∈ M̃h,(3.1)

and writing

mh := m̃h + 1,

we have that

‖m−mh‖L2(Y ) + h‖m−mh‖H1(Y ) . h inf
ṽh∈M̃h

‖m− (ṽh + 1)‖H1(Y ),

where m is the invariant measure, as defined in Lemma 2.1.

Remark 3.1. In particular, since

inf
ṽh∈M̃h

‖m− (ṽh + 1)‖H1(Y ) = o(1),

we have that

mh → m in H1(Y )

as h tends to zero.

Proof of Theorem 3.1. We observe that m = m̃+ 1, where m̃ is the unique solution
to the problem {

−∇ · (A∇m̃+ m̃ divA) = ∇ · (divA) in Y,

m̃ is Y -periodic,
´
Y
m̃ = 0,

i.e.,

m̃ ∈ Wper(Y ), a(m̃, ϕ) = −
ˆ
Y

(divA) · ∇ϕ ∀ϕ ∈ Wper(Y ),

where

a : Wper(Y )×Wper(Y ) −→ R, a(u, v) :=

ˆ
Y

A∇u · ∇v +

ˆ
Y

u(divA) · ∇v.

We further observe that (3.1) is equivalent to

m̃h ∈ M̃h, a(m̃h, ϕh) = −
ˆ
Y

(divA) · ∇ϕh ∀ϕh ∈ M̃h.(3.2)

We start by showing boundedness of a and a G̊arding-type inequality. We claim
that there exist constants Cb, Cg > 0 such that

|a(u, v)| ≤ Cb‖u‖H1(Y )‖v‖H1(Y ) ∀u, v ∈ Wper(Y ),(3.3)

and

a(u, u) ≥ λ

2
‖u‖2

H1(Y ) − Cg‖u‖2
L2(Y ) ∀u ∈ Wper(Y ).(3.4)
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Let us first show (3.3). For u, v ∈ Wper(Y ), by Hölder’s inequality and Sobolev
embeddings (note that, according to (2.1), q > n), we have that∣∣∣∣ˆ

Y

u(divA) · ∇v
∣∣∣∣ ≤ ‖divA‖Lq(Y )‖u‖

L
2q
q−2 (Y )

‖∇v‖L2(Y ) . ‖u‖H1(Y )‖v‖H1(Y ).

Using the fact that A ∈ W 1,q(Y ) ↪→ L∞(Y ) since q > n, we obtain the bound

|a(u, v)| ≤
∣∣∣∣ˆ
Y

A∇u · ∇v
∣∣∣∣+

∣∣∣∣ˆ
Y

u(divA) · ∇v
∣∣∣∣ . ‖u‖H1(Y )‖v‖H1(Y )

for any u, v ∈ Wper(Y ), i.e. (3.3) holds.
Let us now show the estimate (3.4). For u ∈ Wper(Y ), by ellipticity and Hölder’s

inequality, we have

a(u, u) =

ˆ
Y

A∇u · ∇u+

ˆ
Y

u(divA) · ∇u

≥ λ‖∇u‖2
L2(Y ) − ‖divA‖Lq(Y )‖u‖

L
2q
q−2 (Y )

‖∇u‖L2(Y ).

For the second term we use the Gagliardo–Nirenberg inequality and Young’s in-
equality to obtain

‖divA‖Lq(Y )‖u‖
L

2q
q−2 (Y )

‖∇u‖L2(Y ) ≤ C(q, n)‖divA‖Lq(Y )‖u‖
1−n

q

L2(Y )‖∇u‖
1+n

q

L2(Y )

≤ λ

2
‖∇u‖2

L2(Y ) + C(q, n, λ, ‖divA‖Lq(Y ))‖u‖2
L2(Y ).

Therefore, we have

a(u, u) ≥ λ

2
‖∇u‖2

L2(Y ) − C(q, n, λ, ‖divA‖Lq(Y ))‖u‖2
L2(Y )

=
λ

2
‖u‖2

H1(Y ) −
(
λ

2
+ C(q, n, λ, ‖divA‖Lq(Y ))

)
‖u‖2

L2(Y )

for any u ∈ Wper(Y ), i.e., (3.4) holds with

Cg :=
λ

2
+ C(q, n, λ, ‖divA‖Lq(Y )).

We use Schatz’s method to derive an a priori estimate; see [18].
From our G̊arding-type inequality (3.4) we see that (note m̃− m̃h ∈ Wper(Y ))

‖m̃− m̃h‖H1(Y ) −
2Cg
λ
‖m̃− m̃h‖L2(Y ) ≤ ‖m̃− m̃h‖H1(Y ) −

2Cg
λ

‖m̃− m̃h‖2
L2(Y )

‖m̃− m̃h‖H1(Y )

≤ 2

λ

a(m̃− m̃h, m̃− m̃h)

‖m̃− m̃h‖H1(Y )

.

(3.5)

By Galerkin-orthogonality and boundedness, we have for any ṽh ∈ M̃h that

a(m̃− m̃h, m̃− m̃h)

‖m̃− m̃h‖H1(Y )

=
a(m̃− m̃h, m̃− ṽh)
‖m̃− m̃h‖H1(Y )

≤ Cb‖m̃− ṽh‖H1(Y ),



16 Y. CAPDEBOSCQ, T. SPREKELER, AND E. SÜLI

and taking the infimum over all ṽh ∈ M̃h, we find

a(m̃− m̃h, m̃− m̃h)

‖m̃− m̃h‖H1(Y )

≤ Cb inf
ṽh∈M̃h

‖m̃− ṽh‖H1(Y ).

Combining this estimate with (3.5) yields

‖m̃− m̃h‖H1(Y ) −
2Cg
λ
‖m̃− m̃h‖L2(Y ) ≤

2Cb
λ

inf
vh∈M̃h

‖m̃− ṽh‖H1(Y ).(3.6)

Next, we use an Aubin–Nitsche-type duality argument.
Let φ ∈ Wper(Y ) be the unique solution to{

−∇ · (A∇φ) + (divA) · ∇φ = m̃−m̃h

m
in Y,

φ is Y -periodic,
´
Y
φ = 0.

(3.7)

We note that the solvability condition (2.5) is satisfied:ˆ
Y

m̃− m̃h

m
m =

ˆ
Y

(m̃− m̃h) = 0.

We have, using the bounds on the invariant measure (2.4), the weak formulation of
(3.7) and the symmetry of A, that

1

M
‖m̃− m̃h‖2

L2(Y ) ≤
ˆ
Y

m̃− m̃h

m
(m̃− m̃h)

=

ˆ
Y

A∇φ · ∇(m̃− m̃h) +

ˆ
Y

(divA) · ∇φ (m̃− m̃h)

=

ˆ
Y

A∇(m̃− m̃h) · ∇φ+

ˆ
Y

(m̃− m̃h)(divA) · ∇φ.

Next, we use Galerkin orthogonality, the boundedness (3.3) and an interpolation
inequality to obtain

1

M
‖m̃− m̃h‖2

L2(Y ) ≤ a(m̃− m̃h, φ)

= a(m̃− m̃h, φ− Ihφ)

. ‖m̃− m̃h‖H1(Y )‖φ− Ihφ‖H1(Y )

. h‖m̃− m̃h‖H1(Y )‖φ‖H2(Y ),

where Ihφ denotes the continuous piecewise linear interpolant of φ on the trian-
gulation. Finally, by a regularity estimate for φ and the bounds on the invariant
measure (2.4), we arrive at the bound

‖φ‖H2(Y ) .

∥∥∥∥m̃− m̃h

m

∥∥∥∥
L2(Y )

. ‖m̃− m̃h‖L2(Y ) ,

which provides us with the estimate

‖m̃− m̃h‖L2(Y ) ≤ C0h‖m̃− m̃h‖H1(Y )
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for some C0 > 0. Combining this with (3.6) we have(
1− 2CgC0

λ
h

)
‖m̃− m̃h‖H1(Y ) ≤ ‖m̃− m̃h‖H1(Y ) −

2Cg
λ
‖m̃− m̃h‖L2(Y )

≤ 2Cb
λ

inf
ṽh∈M̃h

‖m̃− ṽh‖H1(Y ).

Therefore, for h sufficiently small, we arrive at the bounds

‖m̃− m̃h‖H1(Y ) . inf
ṽh∈M̃h

‖m̃− ṽh‖H1(Y ),

and

‖m̃− m̃h‖L2(Y ) ≤ C0h‖m̃− m̃h‖H1(Y ) . h inf
ṽh∈M̃h

‖m̃− ṽh‖H1(Y ).

We have thus established the a priori estimate

‖m̃− m̃h‖L2(Y ) + h‖m̃− m̃h‖H1(Y ) . h inf
ṽh∈M̃h

‖m̃− ṽh‖H1(Y ),

which immediately implies existence and uniqueness of solutions to (3.2).
Finally, using that m = m̃+ 1 and mh = m̃h + 1, we conclude that

‖m−mh‖L2(Y ) + h‖m−mh‖H1(Y ) . h inf
ṽh∈M̃h

‖m− (ṽh + 1)‖H1(Y ).

�

3.1.2. Approximation of A0. We use this finite element approximation of the invari-
ant measure to obtain an approximation to the constant matrix

A0 =

ˆ
Y

Am.

To this end, we first replace the invariant measure m by the approximation mh from
Theorem 3.1, and then replace the integrand by its piecewise linear interpolant,

A0
h :=

ˆ
Y

Ih(Amh).

This integral can be computed exactly using an appropriate quadrature rule. The
following lemma gives an error estimate for this approximation.

Lemma 3.1 (Approximation of A0). Let A = AT : Rn → Rn×n satisfy (2.1).
Further, let A0 = (a0

ij) ∈ Rn×n be the constant matrix given by Theorem 2.3, let
mh be the approximation to the invariant measure given by Theorem 3.1, and let
A0
h = (a0

ij,h) ∈ Rn×n be the matrix given by

a0
ij,h :=

ˆ
Y

Ih(aijmh), 1 ≤ i, j ≤ n.

Then, for h > 0 sufficiently small, A0
h is elliptic and

max
1≤i,j≤n

∣∣a0
ij − a0

ij,h

∣∣ . h.
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Proof. Fix 1 ≤ i, j ≤ n. Using the definition of A0 = (a0
ij), i.e.,

a0
ij =

ˆ
Y

aijm,

we obtain the estimate

|a0
ij − a0

ij,h| ≤ ‖aij(m−mh)‖L1(Y ) + ‖aijmh − Ih(aijmh)‖L1(Y ).

For the first term, we have

‖aij(m−mh)‖L1(Y ) . ‖m−mh‖L1(Y ) . ‖m−mh‖L2(Y ).

For the second term, let us first note that using aij ∈ W 1,q(Y ) with q > n and
Sobolev embeddings, we have

|aijmh|H1(Y ) ≤ ‖∇aij‖Lq(Y )‖mh‖
L

2q
q−2 (Y )

+ ‖aij‖L∞(Y )‖∇mh‖L2(Y )

. ‖aij‖W 1,q(Y )‖mh‖H1(Y ).

Therefore, using a standard interpolation error bound, we obtain

‖aijmh − Ih(aijmh)‖L1(Y ) . ‖aijmh − Ih(aijmh)‖L2(Y )

. h|aijmh|H1(Y )

. h‖aij‖W 1,q(Y )‖mh‖H1(Y ).

By Theorem 3.1, for h > 0 sufficiently small, we have that

|a0
ij − a0

ij,h| . ‖m−mh‖L2(Y ) + h‖mh‖H1(Y )

. ‖m−mh‖L2(Y ) + h‖m−mh‖H1(Y ) + h‖m‖H1(Y )

. h inf
ṽh∈M̃h

‖m− (ṽh + 1)‖H1(Y ) + h‖m‖H1(Y )

. h‖m− 1‖H1(Y ) + h‖m‖H1(Y )

. h.

Finally, we note that this implies that for h > 0 sufficiently small, A0
h is elliptic. �

3.1.3. Approximation of u0. For the approximation of the solution u0 to the ho-
mogenized problem, we use the following comparison result for the error committed
when replacing A0 by A0

h.

Lemma 3.2 (Comparison result). Assume either that (Ω, A, f) ∈ G0,2 or that
(Ω, A, f) ∈ H0. Let A0

h ∈ Rn×n be the approximation to A0 as in Lemma 3.1.
Then, for h > 0 sufficiently small, we have that

‖u0 − uh0‖H2(Ω) . h‖f‖L2(Ω),

where uh0 ∈ H2(Ω) ∩H1
0 (Ω) is the solution to the problem{

A0
h : D2uh0 = f in Ω,

uh0 = 0 on ∂Ω,
(3.8)

and u0 ∈ H2(Ω) ∩H1
0 (Ω) is the solution to the homogenized problem (2.8).
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Proof. We let wh := u0 − uh0 ∈ H2(Ω) ∩ H1
0 (Ω) and note that wh is the unique

solution to the boundary-value problem{
A0 : D2wh = (A0

h − A0) : D2uh0 in Ω,

wh = 0 on ∂Ω.

We recall that A0 ∈ Rn×n is an elliptic constant matrix. For h > 0 sufficiently small,
by an H2 a priori estimate, the Cauchy–Schwarz inequality and Lemma 3.1,

‖wh‖H2(Ω) . ‖(A0
h − A0) : D2uh0‖L2(Ω)

.

ˆ
Ω

∣∣∣∣∣
n∑

i,j=1

(a0
ij,h − a0

ij)∂
2
iju

h
0

∣∣∣∣∣
2
 1

2

.

(ˆ
Ω

(
n∑

i,j=1

|a0
ij,h − a0

ij|2
)(

n∑
i,j=1

|∂2
iju

h
0 |2
)) 1

2

. h |uh0 |H2(Ω).

Finally, we show that for h > 0 sufficiently small, we have

‖uh0‖H2(Ω) . ‖f‖L2(Ω)(3.9)

with the constant being independent of h. This can be seen by rewriting (3.8) as{
A0 : D2uh0 = f + (A0 − A0

h) : D2uh0 in Ω,

uh0 = 0 on ∂Ω.
(3.10)

Then, again by an H2 a priori estimate and Lemma 3.1,

‖uh0‖H2(Ω) . ‖f + (A0 − A0
h) : D2uh0‖L2(Ω) . ‖f‖L2(Ω) + h‖uh0‖H2(Ω)

with constants independent of h, i.e., for h > 0 sufficiently small, (3.9) holds with
the constant being independent of h. �

Finally, we can use an H1
0 (Ω)-conforming finite element approximation uh,k0 to the

solution uh0 of (3.8), satisfying the error bound∥∥∥uh0 − uh,k0

∥∥∥
H1(Ω)

. k‖uh0‖H2(Ω) . k‖f‖L2(Ω)

with constants independent of h. By the triangle inequality and the results obtained
in this section, we have the following approximation result for u0.

Theorem 3.2 (H1 approximation of u0). Assume either that (Ω, A, f) ∈ G0,2, or

that (Ω, A, f) ∈ H0. Then, the approximation uh,k0 obtained by the procedure de-
scribed above satisfies ∥∥∥u0 − uh,k0

∥∥∥
H1(Ω)

. (h+ k)‖f‖L2(Ω).

Let us now assume either that (Ω, A, f) ∈ G1,2 or that (Ω, A, f) ∈ H1. Further,
assume that for h > 0 sufficiently small, we have that uh0 ∈ H3(Ω) with∥∥uh0∥∥H3(Ω)

. ‖f‖H1(Ω) ,(3.11)
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where the constant is independent of h. The following lemma provides two situations
where this is satisfied.

Lemma 3.3. Let (Ω, A, f) be such that

(i) (Ω, A, f) ∈ G1,2 with ∂Ω ∈ C3, or
(ii) (Ω, A, f) ∈ H1 with Ω ⊂ R2 being a polygon and f ∈ H1

0 (Ω).

Then, for h > 0 sufficiently small, (3.11) holds.

Before we prove Lemma 3.3, we need the following result on the regularity of
solutions to Poisson’s problem on convex polygons, see also [13, 15, 16, 17].

Lemma 3.4. Let Ω ⊂ R2 be a convex polygonal domain and f ∈ H1
0 (Ω). Then the

solution u ∈ H1
0 (Ω) to the problem{

∆u = f in Ω,

u = 0 on ∂Ω,

satisfies the bound

‖u‖H3(Ω) . ‖f‖H1(Ω).(3.12)

Proof. First, note that since Ω ⊂ R2 is a convex polygonal domain, we have u ∈
H2(Ω) ∩ H1

0 (Ω) with ‖u‖H2(Ω) . ‖f‖L2(Ω), see [13]. Since f ∈ H1
0 (Ω), there exists

a sequence of smooth functions with compact support (fm)m ⊂ C∞c (Ω) such that
fm → f in H1(Ω). Let (um)m ⊂ H1

0 (Ω) be the sequence of solutions in H1
0 (Ω)

to ∆um = fm in Ω, and note that (um)m ⊂ C∞(Ω̄) since the functions fm satisfy
compatibility conditions of any order, see [13, Sec. 5.1]. Again we use the H2-
regularity result for solutions of Poisson’s problem on convex polygons to obtain

‖um − u‖H2(Ω) . ‖fm − f‖L2(Ω) → 0,

i.e., um → u in H2(Ω).
Next, we shall use the fact that

|v|H3(Ω) = ‖∇(∆v)‖L2(Ω) ∀ v ∈
{
w ∈ H1

0 (Ω) : ∆w ∈ H1
0 (Ω)

}
∩ C∞(Ω̄),(3.13)

see [17]. We apply (3.13) to the difference of two elements of the sequence (um)m
to find that (um)m is a Cauchy sequence in H3(Ω), using that fm → f in H1(Ω).
Thus, um → u in H3(Ω) and passing to the limit in (3.13) applied to the functions
um yields

|u|H3(Ω) = ‖∇f‖L2(Ω).

Since ‖u‖H2(Ω) . ‖f‖L2(Ω), we conclude the bound (3.12). �

Remark 3.2. The assumption f ∈ H1
0 (Ω) in Lemma 3.4 can be weakened provided

f satisfies certain compatibility conditions, see [13, Theorem 5.1.2.4].

Now we are in a position to prove Lemma 3.3, using standard elliptic regularity
theory, Lemma 3.4, and a scaling argument.
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Proof of Lemma 3.3. We start with the case (i). To this end, let (Ω, A, f) ∈ G1,2

with ∂Ω ∈ C3. Then, by elliptic regularity theory, we have uh0 ∈ H3(Ω). Using
elliptic regularity for problem (3.10) yields

‖uh0‖H3(Ω) . ‖f + (A0 − A0
h) : D2uh0‖H1(Ω) . ‖f‖H1(Ω) + h‖uh0‖H3(Ω)

with constants independent of h, i.e., for h > 0 sufficiently small, (3.11) holds with
the constant being independent of h.

Let us now show the claim for the case (ii). To this end, let (Ω, A, f) ∈ H1 with
Ω ⊂ R2 being a polygon and f ∈ H1

0 (Ω). Since

A0
h = A0 +

(
A0
h − A0

)
=: A0 +Bh

is symmetric and elliptic for h > 0 sufficiently small, there exists an orthogonal
matrix Qh ∈ R2×2 with QhQ

T
h = QT

hQh = I2 such that

Qh

(
A0 +Bh

)
QT
h = diag(λ+

h , λ
−
h ) =: Λh,

where λ±h > 0 are given by

2λ±h = tr
(
A0 +Bh

)
±
((

tr
(
A0 +Bh

))2 − 4 det
(
A0 +Bh

)) 1
2
.

We note that, by Lemma 3.1, the entries of Bh = (bhij)1≤i,j≤2 satisfy bhij . h, and

therefore, for h > 0 sufficiently small, we have 0 < λ±h + (λ±h )−1 . 1.
The problem (3.8) in the new coordinates reads{

∆Uh = Fh in Ph,

Uh = 0 on ∂Ph,
(3.14)

where Uh := uh0

(
QT
hΛ

1
2
h ·
)

, Fh := f
(
QT
hΛ

1
2
h ·
)

, and Ph := Λ
− 1

2
h QhΩ. Note that Ph

is still a bounded convex polygonal domain and that Fh ∈ H1
0 (Ph). By the change

of variables formula and the orthogonality of Qh,

‖f‖2
H1(Ω) =

ˆ
Ω

(
|f |2 + |∇f |2

)
= det Λ

1
2
h

ˆ
Ph

(∣∣∣f (QT
hΛ

1
2
h ·
)∣∣∣2 +

∣∣∣∇f (QT
hΛ

1
2
h ·
)∣∣∣2)

= det Λ
1
2
h

ˆ
Ph

(
|Fh|2 +

∣∣∣QT
hΛ
− 1

2
h ∇Fh

∣∣∣2)
= det Λ

1
2
h

ˆ
Ph

(
|Fh|2 +

∣∣∣Λ− 1
2

h ∇Fh
∣∣∣2)

&
ˆ
Ph

(
|Fh|2 + |∇Fh|2

)
= ‖Fh‖2

H1(Ph) .

Using Lemma 3.4, we have that, for h > 0 sufficiently small, the solution to (3.14)
satisfies

‖Uh‖H3(Ph) . ‖Fh‖H1(Ph) . ‖f‖H1(Ω)

with constants independent of h. It remains to show the bound

‖uh0‖H3(Ω) . ‖Uh‖H3(Ph).(3.15)
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By the change of variables formula and the orthogonality of Qh, we obtain similarly
as before,

‖uh0‖2
H3(Ω) =

ˆ
Ω

(
|uh0 |2 +

∣∣∇uh0∣∣2 +
∣∣D2uh0

∣∣2)+
2∑
i=1

ˆ
Ω

∣∣D2∂iu
h
0

∣∣2
= det Λ

1
2
h

ˆ
Ph

(
|Uh|2 +

∣∣∣QT
hΛ
− 1

2
h ∇Uh

∣∣∣2 +
∣∣∣QT

hΛ
− 1

2
h D2Uh Λ

− 1
2

h Qh

∣∣∣2)

+
2∑
i=1

det Λ
1
2
h

ˆ
Ph

∣∣∣∣∣
2∑
j=1

(Qh)ji√
(Λh)jj

QT
hΛ
− 1

2
h D2∂jUh Λ

− 1
2

h Qh

∣∣∣∣∣
2

= det Λ
1
2
h

ˆ
Ph

(
|Uh|2 +

∣∣∣Λ− 1
2

h ∇Uh
∣∣∣2 +

∣∣∣Λ− 1
2

h D2Uh Λ
− 1

2
h

∣∣∣2)

+
2∑
i=1

det Λ
1
2
h

(Λh)ii

ˆ
Ph

∣∣∣Λ− 1
2

h D2∂iUh Λ
− 1

2
h

∣∣∣2
.
ˆ
Ph

(
|Uh|2 + |∇Uh|2 +

∣∣D2Uh
∣∣2)+

2∑
i=1

ˆ
Ph

∣∣D2∂iUh
∣∣2 = ‖Uh‖2

H3(Ph),

i.e., we have established the bound (3.15). We conclude that, for h > 0 sufficiently
small, we have (3.11), i.e.,

‖uh0‖H3(Ω) . ‖f‖H1(Ω),

where the constant is independent of h. �

Then an H2(Ω) ∩ H1
0 (Ω)-conforming finite element approximation uh,k0 to the

solution uh0 of (3.8), that satisfies the error bound∥∥∥uh0 − uh,k0

∥∥∥
H2(Ω)

. k
∥∥uh0∥∥H3(Ω)

. k ‖f‖H1(Ω) ,(3.16)

provides by Lemma 3.2 and the triangle inequality an approximation to u0.

Theorem 3.3 (H2-norm approximation of u0). Assume either that (Ω, A, f) ∈ G1,2

or that (Ω, A, f) ∈ H1, and assume (3.11). Then, the approximation uh,k0 obtained
by the procedure described above satisfies∥∥∥u0 − uh,k0

∥∥∥
H2(Ω)

. (h+ k)‖f‖H1(Ω).

Remark 3.3 (Improvements). We note that if we assume that A ∈ W 2,∞(Y ), then
we have the following improved results.

(i) Approximation of m: In this case, m ∈ H2(Y ) and we have that

inf
ṽh∈M̃h

‖m− (ṽh + 1)‖H1(Y ) ≤
∥∥∥∥m− Ihm− ˆ

Y

(m− Ihm)

∥∥∥∥
H1(Y )

. h‖m‖H2(Y ),

by choosing ṽh = Ihm −
´
Y
Ihm, and using an interpolation error bound.

Therefore, Theorem 3.1 yields

‖m−mh‖L2(Y ) + h‖m−mh‖H1(Y ) . h2‖m‖H2(Y ).
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(ii) Approximation of A0: By an interpolation error bound and the fact that mh

is piecewise linear, one has

‖aijmh − Ih(aijmh)‖L1(Y ) . h2‖aij‖W 2,∞(Y )‖mh‖H1(Y ).

Therefore, the proof of Lemma 3.1 yields

max
1≤i,j≤n

∣∣a0
ij − a0

ij,h

∣∣ . h2‖A‖W 2,∞(Y )‖m‖H2(Y ) . h2‖A‖W 2,∞(Y ).

(iii) Approximation of u0: It follows that the results of Lemma 3.2, Theorem 3.2
and Theorem 3.3 can be improved to second-order convergence in h, i.e.,∥∥∥u0 − uh,k0

∥∥∥
Hs(Ω)

. (h2‖A‖W 2,∞(Y ) + k)‖f‖Hs−1(Ω) = O(h2 + k),

for s = 1, 2, respectively.

For the approximation of derivatives of u0 of higher than second order, the post-
processing method of Babuška in [4] can be used to obtain error bounds in norms
involving derivatives of higher order than the energy norm (the norm natural to the
problem).

For bounded convex polygonal domains Ω ⊂ R2, an H2-conforming approximation
to the solution of (3.8) can be obtained as follows. Assume that f ∈ H1

0 (Ω) so that
(3.11) holds. Consider a shape-regular triangulation of Ω into triangles with longest
edge k > 0, and let

Vk ⊂ H2(Ω) ∩H1
0 (Ω)

be an appropriate finite element space. In practice, the Hsieh–Clough–Tocher ele-
ment and the Argyris element can be used as H2-conforming elements. Then, for
h > 0 sufficiently small, standard finite element analysis can be used to show that
there is a unique function uh,k0 ∈ Vk such thatˆ

Ω

(
A0
h : D2uh,k0

) (
A0
h : D2ϕk

)
=

ˆ
Ω

f
(
A0
h : D2ϕk

)
∀ϕk ∈ Vk,(3.17)

and that the error bound (3.16) holds.

3.2. Approximation of the Corrector. We now address problem (2.9) and
present a method for A ∈ W 2,∞(Y ). To simplify the notation and the arguments,
we assume that we know the invariant measure m and the matrix A0 = (a0

ij)1≤i,j≤n
exactly instead of working with our approximation A0

h.
For a given Y -periodic right-hand side g ∈ W 2,∞(Y ), we address the problem{

−∇ · (A∇χ) + (divA) · ∇χ = −g in Y,

χ is Y -periodic,
´
Y
χ = 0.

Obtaining an approximation for second-order derivatives via finite elements is not
straightforward since the natural solution space is Wper(Y ). We present a method
of successively approximating higher derivatives.

Let χh be a Wper(Y )-conforming finite element approximation to χ, i.e.,

χh ∈ Vh,
ˆ
Y

A∇χh · ∇ϕ+

ˆ
Y

ϕ (divA) · ∇χh = −
ˆ
Y

gϕ ∀ϕ ∈ Vh,
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with Vh ⊂ Wper(Y ) finite-dimensional, and satisfying the error estimate

‖χh − χ‖H1(Y ) . h.

Let r ∈ {1, . . . , n} and write ξr := ∂rχ. Then, using the equation

−∇ · (A∇χ) + (divA) · ∇χ = −g in Y,

we find that weakly, there holds

−∇ · (A∇ξr) + (divA) · ∇ξr = −∂kg +∇ · (∂kA ∇χ)− (div(∂kA)) · ∇χ in Y.

Further, we claim that ξr ∈ Wper(Y ). Indeed, this follows from the regularity and
periodicity of χ and ˆ

Y

∂rχ =

ˆ
∂Y

χν · er = 0.

Therefore, ξr ∈ Wper(Y ) satisfies{
−∇ · (A∇ξr) + (divA) · ∇ξr = −∂rg +∇ · (∂rA ∇χ)− (div(∂rA)) · ∇χ in Y,

ξr is Y -periodic,
´
Y
ξr = 0.

Now we use our H1-conforming approximation for χ for the right-hand side and
use a Wper(Y )-conforming finite element method for approximating the solution
v ∈ Wper(Y ) to the following problem:

{
−∇ · (A∇v) + (divA) · ∇v = −∂rg +∇ · (∂rA ∇χh)− (div(∂rA)) · ∇χh − c in Y,

v is Y -periodic,
´
Y
v = 0,

(3.18)

where c is such that this problem admits a unique solution (such that the solvability
condition (2.5) is satisfied). By looking at the problem for v − ξr, one obtains the
comparison result

‖v − ξr‖H1(Y ) . ‖∇ · (∂rA ∇(χh − χ))‖Wper(Y )′ + ‖ (div(∂rA)) · ∇(χh − χ)‖Wper(Y )′

. ‖A‖W 2,∞(Y )‖χh − χ‖H1(Y )

. h‖A‖W 2,∞(Y ) = O(h).

Let vh be a Wper(Y )-conforming finite element approximation of (3.18) satisfying

‖vh − v‖H1(Y ) ≤ Ch

for some constant C = C(‖A‖W 2,∞(Y )) > 0. Then, using the triangle inequality, we
obtain

‖vh − ξr‖H1(Y ) ≤ Ch

for some constant C = C(‖A‖W 2,∞(Y )) > 0. Using this procedure for r = 1, . . . , n,
we eventually obtain approximations to derivatives of order up to two of χ.
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3.3. Approximation of uε. We assume either that (Ω, A, f) ∈ G2,2 or that
(Ω, A, f) ∈ H2. Let n ∈ {2, 3}, ε ∈ (0, 1], and assume that

u0 ∈ H4(Ω).

Then we know that (2.11) is satisfied, and by Theorem 2.5 we have that∥∥∥∥∥uε − u0 − ε2

n∑
i,j=1

χij

( ·
ε

)
∂2
iju0

∥∥∥∥∥
H2(Ω)

.
√
ε ‖u0‖W 2,∞(Ω) + ε‖u0‖H4(Ω),(3.19)

where u0 is the solution to the homogenized problem, and χij are the corrector
functions given as the solutions to (2.9). This result can be used to construct an
approximation of uε, i.e., to the solution of problem (2.2) for small ε. We note that
(3.19) implies that

‖uε − u0‖H1(Ω) +
n∑

k,l=1

∥∥∥∥∥∂2
kluε −

(
∂2
klu0 +

n∑
i,j=1

(
∂2
klχij

) ( ·
ε

)
∂2
iju0

)∥∥∥∥∥
L2(Ω)

.
√
ε ‖u0‖W 2,∞(Ω) + ε‖u0‖H4(Ω).

(3.20)

This leads to the following approximation result for uε.

Theorem 3.4 (Approximation of uε). In the situation described above, let
(u0,h)h>0 ⊂ H2(Ω) be a family of H2-conforming approximations for u0 satisfying
the error bound

‖u0 − u0,h‖H2(Ω) . h‖f‖H1(Ω),

and for 1 ≤ i, j, k, l ≤ n, let (zklij,h)h>0 ⊂ L2
per(Y ) be a family of L2 approximations

for ∂2
klχij satisfying the error bound

‖∂2
klχij − zklij,h‖L2(Y ) . h.

Then, by writing

uklε,h := ∂2
klu0,h +

n∑
i,j=1

zklij,h

( ·
ε

)
∂2
iju0,h,

we have that

‖uε − u0,h‖H1(Ω) +
n∑

k,l=1

∥∥∂2
kluε − uklε,h

∥∥
L1(Ω)

.
(√

ε+ h
)
‖u0‖W 2,∞(Ω) + ε‖u0‖H4(Ω) + h‖f‖H1(Ω).

Proof. We use (3.20) and the triangle inequality to obtain

‖uε − u0,h‖H1(Ω) ≤ ‖uε − u0‖H1(Ω) + ‖u0 − u0,h‖H1(Ω)

.
√
ε ‖u0‖W 2,∞(Ω) + ε‖u0‖H4(Ω) + h‖f‖H1(Ω),
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and for 1 ≤ k, l ≤ n,∥∥∂2
kluε − uklε,h

∥∥
L1(Ω)

.
√
ε ‖u0‖W 2,∞(Ω) + ε‖u0‖H4(Ω) + h‖f‖H1(Ω)

+
n∑

i,j=1

∥∥∥(∂2
klχij

) ( ·
ε

)
∂2
iju0 − zklij,h

( ·
ε

)
∂2
iju0,h

∥∥∥
L1(Ω)

.

It remains to study the last term on the right-hand side of the above inequality. For
fixed 1 ≤ i, j ≤ n, we use again the triangle inequality to obtain∥∥∥(∂2

klχij
) ( ·

ε

)
∂2
iju0 − zklij,h

( ·
ε

)
∂2
iju0,h

∥∥∥
L1(Ω)

≤
∥∥∥zklij,h ( ·ε) (∂2

iju0 − ∂2
iju0,h

)∥∥∥
L1(Ω)

+
∥∥∥(∂2

klχij − zklij,h
) ( ·

ε

)
∂2
iju0

∥∥∥
L1(Ω)

.
∥∥∥zklij,h ( ·ε)∥∥∥L2(Ω)

‖u0 − u0,h‖H2(Ω) +
∥∥∥(∂2

klχij − zklij,h
) ( ·

ε

)∥∥∥
L2(Ω)

‖u0‖W 2,∞(Ω)

. h

(∥∥∥zklij,h ( ·ε)∥∥∥L2(Ω)
‖f‖H1(Ω) + ‖u0‖W 2,∞(Ω)

)
.

In the last step, we used that by the transformation formula and periodicity (cover
Ω/ε by O(ε−n) many cells of unit length), there holds∥∥∥(∂2

klχij − zklij,h
) ( ·

ε

)∥∥∥
L2(Ω)

.
∥∥∂2

klχij − zklij,h
∥∥
L2(Y )

. h.(3.21)

We claim that ∥∥∥zklij,h ( ·ε)∥∥∥L2(Ω)
. h+ 1.

Indeed, we use the triangle inequality, (3.21) and the fact that χij ∈ W 2,∞(Y ) to
obtain∥∥∥zklij,h ( ·ε)∥∥∥L2(Ω)

≤
∥∥∥(∂2

klχij − zklij,h
) ( ·

ε

)∥∥∥
L2(Ω)

+
∥∥∂2

klχij
∥∥
L∞(Y )

. h+ 1.

�

The approximations of u0 and the corrector functions can be obtained as described
in Section 3.1 and 3.2. Let us conclude this section by remarking that if the second
derivatives of the corrector functions are approximated in the space L∞(Y ) or if the
solution to the homogenized problem is approximated in the space W 2,∞(Ω), then
one obtains by a similar proof an approximation result for the second derivatives of
uε in L2(Ω).

Remark 3.4. If (zklij,h)h>0 ⊂ L∞per(Y ) is a family of L∞ approximations for ∂2
klχij

satisfying the error bound

‖∂2
klχij − zklij,h‖L∞(Y ) = O(h),

and (u0,h)h>0 is as in Theorem 3.4, then we have that

‖uε − u0,h‖H1(Ω) +
n∑

k,l=1

∥∥∂2
kluε − uklε,h

∥∥
L2(Ω)

= O(
√
ε+ h).
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The same holds true when (u0,h)h>0 ⊂ W 2,∞(Ω) is a family of W 2,∞-conforming
approximations for u0 satisfying the error bound

‖u0 − u0,h‖W 2,∞(Ω) = O(h),

and (zklij,h)h>0 is as in Theorem 3.4.

3.4. Nonuniformly Oscillating Coefficients. In this section, we discuss the case
of nonuniformly oscillating coefficients, i.e., coefficients depending on x and x

ε
. We

consider the problem {
A
(
·, ·
ε

)
: D2uε = f in Ω,

uε = 0 on ∂Ω,
(3.22)

where the triple (Ω, A, f) satisfies one of the following sets of assumptions.

Definition 3.1 (Sets of assumptions G,H). For m ∈ N0, we write

(i) (Ω, A, f) ∈ G if and only if Ω ⊂ Rn is a bounded C2,γ domain, f ∈ L2(Ω),
and A = AT : Ω× Rn → Rn×n satisfies

A = A(x, y) ∈ W 2,∞(Ω;W 1,q(Y )) for some q ∈ (n,∞],

A(x, ·) is Y -periodic,

∃ λ,Λ > 0 : λ|ξ|2 ≤ A(x, y)ξ · ξ ≤ Λ|ξ|2 ∀ ξ, y ∈ Rn, x ∈ Ω.

(3.23)

(ii) (Ω, A, f) ∈ H if and only if Ω ⊂ Rn is a bounded convex domain, f ∈ L2(Ω),
and A = AT : Ω× Rn → Rn×n satisfies (3.23) and

∃ δ ∈ (0, 1] :
|A(x, y)|2

(trA(x, y))2
≤ 1

n− 1 + δ
∀ (x, y) ∈ Ω× Rn.(3.24)

In view of Remark 2.1, we see that the Cordes condition (3.24) is always satisfied
when n = 2. Well-posedness to the problem (3.22) is guaranteed by the following
theorem, see [12, Theorem 9.15] and [19, Theorem 3].

Theorem 3.5 (Existence and uniqueness of strong solutions). Assume either that
(Ω, A, f) ∈ G, or that (Ω, A, f) ∈ H. Then, for any ε > 0, the problem (3.22) admits
a unique solution uε ∈ H2(Ω) ∩H1

0 (Ω).

As in Section 2, uniform a priori estimates for the solution to (3.22) allow passage
to the limit in equation (3.22), see [5, 6]. The coefficient matrix of the homogenized
problem now depends on the slow variable x, and is obtained by integrating against
an invariant measure. Corrector results can then be shown as before.

Theorem 3.6 (Nonuniformly oscillating coefficients). Assume that ε ∈ (0, 1] and
either that (Ω, A, f) ∈ G, or that (Ω, A, f) ∈ H. Then the following assertions hold.

(i) Uniform a priori estimate: The solution uε ∈ H2(Ω) ∩ H1
0 (Ω) to (3.22)

satisfies

‖uε‖H2(Ω) . ‖f‖L2(Ω).



28 Y. CAPDEBOSCQ, T. SPREKELER, AND E. SÜLI

(ii) Homogenization: The solution uε ∈ H2(Ω) ∩ H1
0 (Ω) to (3.22) converges

weakly in H2(Ω) to the solution u0 ∈ H2(Ω) ∩ H1
0 (Ω) of the homogenized

problem {
A0 : D2u0 = f in Ω,

u0 = 0 on ∂Ω,
(3.25)

with A0 : Ω→ Rn×n given by

A0(x) :=

ˆ
Y

A(x, ·)m(x, ·),

where m = m(x, y) is the unique function m : Ω × Rn → R with m ∈
C(Ω̄× Rn), 0 < m̄ ≤ m ≤M for some constants m̄,M > 0, such that{

D2 : (A(x, ·)m(x, ·)) = 0 in Y,

m(x, ·) is Y -periodic,
´
Y
m(x, ·) = 1,

for any fixed x ∈ Ω. The function m is called the invariant measure.
(iii) Corrector estimate: Assume that f ∈ H2(Ω) and u0 ∈ H4(Ω) ∩W 2,∞(Ω).

Introducing the corrector function χij, 1 ≤ i, j ≤ n, as the solution to{
A(x, y) : D2

yχij(x, y) = a0
ij(x)− aij(x, y), (x, y) ∈ Ω× Y,

χij(x, ·) is Y -periodic,
´
Y
χij(x, ·) = 0,

we have that∥∥∥∥∥uε − u0 − ε2

n∑
i,j=1

χij

(
·, ·
ε

)
∂2
iju0

∥∥∥∥∥
H2(Ω)

.
√
ε‖u0‖W 2,∞(Ω) + ε‖u0‖H4(Ω).

Proof. (i) For (Ω, A, f) ∈ H, one shows similarly to the proof of [19, Theorem 3]
and Theorem 2.2 that

‖uε‖H2(Ω) .

∥∥∥∥∥ trA
(
·, ·
ε

)
|A
(
·, ·
ε

)
|2

∥∥∥∥∥
L∞(Ω)

‖f‖L2(Ω) . ‖f‖L2(Ω).

For (Ω, A, f) ∈ G, the claim follows from the method of freezing coefficients, using
the uniform estimate from Theorem 2.2 for the operators Lx0 := A

(
x0,

·
ε

)
: D2 for

fixed x0 ∈ Ω.

(ii) The uniform estimate from (i) yields weak convergence in H2(Ω) and
strong convergence in H1(Ω) for a subsequence of (uε)ε>0 to some limit function
u0 ∈ H2(Ω) ∩H1

0 (Ω). We multiply (3.22) by m
(
·, ·
ε

)
and follow the transformation

performed in [5] to find that

mεf = 2∇ ·
(
Ãε∇uε +

[
divxÃ

]ε
uε

)
− 2

[
divxÃ

]ε
· ∇uε

−
[
D2
x : Ã

]ε
uε −D2 :

(
Ãεuε

)
holds weakly, where Ã := Am and vε denotes v

(
·, ·
ε

)
. Passing to the limit, we

obtain that u0 is a weak solution of (3.25). We conclude the proof by noting that
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(3.25) admits a unique strong solution, since A0 is uniformly elliptic and Lipschitz
continuous on Ω̄, see [12, 13].

(iii) This can be proved similarly to Theorem 2.4 and Theorem 2.5, using that,
by the assumptions made on A and elliptic regularity, we have

χεkl, [∂xiχkl]
ε , [∂yiχkl]

ε ,
[
∂2
xiyj

χkl

]ε
,
[
∂2
xixj

χkl

]ε
∈ L∞(Ω)

for any 1 ≤ i, j, k, l ≤ n. �

Let us explain how the numerical scheme from Section 3.1 can be used for the
numerical homogenization of (3.22).

First, we consider a triangulation Tk on Ω̄ consisting of nodes {xi}i∈I with grid
size k > 0, and a triangulation Th on Y with grid size h > 0. Then, for any i ∈ I, we
can use the scheme from Section 3.1 (see Theorem 3.1) to obtain an approximation
mi
h ∈ H1(Y ) to mxi = m(xi, ·) such that

‖mxi −mi
h‖L2(Y ) + h‖mxi −mi

h‖H1(Y ) . h inf
ṽh∈M̃h

‖mxi − (ṽh + 1)‖H1(Y ).

Further, we obtain that

A0,i
h :=

ˆ
Y

Ih
(
A(xi, ·) mi

h

)
is an approximation to A0(xi) (see Lemma 3.1),∣∣A0(xi)− A0,i

h

∣∣ . h.(3.26)

Now we define A0
h,k to be a continuous piecewise linear function on Ω such that

A0
h,k(xi) = A0,i

h .

Then, using (3.26) and denoting the continuous piecewise linear interpolant of a
function φ on the grid {xi}i∈I by Ikφ, we have

‖A0 − A0
h,k‖L∞(Ω) ≤ ‖A0 − IkA0‖L∞(Ω) + ‖IkA0 − A0

h,k‖L∞(Ω)

. ‖A0 − IkA0‖L∞(Ω) + h.
(3.27)

We observe that, similarly to the proof of Lemma 3.2, we obtain that the solution
uh,k0 ∈ H2(Ω) ∩H1

0 (Ω) to {
A0
h,k : D2uh,k0 = f in Ω,

uh,k0 = 0 on ∂Ω,
(3.28)

satisfies, for h, k > 0 sufficiently small,

‖u0 − uh,k0 ‖H2(Ω) . ‖A0 − A0
h,k‖L∞(Ω)‖f‖L2(Ω),

and in view of (3.27),

‖u0 − uh,k0 ‖H2(Ω) .
(
‖A0 − IkA0‖L∞(Ω) + h

)
‖f‖L2(Ω),

where u0 is the solution to the homogenized problem (3.25). Finally, the solution to
(3.28) can be approximated by a standard finite element method on the triangulation
Tk which yields an approximation u0,h,k ∈ H2(Ω)∩H1

0 (Ω) to u0 in the H2(Ω)-norm.
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The approximation of uε can be obtained based on the corrector estimate from
Theorem 3.6 analogously as in Section 3.3.

4. Numerical Experiments

4.1. Problem with a Known u0. We consider the homogenization problem{
A
( ·
ε

)
: D2uε = f in Ω,

uε = 0 on ∂Ω,
(4.1)

on the domain

Ω := Y = (0, 1)2,

with the matrix-valued map

A : R2 → R2×2, A(y1, y2) :=

(
1 + arcsin

(
sin2(πy1)

)
sin(πy1) cos(πy1)

sin(πy1) cos(πy1) 2 + cos2(πy1)

)
,

and the right-hand side f : Ω → R to be specified below. We observe that the
matrix-valued function A satisfies (2.1) with q =∞. Further, note that

A(y) = (aij(y1))1≤i,j≤2

depends only on the first coordinate of y = (y1, y2) ∈ R2; see Figure 1.

Figure 1. The functions aij(y1) plotted on the interval (0, 1).

In this case we know that the homogenized problem is given by{
A0 : D2u0 = f in Ω,

u0 = 0 on ∂Ω,
(4.2)
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where A0 ∈ R2×2 denotes the constant matrix

A0 =

ˆ
Y

Am

with m being the invariant measure

m : R2 → R, m(y1, y2) =

(ˆ 1

0

dt

a11(t)

)−1
1

a11(y1)
,

see [11]. Explicit computation yields that

a0
11 =

(ˆ 1

0

dt

a11(t)

)−1

≈ 1.4684,

a0
12 =

(ˆ 1

0

dt

a11(t)

)−1 ˆ 1

0

a12(t)

a11(t)
dt = 0,

a0
22 =

(ˆ 1

0

dt

a11(t)

)−1 ˆ 1

0

a22(t)

a11(t)
dt ≈ 2.6037.

We consider the right-hand side given by

f : Ω→ R, f(x1, x2) := a0
22x1(x1 − 1) + a0

11x2(x2 − 1).

Then it is straightforward to check that the exact solution u0 ∈ H2(Ω) ∩H1
0 (Ω) to

the homogenized problem (4.2) is given by

u0 : Ω→ R, u0(x1, x2) =
1

2
x1(x1 − 1)x2(x2 − 1).

Note that we are in the situation (Ω, A, f) ∈ H2, that f = 0 in the corners of Ω and
that u0 ∈ H4(Ω).

We use the scheme presented in Section 3.1 to approximate m, A0 and u0. We
use the same mesh for approximating m and u0. The Hsieh–Clough–Tocher (HCT)
element in FreeFem++ is used in the formulation (3.17) for the H2 approximation
of u0; see [14]. The gradient on the boundary is set to be the gradient of an H1

approximation by P2 elements on a fine mesh.

Figure 2. Approximation error for the invariant measure m (left)
and the matrix A0 (right).
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Figure 2 shows the error in the approximation of m and A0. For the approximation
of the invariant measure we observe convergence of order

‖m−mh‖L2(Y ) = O(h
3
2 ),(4.3)

and superconvergence of order O(h2) for h > 0 when grid points fall on the line
{y1 = 1

2
}, which is the set along which ∂1m possesses a jump. The observed rate of

convergence (4.3) is consistent with Theorem 3.1. Indeed, we have m ∈ H 3
2
−ε̃(Y )

for any ε̃ > 0, and Theorem 3.1 yields

‖m−mh‖L2(Y ) + h‖m−mh‖H1(Y ) . h inf
ṽh∈M̃h

‖m− (ṽh + 1)‖H1(Y )

. h

∥∥∥∥m− Ihm− ˆ
Y

(m− Ihm)

∥∥∥∥
H1(Y )

. h
3
2
−ε̃‖m‖

H
3
2−ε̃(Y )

,

by making the choice ṽh = Ihm−
´
Y
Ihm, and using an interpolation error bound. In

connection with the superconvergence we note that m|(0, 1
2

)×(0,1) ∈ H2((0, 1
2
)× (0, 1))

and m|( 1
2
,1)×(0,1) ∈ H2((1

2
, 1) × (0, 1)). For the approximation of the matrix A0, we

observe second-order convergence.
Concerning the approximation of uε, from Sections 2 and 3.3 we obtain that

‖uε − u0‖H1(Ω) +
2∑

k,l=1

∥∥∥∥∥∂2
kluε −

(
∂2
klu0 +

2∑
i,j=1

(
∂2
klχij

) ( ·
ε

)
∂2
iju0

)∥∥∥∥∥
L2(Ω)

= O(
√
ε),

where χij (1 ≤ i, j ≤ 2) denotes the solution to{
A : D2χij = a0

ij − aij in Y,

χij is Y -periodic,
´
Y
χij = 0.

Note that since A only depends on y1, we have that

∂2
klχij(y1, y2) =


a0
ij − aij(y1)

a11(y1)
, k = l = 1,

0 , otherwise.

Therefore, there holds

‖uε − u0‖2
H1(Ω) +

∥∥∂2
12uε − ∂2

12u0

∥∥2

L2(Ω)
+
∥∥∂2

22uε − ∂2
22u0

∥∥2

L2(Ω)

+

∥∥∥∥∥∂2
11uε −

(
∂2

11u0 +
2∑

i,j=1

(
∂2

11χij
) ( ·

ε

)
∂2
iju0

)∥∥∥∥∥
2

L2(Ω)

= O(ε).
(4.4)

For the numerical approximation, we replace uε by an H2-conforming finite ele-
ment approximation on a fine mesh, based on the formulation

Find uε ∈ H :

ˆ
Ω

trA
( ·
ε

)
|A
( ·
ε

)
|2
A
( ·
ε

)
: D2uε ∆v =

ˆ
Ω

trA
( ·
ε

)
|A
( ·
ε

)
|2
f∆v ∀ v ∈ H,
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where H := H2(Ω)∩H1
0 (Ω). To this end, we use again the HCT element and set the

gradient on the boundary to be the gradient of an H1 approximation by P2 elements
on a fine mesh.

Figure 3. Approximation error for u0 (left) and the squared error
(4.4) in the approximation of uε for different values of ε (right).

Figure 3 shows the error in the approximation of u0 and we observe second-order
convergence. Further, with the exact u0 being available, we can compute the error
(4.4) for different values of ε; see Figure 3. We observe first-order convergence as ε
tends to zero, as expected from (4.4).

4.2. Problem with an Unknown u0. Next, let us consider the problem (4.1) with
the same domain Ω and matrix-valued function A as before, but with the right-hand
side given by

f : Ω→ R, f(x1, x2) := exp

(
− 1

1
2
−
(
x1 − 1

2

)2 −
(
x2 − 1

2

)2

)
,

Note that we are in the situation (Ω, A, f) ∈ H2. Further, since the right-hand side
f ∈ H2(Ω) of the homogenized problem (4.2) satisfies f = 0 at the corners of Ω, the
solution u0 to (4.2) belongs to the class H4(Ω); see [16, Prop. 2.6].

As before, we use the scheme presented in Section 3.1 to approximate m, A0 and
u0. Using the second-order H2 approximation u0,h to u0 obtained as previously
described,

‖u0 − u0,h‖H2(Ω) = O(h2),

we have that

‖uε − u0,h‖2
H1(Ω) +

∥∥∂2
12uε − ∂2

12u0,h

∥∥2

L2(Ω)
+
∥∥∂2

22uε − ∂2
22u0,h

∥∥2

L2(Ω)
+∥∥∥∥∥∂2

11uε −

(
∂2

11u0,h +
2∑

i,j=1

(
∂2

11χij
) ( ·

ε

)
∂2
iju0,h

)∥∥∥∥∥
2

L2(Ω)

= O(ε+ h4).
(4.5)

Figure 4 shows the squared error (4.5) of the approximation of uε for different grid
sizes and ε = 1

100
fixed. We observe fourth-order convergence in h for the squared

error as expected from (4.5).
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Figure 4. The squared error (4.5) in the approximation of uε for a
fixed value, ε = 1

100
, (left) and the squared error after subtraction of

6.0657 · 10−7 (right), which is approximately the limit of (4.5) in the
figure on the left for this fixed value of ε as h tends to zero.

4.3. Nonuniformly Oscillating Coefficients. We consider the homogenization
problem {

A
(
·, ·
ε

)
: D2uε = f in Ω,

uε = 0 on ∂Ω,
(4.6)

on the domain

Ω := Y = (0, 1)2,

with the matrix-valued map A : Ω× R2 → R2×2,

(x, y) = ((x1, x2), (y1, y2)) 7→
(

ex1x2 + 1
4
|x|2 arcsin

(
sin2(πy1)

)
0

0 2 + x2 cos(2πy2 + x1)

)
,

and the right-hand side f : Ω → R to be specified below. We observe that the
matrix-valued function A satisfies (3.23) with q =∞. Further, note that it is of the
form

A(x, y) = diag (a11(x, y1), a22(x, y2)) .

In this case we know that the homogenized problem is given by{
A0 : D2u0 = f in Ω,

u0 = 0 on ∂Ω,
(4.7)

where A0 : Ω→ R2×2 is given by

A0(x) =

ˆ
Y

A(x, ·)m(x, ·)

with m being the invariant measure

m : Ω× R2 → R, m(x, y) =

(ˆ 1

0

ˆ 1

0

dsdt

a11(x, s)a22(x, t)

)−1
1

a11(x, y1)a22(x, y2)
;
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see [11]. Therefore, we have

a0
ij(x) = δij

(ˆ 1

0

dt

aij(x, t)

)−1

, 1 ≤ i, j ≤ 2.

We consider the right-hand side given by

f : Ω→ R, x = (x1, x2) 7→ f(x) := a0
22(x)x1(x1 − 1) + a0

11(x)x2(x2 − 1).

Then it is straightforward to check that the exact solution u0 ∈ H2(Ω) ∩H1
0 (Ω) to

the homogenized problem (4.7) is given by

u0 : Ω→ R, u0(x1, x2) =
1

2
x1(x1 − 1)x2(x2 − 1).

Note that the assumptions of Theorem 3.6 (iii) are satisfied.
For k > 0 such that 1

k
∈ N, we take a triangulation Tk on Ω̄ consisting of nodes

{(sk, rk)}s,r=0,...,1/k, and a triangulation Th on Y with grid size h = k
4
. We use

the scheme presented in Section 3.4 to approximate A0 and u0, and we observe
second-order convergence; see Figure 5.

For the approximation of uε, Theorem 3.6 yields

‖uε − u0‖H1(Ω) +
2∑

k,l=1

∥∥∥∥∥∂2
kluε −

(
∂2
klu0 +

2∑
i,j=1

(
∂2
ykyl

χij
) (
·, ·
ε

)
∂2
iju0

)∥∥∥∥∥
L2(Ω)

= O(
√
ε),

where χij (1 ≤ i, j ≤ 2) denotes the solution to{
A(x, y) : D2

yχij(x, y) = a0
ij(x)− aij(x, y), (x, y) ∈ Ω× Y,

χij(x, ·) is Y -periodic,
´
Y
χij(x, ·) = 0.

We observe that we have

∂2
ykyl

χij(x, y) =



a0
11(x)− a11(x, y1)

a11(x, y1)
, i = j = k = l = 1,

a0
22(x)− a22(x, y2)

a22(x, y2)
, i = j = k = l = 2,

0 , otherwise.

Therefore, we have that

‖uε − u0‖2
H1(Ω) +

∥∥∂2
11uε −

(
∂2

11u0 +
[
∂2
y1y1

χ11

]ε
∂2

11u0

)∥∥2

L2(Ω)

+ ‖∂2
12uε − ∂2

12u0‖2
L2(Ω) +

∥∥∂2
22uε −

(
∂2

22u0 +
[
∂2
y2y2

χ22

]ε
∂2

22u0

)∥∥2

L2(Ω)
= O(ε),

(4.8)

where
[
∂2
yiyi
χii
]ε

:=
(
∂2
yiyi
χii
) (
·, ·
ε

)
for i ∈ {1, 2}. For the numerical approximation,

we replace uε by an H2-conforming finite element method on a fine mesh, based on
the formulation

Find uε ∈ H :

ˆ
Ω

trA
(
·, ·
ε

)
|A
(
·, ·
ε

)
|2
A
(
·, ·
ε

)
: D2uε ∆v =

ˆ
Ω

trA
(
·, ·
ε

)
|A
(
·, ·
ε

)
|2
f∆v ∀ v ∈ H,
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where H := H2(Ω)∩H1
0 (Ω). To this end, we use again the HCT element and set the

gradient on the boundary to be the gradient of an H1 approximation by P2 elements
on a fine mesh.

Figure 5. Approximation error for A0 and u0 for different values of
k, using h = k

4
, (left) and the squared error (4.8) in the approximation

of uε for different values of ε (right).

Finally, let us consider the problem (4.6) with the same domain Ω and matrix-
valued function A as before, but with the right-hand side given by

f : Ω→ R, f(x1, x2) := exp

(
− 1

1
2
−
(
x1 − 1

2

)2 −
(
x2 − 1

2

)2

)
,

Note that we are in the situation (Ω, A, f) ∈ H. Further, since the right-hand side
f ∈ H2(Ω) of the homogenized problem (4.7) satisfies f = 0 at the corners of Ω, the
solution u0 to (4.7) belongs to the class H4(Ω), see [16, Prop. 2.6].

Using the second-order H2-conforming approximation u0,k to u0 obtained as pre-
viously described (again with h = k

4
),

‖u0 − u0,k‖H2(Ω) = O(k2),

we have that

‖uε − u0,k‖2
H1(Ω) +

∥∥∂2
11uε − ∂2

11u0,k −
[
∂2
y1y1

χ11

]ε
∂2

11u0,k

∥∥2

L2(Ω)

+ ‖∂2
12uε − ∂2

12u0,k‖2
L2(Ω) +

∥∥∂2
22uε − ∂2

22u0,k −
[
∂2
y2y2

χ22

]ε
∂2

22u0,k

∥∥2

L2(Ω)
= O(ε+ k4).

(4.9)

Figure 6 shows the squared error (4.9) of the approximation of uε for different grid
sizes and ε = 1

50
fixed. We observe fourth-order convergence in k for the squared

error as expected from (4.9).
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Figure 6. The squared error (4.9) in the approximation of uε for a
fixed value, ε = 1

50
, (left) and the squared error after subtraction of

2.2653 · 10−9 (right), which is approximately the limit of (4.9) in the
figure on the left for this fixed value of ε as k tends to zero.

5. Conclusion

In this paper we introduced a scheme for the numerical approximation of elliptic
problems in nondivergence-form with rapidly oscillating coefficients on C2,γ and
polygonal domains, which is based on a W 2,p corrector estimate for such problems
derived in the first part of this work.

We proved an optimal-order error bound for a finite element approximation of the
corresponding invariant measure using continuous Y -periodic piecewise linear basis
functions on a shape-regular triangulation of the unit cell Y under weak regularity
assumptions on the coefficients. The coefficients are integrated against the so ob-
tained approximation of the invariant measure after piecewise linear interpolation
on the mesh to obtain an approximation of the constant coefficient-matrix of the
homogenized problem. Using an H2 comparison result for the solution of this per-
turbed problem, we eventually obtained an approximation of the solution u0 to the
homogenized problem in the H2-norm. In the case of a polygonal domain in two
space dimensions, we made use of compatibility conditions for the source term to
ensure sufficiently high Sobolev-regularity of u0.

We obtained an approximation to the solution uε of the original problem, i.e., the
problem with oscillating coefficients, by making use of the H2 approximation of u0,
finite element approximations to second-order derivatives of the corrector functions,
as well as an H2 corrector result. A method of successively approximating higher
derivatives for the approximation of corrector functions was provided and analyzed.
The corrector functions are necessary in order to obtain an approximation of D2uε
whereas the task of approximating uε in the H1-norm can be achieved using only
an H1 approximation of u0.

Furthermore, we generalized our results to the case of nonuniformly oscillating
coefficients, i.e., we derived an analogous corrector result and studied the approx-
imation of the solution u0 to the homogenized problem and the solution uε of the
ε-dependent problem in this case.
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In the final part of the paper, we presented numerical experiments matching
the theoretical results for problems with both known and unknown u0, as well as
problems with nonuniformly oscillating coefficients. We illustrated the performance
of the scheme for the approximation of the invariant measure, the solution u0 to
the homogenized problem and the solution uε to the problem involving oscillating
coefficients for a fixed value of ε.

Future work will focus on weakening of the regularity assumptions on the coeffi-
cients and the approximation of fully nonlinear nondivergence-form problems with
oscillating coefficients such as the Hamilton–Jacobi–Bellman equation.
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