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FINITE ELEMENT APPROXIMATION OF ELLIPTIC
HOMOGENIZATION PROBLEMS IN NONDIVERGENCE-FORM

YVES CAPDEBOSCQ*, TIMO SPREKELER', AND ENDRE SULI

ABSTRACT. We use uniform W?2? estimates to obtain corrector results for periodic
homogenization problems of the form A(wz/e) : D?u. = f subject to a homoge-
neous Dirichlet boundary condition. We propose and rigorously analyze a numer-
ical scheme based on finite element approximations for such nondivergence-form
homogenization problems. The second part of the paper focuses on the approxima-
tion of the corrector and numerical homogenization for the case of nonuniformly
oscillating coefficients. Numerical experiments demonstrate the performance of
the scheme.
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1. INTRODUCTION

In this work we consider second-order elliptic equations of nondivergence struc-
ture, involving rapidly oscillating coefficients, of the form

(1.1) A (g> : D*u, = i a;j <g) Rue=f inQ

subject to the homogeneous Dirichlet boundary condition
(1.2) ue =0 on 0N.

Here we assume that €2 C R" is a sufficiently regular bounded domain, ¢ > 0 is
small, and that A = (a;;) : R” — R™" is a symmetric, uniformly elliptic and
(0, 1)"-periodic matrix-valued function such that

A€ WH(Y) for some ¢ > n,

where Y := (0,1)" denotes the unit cell, see (2.1). The main goal of this paper is
to propose and analyze a numerical homogenization scheme for (1.1), (1.2) that is
based on finite element approximations.

The theory of periodic homogenization is concerned with the limiting behavior of
the solutions as the oscillation parameter ¢ tends to zero. For the problem (1.1), (1.2)
under consideration a classical homogenization theorem (see [6, Sec. 3, Theorem
5.2]) states that the solution sequence (u.).~o converges in an appropriate Sobolev
space to the solution ug to the problem
{AO : D*ug=f in Q,

1.
(13) ug =0 on Of.

Here A € R™ " is the constant matrix given by

(1.4) AY = / Am,
Y
and m : R™ — R is the invariant measure, i.e. the solution to the problem

D?:(Am)=0 inY,
m is Y-periodic, [, m = 1;

see Section 2 for further details. The task of numerical homogenization is the nu-
merical approximation of the matrix A% and the solution 1y to the homogenized
problem (1.3). As it turns out, uy provides a good approximation to u. in H'(),
and by adding corrector terms it is possible to obtain an H?({2)-norm approxima-
tion. Note that the approximation of (1.1), (1.2) by a standard H?(Q)-conforming
finite element method does not yield error bounds independent of ¢, since for s > 0
one has that

||U5||H2+S(Q) =0 (5_5) .

The motivation for investigating second-order elliptic problems in nondivergence-
form comes from physics, engineering, as well as mathematical areas such as sto-
chastic analysis. A notable example of a nonlinear PDE of nondivergence structure
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is the Hamilton—Jacobi—Bellman equation, which arises in stochastic control the-
ory. The asymptotic behavior of PDEs with rapidly oscillating coefficients is also of
importance when micro-inhomogeneous media are investigated.

Over the past decades significant work has been done on periodic homogenization
of elliptic problems in divergence-form; numerical homogenization for nondivergence-
form problems is however less developed.

The theory of homogenization of divergence-form problems such as

(1.5) V- (A (g) Vua> +b (g) Vu.=f inQ

with periodic and sufficiently regular A : R” — R™*™ and b : R” — R" is extensively
covered in the books [1, 6, 9, 20]. For divergence-form problems, various multiscale
finite element methods (MsFEM) have been developed, which have the advantage
over classical finite element methods of providing accurate approximations for very
small values of € even for moderate values of the grid size. The book [10] by Efendiev
and Hou contains a detailed overview of these methods.

It is important to note that although, if A is sufficiently smooth, equation (1.1)
can be rewritten in divergence-form,

(1.6) V. <A <g> Vu5> — é (divA) <g> -Vu.=f inQ,

this equation does not fit into the framework of divergence-form homogenization
problems such as (1.5), because of the e™! term in front of the first-order term in
(1.6).

For the theory of homogenization of nondivergence-form problems such as (1.1)
we refer to the monograph [6] by Bensoussan, Lions and Papanicolaou, to the paper
[2] by Avellaneda and Lin, and the references therein. In [5], Bensoussan, Boccardo
and Murat study the more general problem involving a Hamiltonian with quadratic
growth. Numerical homogenization for nondivergence-form problems using finite
difference schemes has been considered in [11] by Froese and Oberman.

The first step in the development of the proposed numerical homogenization
scheme is the construction of a finite element method to obtain approximations
(mp)ns0 C HL..(Y) to the invariant measure with optimal order convergence rate

per

lm = ma|lr2vy + hllm — mp[[mey S h 121\5 lm = (On + D[y,
Uh h

where M), denotes the finite-dimensional subspace of Héer(Y) consisting of continu-
ous Y-periodic piecewise linear functions on the triangulation with zero mean over
Y’; see Theorem 3.1.

Throughout this work, we use the notation a < b for a,b € R to denote that
a < Cb for some constant C' > 0 that does not depend on ¢ and the discretization
parameters.

The second step is to obtain approximations (AY);~o C R™" to the constant
matrix A% see Lemma 3.1. To this end, the integrand in (1.4) is replaced by its
continuous piecewise linear interpolant and the invariant measure m is replaced by
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the approximation my, i.e.,

AO ::/Ih(Amh),
Y

which can be computed exactly using an appropriate quadrature rule.
The third step is to perform an H*(2)-conforming (s € {1,2}) finite element
approximation for the problem

A) Dl = f inQ,
up =0 on 99,

on a family of triangulations of the computational domain €2, parametrized by a
discretization parameter & > 0, measuring the granularity of the triangulation, to
obtain (ufp™)prs0 C H*(Q) N HL(Q) with

Rk

Hug—uo Skl fll a9,

[
where the constant is independent of h; see Lemma 3.3. Note that for the sake of
approximating ug, an H'(€)-conforming finite element method is sufficient.

The approximation (up™), k=0 C H*(Q) N HL() obtained by this procedure ap-
proximates g, i.e., the solution to (1.3), with convergence rate

[0 =", £ BB rc
which can be improved to O(h? + k) for more regular A; see Theorem 3.2, Theorem
3.3 and Remark 3.3.

Concerning the approximation of u,, i.e., the solution to (1.1), (1.2), we show in
Section 2 that under certain assumptions on the domain and the right-hand side,
one has that

n
2 } : ) 2
Us — Uy — € Xij <g> aijU()

1,j=1

S \/g||u0||WQv°°(Q) + elluo |l ma(0),
H2(Q)

where the corrector functions x;; : R — R, 7,5 = 1,...,n, are defined as the
solutions to

A: D%y = a?j —a;; inY,
Xij is Y—periodic, fY Xij = 0.
This provides us with the estimate

||U,6 — uOHHl(Q) —+ Z leue — <821U0 + Z (aZlXZ]) <g> a%UO)

k=1 ij=1

- 0(va)

L2(Q)

which shows that ug is a good H'(§2) approximation to u. for small ¢, and we show
in Sections 3.2 and 3.3 how the above estimate can be used to obtain approximations
to D?u.. Note that in order to approximate u. in the H'(Q)-norm, it is sufficient to
approximate g in the H'(Q)-norm. However, for an approximation of D?u. based
on the above corrector estimate, we need to approximate ug in the H?(2)-norm.
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In Section 3.4, we extend our results to the case of nonuniformly oscillating coef-
ficients, i.e., to problems of the form

2N D2y = ;
(L7) A(,g) :D*u. = f in Q,
u. =0 on 09,

where A = A(x,y) : QxR™ — R™ ™ is a symmetric, uniformly elliptic matrix-valued
function that is Y-periodic in y for fixed x € €2, and such that

A€ WH*(Q; WH(Y)) for some g > n.
We prove the corrector estimate

n
2 ) 2
Ue —Upg — € E Xij (', g) aijuo

ij=1

S \/EHUOHW%OO(Q) + elluol #a(e),
H2(Q)

where v is the solution to the homogenized problem corresponding to (1.7) and x;;
are certain corrector functions. We then discuss the numerical approximation of u.
based on this corrector estimate, see Section 3.4.
2. HOMOGENIZATION OF ELLIPTIC PROBLEMS IN NONDIVERGENCE-FORM
2.1. Framework. We denote the unit cell in R" by
Y :=(0,1)",
and consider a symmetric matrix-valued function
A=A":R" > RY"
with the properties
A € WH(Y) for some ¢ € (n, ool
(2.1) A is Y-periodic,
INA>0: AP <AWE-E <AL VEyeR™
By Sobolev embedding, we then have that
A€ C*™(R") for some 0 < a < 1.
For € > 0, we are concerned with the problem
22 {A (g) D2, = f inQ,
u, =0 on 012,
where the triple (€2, A, f) satisfies one of the following sets of assumptions.

Definition 2.1 (Sets of assumptions G"™?, H™). For m € Ny and p € (1,00), we
define the set of assumptions G™P as

Q C R" is a bounded C*7 domain,~ € (0,1),
QA f)ed™? <= A= AT R" — R™" satisfies (2.1),
fewmr(Q),
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and the set of assumptions H™ as

([ Q C R" is a bounded convex domain,

A= AT R" — R™" satisfies (2.1),
(LA f)eH” <— |A|? 1
: <
35 (0.1 (trA)2 “n—1496
fe H™Q).

in R",

\

Remark 2.1. For n = 2, the Cordes condition, i.e., that there exists a § € (0, 1]
such that

[A(y)[? 1
A2 = n_1+40

is a consequence of the uniform ellipticity condition. Indeed, for A = AT : R? —
R**% satisfying (2.1), we have that

(2.3) Vy e R",

2 2
AWP _ 2deAw) ¢ 1
(trA(y))? (trA(y))? 4N 146
with 6 = ﬁ € (0,1). Therefore, when n = 2, the set H™ can be simplified to
Q C R" is a bounded convex domain,
(LA f)eH” <= A= AT R" — R™" satisfies (2.1),

fe H™(Q).

The following theorem asserts well-posedness of the problem (2.2); see [12, The-
orem 9.15] and [19, Theorem 3].

Theorem 2.1 (Existence and uniqueness of strong solutions). Assume either that
(Q,A, f) € G for some p € (1,00), or that (2, A, f) € H° and p = 2. Then, for
any € > 0, the problem (2.2) admits a unique solution u. € W*P(Q) N Wy (Q).

2.2. Transformation into Divergence-Form. We recall a well-known procedure
to transform the problem (2.2) into divergence-form; see [2, 6]. We use the notation

Woer(Y) = {u € Hy . (Y): [/u = 0} .

Let us start by introducing the notion of invariant measure; see [6].

Lemma 2.1 (Invariant measure and solvability condition). Let A = AT : R* —
R™™ satisfy (2.1). Then, there exists a unique solution m : R™ — R to the problem

D*: (Am)=0 inY,
m is Y -periodic, fY m = 1.

The function m is called the invariant measure. There holds m € Wh4(Y'), see [7, 8],
and there exist constants m, M > 0 such that

(2.4) 0<m<m(y) <M Vy e R"™
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Moreover, for a Y -periodic function g € L*(R"), the (adjoint) problem
{A:D2u:g nY,
w is Y -periodic, [, u =0,
admits a solution u € Wy, (Y') if and only if
(2.5) {9, m) 2y = 0.

With the invariant measure at hand, we can easily convert the problem into
divergence-form as follows. We define a matrix-valued function B = (b;;)1<ij<n :
R™ — R™™ by

bij := Ojv; — Ojv;, (1 <45 <n),
with v; € Woe(Y) denoting the solution to

—Ay, =div(Am) - ¢, inY,
v is Y-periodic, [, v =0,

for 1 <1< n. Since A € Wh4(Y') and m € W4(Y), by elliptic regularity one has
that v; € W24(Y) for any 1 <1 < n. Hence, we have

B e Wh(Y).

Further, we observe that B is skew-symmetric, Y-periodic with zero mean over Y,
and that

div(B) = —div(Am) a.e. on R".

Now we let

AW = Am + B € WhH(Y).
Then, since

div(A™) =0,
and using the fact that B is skew-symmetric, we obtain
V(A (2) ue) = A (1) D = (Am) () s DR,
i.e., we have converted (2.2) into divergence-form
(2.6) {v- <Adiv (E) V%) =/fm <E> in £,
u: =0 on 0f),

and it is straightforward to check that A4 is Y-periodic, Hélder continuous on R”
and uniformly elliptic.
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2.3. Uniform W?? Estimates and Homogenization Theorem. The transfor-
mation described in the previous section can be used to obtain uniform W?2?(Q) a
priori estimates for the solution of (2.2), which are crucial in deriving homogeniza-
tion results.

Theorem 2.2 (Uniform W?? a priori estimates). Assume either that (0, A, f) €
G% for some p € (1,00), or that (Q, A, f) € H° and p = 2. Then, for e € (0,1],
the solution u. € W>P(Q) N WyP(Q) to (2.2), whose ezistence and uniqueness are
guaranteed by Theorem 2.1, satisfies

uellw2r) S 1fllzr @)
with the constant absorbed into the notation < being independent of €.
Proof. Let us first assume that (2, A, f) € G for some p € (1,00). We showed in
the previous section that we can transform problem (2.2) into the divergence-form

problem (2.6), where A4V : R® — R™ " is a Y-periodic, Holder continuous, and
uniformly elliptic matrix-valued function satisfying

div(A™) = 0.

Therefore, we can apply [3, Theorem D] to problem (2.6) to obtain

< - <
Juctbwoer < [ m (2)],, g = 11100

with constants independent of e, where we have used the property (2.4) of the
invariant measure in the second inequality.

Let us now assume that (2, A, f) € H°. Noting that (2.3) implies the Cordes
condition for A (g) with the same constant ¢ € (0, 1] for any € > 0, the proof of [19,
Theorem 3] yields the estimate

S (2] Ml

where v is the function given by

(2.7) e || 20y <

n _ wA(y)
7:R" =R, (y) =AW
We observe that by (2.1), there exist constants 4, ' > 0 such that
0<y<7(y) <I' VyecR"
Therefore, we obtain from (2.7) the bound
el m2) S 1 fllz2 @)

with a constant that is independent of e. O

This leads to a simple proof of the homogenization theorem for problem (2.2),
using the compactness of the embedding W2P(Q2) < W1P(Q) and the fact that we
can rewrite the problem as (2.6).
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Theorem 2.3 (Homogenization theorem for nondivergence-form problems). As-
sume either that (Q, A, f) € G°P for some p € (1,00), or that (, A, f) € H® and
p = 2. Then the solution u. € W>P(Q) N W,P(Q) to (2.2) converges weakly in
W2P(Q) to the solution uy € W>P(Q) N Wy(Q) of the homogenized problem

{AO : D2ug = f in €,

2.8
(28) ug =0 on 012,

with A° = (a?j>1§i7j§n € R™ ™ being the constant matrixz whose entries are given by

0 . .
Qi = / Qiim (1 <) < TL),
Y
where m s the invariant measure, as defined in Lemma 2.1.

Proof. By Theorem 2.2, the reflexivity of W*P(Q), the compactness of the embed-
ding W2P(Q) < WP(Q), and the properties of the trace operator, there exists a
uy € W2P(Q) N W, P(Q) such that (for a subsequence, not indicated,)

ue — ug  weakly in W*P(Q), and
u, — ug  strongly in WHP(Q).
We can transform (2.2) as in Section 2.2 into the divergence-form problem (2.6) with
AW = Am + B

being Y-periodic, Holder continuous and uniformly elliptic on R”. Recalling that B
is of mean zero over Y, we have

AV (—) A / Am = A"  weakly-* in L>=(Q).
€ Y
Since we have that

Vu. — Vug strongly in LP(Q2),

we can pass to the limit in the weak formulation of (2.6) to obtain that ug €
W2P(Q) N W, (Q) solves (2.8). We conclude the proof by noting that (2.8) admits
a unique strong solution in W2?(Q) N W, 7(Q). O

2.4. Correctors. We show that by adding corrector terms to the solution ug of the
homogenized problem, we obtain a W?? convergence result.

Theorem 2.4 (Corrector estimate I). Assume either that (2, A, f) € G*P for some
p € (1,00), or that (0, A, f) € H? and p=2. Let e € (0,1] and assume that

Uy € W4’p(Q).

Introducing the corrector function x;j, 1 <1, < n, as the solution to

(2.9) {A P Dxiy = @y —aiy i Y,

Xij 15 Y -periodic, fy Xij = 0,
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and a boundary corrector 0., as the solution to
A (-) . D%, =0 in Q,
€

0. = — z”: Xij (E) afjuo on 0,

,j=1

the following bound holds:

Ue — Ug — € (i Xij (g) O2ug + Hg)

ij=1

(2.10) S elluollwr -

W2.p(Q)

Proof. First, we note that since A € C%*(R"), we have y;; € C**(R") for any
1 < ,j < n by elliptic regularity theory. A direct computation shows that the
function

n

~ 2 2 : ) 2

Ue = Uy + € Xij <g> aiqu
ij=1

solves the problem

A (—) : D%, = f+¢F. in €2,
3
as = 52 lelj (g) 87?]“0 on GQ,
i,j=

where
Foim 3 a(2) (2000 (2) 0o + £ () Ol
ij kl=1
Note that since uy € W*P(£2), one has that
1] zr) S lluollwar @),

with the constant being independent of . We then have that d, := 4. — u. satisfies

A (g) . D2d, = ¢F. in Q,
ds = 82 Z Xij <g> 812]’1110 on Of).
i,j=1

Therefore, by the definition of the boundary corrector,
A(2):D*(d+€%.) =R i,
d.+%0.=0 on 0f).
We conclude using the estimate from Theorem 2.2 that
e + €20 [lw2n0) S el Fellzr) S elluollwire),
and (2.10) holds. O
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The following theorem shows that if ug € W4P(Q)NW?2°°(Q), then we can absorb
the term involving the boundary corrector into the right-hand side at the cost of
powers of ¢.

Theorem 2.5 (Corrector estimate I1). Assume either that (Q, A, f) € G*P for some
p € (1,00), or that (U, A, f) € H?* and p=2. Let € € (0,1] and assume that

(2.11) wy € WH(Q) N W2 (Q).
Then,

1
S 7 ||uollwzee (o) + €lluollwaro)-

n
2 ) 2
Ues — Ug — € g Xij (g) é)ijuo

ij=1

W2 (Q)

Proof. Let n € C2°(R™) be a cut-off function with 0 <7 <1,
n=1 in {x € Q : dist(x,00) < %},
n=0 in {z € Q:dist(z,00) > e},

and let n satisfy

1
€

V| +¢|D*n| < in Q.

We introduce the function
06 = ‘95 +1n Z Xij (g) 8i2ju07
ij=1
and verify that

A0 7= 3 ()28 (o () o) = 551 90w

1,5,k,l=1

where S, S and S3 are given by

Sy = 2”: g (g) n 8%)(“ <g) %o,

ik, l=1
Sp=2 Y ay (g) (01-77 Xk (g) Do + 1 OiXu (g) 3?kl“0> )
1,7,k,l=1
Syi= Y ay (g) <3i2j77 Xkl (g) Ao + 20,1 Xk <g> Ojrtto + 1 X (g) a?jkl“0> '
ik, l=1

Therefore, 6. satisfies

: o 1
A (-) D% = =8, + -S4+ S5 inQ,
€ g2 €

9; =0 on Of).
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Since ug € WP(Q) NW2>(Q) by assumption, the right-hand side belongs to LP((2),
and we have by Theorem 2.2 that

~ 1 1
< Z
[ I e Py A P

We look at the terms on the right-hand side separately and start with S;. Using the
boundedness of A and the fact that x;; € W2>(R"), we have

> ()0 (2)

1,9,k l=1

[S1]| Lo () =

LP(Q)

S Mluollwzo @ l1nllzr (o)

< [z € Q: dist(z, 00) < e}P ||uollwzes (o)
1

S 5p||u0||W2»°°(Q)-

For Sy, we obtain similarly that

||SZ||LP(Q) = 2. Z Qij (g) <3z'7] i Xk (g) azfluo +n OiXri <E> a?klu(])
1,5,k,1=1 LP(Q)
S HVUHLP(Q)HUOHWQW(Q) + H77HL°°(Q)HU0HW44>(Q)
1 ) 1
< - {x € Q:dist(z,00) < e}|r [|uollwaee@) + [[uollwar@)
1
S 1 llwollwze @) + lluollwan(q).-
e p
Finally, for S3, we have that
195l () = Z i (g) <ai2j77 Xkl <g) Fiyio
i,j, k=1
) 3 ) 4
#20m v (2) O+ 1 v (2) O |,

S ND*n| @ luollwze ) + (V] L) + 10l zeo@)) uollwar@)

AN

1 . 1 1
8_2 ‘{i[) e: dlSt(l’,aQ) < 5}|P HUOHWZ‘X’(Q) -+ g|’u0HW4’p(Q)
1

91
P

A

1
l|uol| w20 @) + = ||uollwar -
€ £

Altogether, we have shown that

< e 1 1 1 1
w2r(Q) ~ ?Jrg.glf%ﬂng; luollwzeeq@) + | < + 2 ) luollwer)

1 1
S 1 lluollwze @) + = |luollwarq)-
e €

£
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By direct computation, using the bounds

1 1 1
o) Sevy NVl € 1 1Dl S
e »r e p
we can show that
- ) 52 o 1 1
Y i (=) o < = luollwaceiey + < luollwas o)
ij=1 wer) 7
Therefore, using the triangle inequality, we obtain that
1 1
10cllw=2r0) S 1 luollwzoe@) + =lluollwr )
e €
We conclude that
1
€20  lw2r0) S 7 luollwzes ) + lluollwar ().
The claim now follows from (2.10). O

Let us remark that W*?(Q) — W2>(Q) for p > 2, i.e., assumption (2.11) is a
consequence of uy € W*P(Q); in particular, for dimensions n € {2,3} and p = 2,
one can replace condition (2.11) by ug € H*(Q).

Let us recall that ug is the solution to the elliptic constant-coefficient problem
(2.8). For bounded convex polygonal domains (n = 2), ug € H*(2) can be ensured
by assuming that f € H?(Q) satisfies certain compatibility conditions at the corners
of the domain. In the case of Poisson’s equation on 2 = (0,1)?, a necessary and
sufficient condition for uy € H*(Q) N HY(Q) is that f € H*(Q) and f = 0 at the
corners of Q, see [15]. We note that these conditions are satisfied for functions
f € H*(Q) such that supp(f) € Q, see [13].

3. THE NUMERICAL SCHEME

3.1. Numerical Homogenization Scheme. The first step is to approximate the
invariant measure.

3.1.1. Approzimation of m. For the approximation of the invariant measure m, we
consider a shape-regular triangulation of Y into triangles with longest edge h > 0
and let

My, € Wper(Y) = {v € Hp, (Y): /Yv = 0}

be the finite-dimensional subspace of Wy (Y') consisting of continuous Y-periodic
piecewise linear functions on the triangulation with zero mean over Y. We assume
that

Woer(Y) = | M.

h>0

Then we have the following approximation result for m.



14 Y. CAPDEBOSCQ, T. SPREKELER, AND E. SULI

Theorem 3.1 (Approximation of the invariant measure). Let A = AT : R* — R™"
satisfy (2.1). Then, for h > 0 sufficiently small, there exists a unique my € M), such
that

(3.1) / (AVii, + 1y divA) - Vg, = — / (divA) - Vg, Ven € M,
Y Y

and writing
my = my + 1,
we have that

lm = ma|lr2vy + hllm — mpl[mey S h lgj\g lm = (On + D[ m vy,
Uh h

where m s the invariant measure, as defined in Lemma 2.1.
Remark 3.1. In particular, since

inf [lm — (3 + D) = 0(1),

€My,
we have that
mp, —m in H(Y)
as h tends to zero.

Proof of Theorem 3.1. We observe that m = m + 1, where m is the unique solution
to the problem

-V - (AVm +mdivA) =V - (divA) inY,
m is Y-periodic, [, m =0,
ie.,
m e Weee(Y), a(m,p)=— / (divA) -V Ve e Wou(Y),
Y
where
a: Woer(Y) X Woer(Y) — R, a(u,v) = / AVu - Vv +/ u(divA) - Vo.
Y Y
We further observe that (3.1) is equivalent to
(3.2) my € M;” a(rhh, gOh) = — / (leA) -Vop, Yo € Mh.
Y

We start by showing boundedness of a and a Garding-type inequality. We claim
that there exist constants Cj, Cy > 0 such that
(3.3) la(u, v)] < Cyllullmroyl|v] ey Vu,v e Wpe(Y),

and

A
(3.4) a(u,u) 2 Slluliny = Collulliayy  Vu€ WealY).
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Let us first show (3.3). For u,v € Wy (Y), by Holder’s inequality and Sobolev
embeddings (note that, according to (2.1), ¢ > n), we have that

/ u(divA) - Vo

Y

Using the fact that A € WH9(Y') < L*°(Y) since ¢ > n, we obtain the bound

/ AVu - Vv / u(divA) - Vo
Y Y

for any u,v € Wy (Y), i.e. (3.3) holds.
Let us now show the estimate (3.4). For u € Wy (Y), by ellipticity and Holder’s
inequality, we have

a(u,u) = / AVu - Vu + / u(divA) - Vu
Y Y

> /\||Vu||%2(y) - ||diVA||Lq(y)||U||L(12Tq2(y)||VU||L2(y).

< ldivAlzellull 2, | IVl S llulla ool ).

la(u,v)| < + S ullzony ol vy

For the second term we use the Gagliardo—Nirenberg inequality and Young’s in-
equality to obtain

n
q

. . 1- 142
IMWMhmMWM;%WﬂVmeuSC@JmmwAhumWMpWMVMhﬂq
A )
SQWW§m+C@mMWmmmmWWQW

Therefore, we have

A .
a(u,u) > §HVUH%2(Y) = C(g,n, A, HleAHLq(Y))HUH%%Y)

A A :
= §Hu‘|§{1(Y) - (5 + C(Q7 n, )‘7 HleAHLq(Y))> HuH%Q(Y)
for any u € Wy (Y), i.e., (3.4) holds with
A .
Cg = 5 —+ C(q,n, )\, ||d1VA||Lq(y)).

We use Schatz’s method to derive an a priori estimate; see [18].
From our Garding-type inequality (3.4) we see that (note m — my; € Wyer(Y))

(3.5)
20, [Im — mh”?’ﬂ(y)

A Hﬁl — thHl(Y)

_2G
A

[l — 7| v [ = |2y <l — vy —

2 a(m — mh,m - mh)

- X ||m—mh||H1(Y)
By Galerkin-orthogonality and boundedness, we have for any v, € M, that
a(m — mh,m — mh) . a(m — Thh,’fh — 6h)

Im—munllmey m— mullmen

< Cyllm — Op | 2 vy



16 Y. CAPDEBOSCQ, T. SPREKELER, AND E. SULI

and taking the infimum over all v, € Mh, we find

a(m — mh, m — mh)

| — || g vy §0b~i£]\f;[ I =l ).
Uh h

Combining this estimate with (3.5) yields

.. 2C,, . . 2C, -
(3.6) 1 = vy — =l = w2y < —— inf [0 — Ol vy
A A vp EMp,
Next, we use an Aubin—Nitsche-type duality argument.
Let ¢ € Wyer(Y') be the unique solution to

(3.7) {—V - (AV¢) + (divA) - Vo = 250 in Y,

¢ is Y-periodic, [, ¢ = 0.

We note that the solvability condition (2.5) is satisfied:

/Y%mz/y(m—mh)zo.

We have, using the bounds on the invariant measure (2.4), the weak formulation of
(3.7) and the symmetry of A, that

1 9 m—my, .

M”m—mhnp(y)ﬁ . m

:/YAV¢.v(m_mh)+/(divA)-V¢ (. — 1)

_ /Y AV (i — ) - Vo + /: (7 — ) (divA) - Vo

Next, we use Galerkin orthogonality, the boundedness (3.3) and an interpolation
inequality to obtain
Tl il By < alii i, 6)
= a(m —mp, ¢ — Ino)
5 Hrh - thHl(Y)W - Ih¢HH1(Y)
S bl — ||z o) |91 22(v),

where 7Z,¢ denotes the continuous piecewise linear interpolant of ¢ on the trian-
gulation. Finally, by a regularity estimate for ¢ and the bounds on the invariant
measure (2.4), we arrive at the bound

m — mp .
10ll2v) S || —— S I =1l 2y s
L2(Y)

which provides us with the estimate

Hm — thLz(y) S Cthm - mh”Hl(y)
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for some Cy > 0. Combining this with (3.6) we have

2C,C - 5 5 N 2C, . . 5
<1 — i\ Oh) ||m — mh”Hl(y) < ||m — mh||H1(y) — Tg“m — mh||L2(y)
20,
< — inf |lm—2 .
- A f)hléth ||m UhHHI(Y)

Therefore, for h sufficiently small, we arrive at the bounds
[ — vy S inf |l — Ol (v,

VpEMp,

and
M = L2y < Cohllm — Mgy S h it [lm = On | i)
opEMp,
We have thus established the a priori estimate
| — [ r20vy + hllm — mnllm vy S hinf (lm = O m .
opEMp,

which immediately implies existence and uniqueness of solutions to (3.2).
Finally, using that m = m + 1 and m; = m;, + 1, we conclude that

I = mallzary + hllm = mallar iy S h it flm = (@, + Dl ).
vpEMyp,

O

3.1.2. Approzimation of A°. We use this finite element approximation of the invari-
ant measure to obtain an approximation to the constant matrix

A° = / Am.
Y

To this end, we first replace the invariant measure m by the approximation my, from
Theorem 3.1, and then replace the integrand by its piecewise linear interpolant,

AY :z/th(Amh).

This integral can be computed exactly using an appropriate quadrature rule. The
following lemma gives an error estimate for this approximation.

Lemma 3.1 (Approximation of A%). Let A = AT : R® — R™" satisfy (2.1).
Further, let A° = (a%) € R™" be the constant matriz given by Theorem 2.5, let
my, be the approximation to the invariant measure given by Theorem 3.1, and let
A = (a);,) € R™™ be the matriz given by
agj’h = / Ty (a;jmy), 1<i,7<n.
Y

Then, for h > 0 sufficiently small, AY is elliptic and

o 0 ‘<
12?2(71 |aij ijp| S e
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Proof. Fix 1 <i,j < n. Using the definition of A° = (ay;), i.c.,
0
Y
0

|ag; — af; | < Nlag;(m —mp)|| vy + llaggmi, — Zn(aima) |-

we obtain the estimate

For the first term, we have
|aij(m — mh)HLl(Y) S m — thLl(Y) S m — thL2(Y)-
For the second term, let us first note that using a;; € W4(Y) with ¢ > n and

Sobolev embeddings, we have

[asgmalin oy < Vaigllzonllmall 2, o+ laillew) [Vl

S llasglwrae llmanl[ 1)
Therefore, using a standard interpolation error bound, we obtain
laizmn — Zn(aiymn)||l vy S llaigmn — Znagma)l 2y
S hlaggmp| gy
S hllaijllwraey mnll -
By Theorem 3.1, for h > 0 sufficiently small, we have that

|ag; — a1 S llm = mul| 2y + hllmallm
S lm —mallzeyy + hllm — mapl[ vy + Rl g vy

Shoinf lm = (@, + Dy + Rl g

op €My,
S hllm = g yy + hllm||l gy
<h.

Finally, we note that this implies that for h > 0 sufficiently small, AY is elliptic. [

3.1.3. Approzimation of ug. For the approximation of the solution uy to the ho-
mogenized problem, we use the following comparison result for the error committed
when replacing A° by AY.

Lemma 3.2 (Comparison result). Assume either that (0, A, f) € G% or that
(A f) € HY. Let AY) € R™™ be the approzimation to A° as in Lemma 3.1.
Then, for h > 0 sufficiently small, we have that
luo = ugll 20y S Bl fllz2(0),
where ul € H*(Q) N H(Q) is the solution to the problem
A D>l =f inQ,

(3.8) " )

uy =0 on 08,

and uy € H*(Q) N H () is the solution to the homogenized problem (2.8).
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Proof. We let wy, = ug — uff € H?*(Q) N HI(Q) and note that wy, is the unique
solution to the boundary-value problem

A D2wy, = (A — A%) - D%l in Q,
wp, =10 on Of).

We recall that A° € R™" is an elliptic constant matrix. For h > 0 sufficiently small,
by an H? a priori estimate, the Cauchy-Schwarz inequality and Lemma 3.1,

lwnll 20y S 11(A5 — A°) © D*uf| 12y
Z (a?j,h - agj)az?jug

/Q ij=1
5 (/ <Z‘awh - alj|2> (Z]@Zué‘ﬁ))
i,j=1 i,j=1

n

N

Finally, we show that for h > 0 sufficiently small, we have

(3.9) lug | r2) S 11Fllz2)

with the constant being independent of h. This can be seen by rewriting (3.8) as

(3.10) {AO Dl = f 4+ (A° — A)) - D2l in Q,
ug =0 on 0f).

Then, again by an H? a priori estimate and Lemma 3.1,
gl 20y S I+ (A° = AR) = D*ugllrzio) S I fllezie) + hllugllazo)

with constants independent of h, i.e., for h > 0 sufficiently small, (3.9) holds with
the constant being independent of h. 0

Finally, we can use an Hj (2)-conforming finite element approximation Uo " to the
solution ul! of (3.8), satisfying the error bound

| < Kl 20 S Kl fll 2o

with constants independent of h. By the triangle inequality and the results obtained
in this section, we have the following approximation result for wu.

h Rk
Uy — Uy’

[

Theorem 3.2 (H' approximation of ug). Assume either that (0, A, f) € G%%, o
that (Q, A, f) € H°. Then, the approzimation uo obtained by the procedure de—
scribed above satisfies

h,k

h+k
[ = Bt BNz

Let us now assume either that (Q, 4, f) € G or that (Q, A, f) € H'. Further,
assume that for h > 0 sufﬁ(nently small, we have that u? € H 3(Q) with
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where the constant is independent of h. The following lemma provides two situations
where this is satisfied.

Lemma 3.3. Let (2, A, f) be such that

(i) (2, A, f) € GY? with 9Q € C3, or
(i1) (Q, A, f) € H! with Q C R? being a polygon and f € H}(Q).

Then, for h > 0 sufficiently small, (3.11) holds.

Before we prove Lemma 3.3, we need the following result on the regularity of
solutions to Poisson’s problem on convex polygons, see also [13, 15, 16, 17].

Lemma 3.4. Let Q C R? be a convex polygonal domain and f € H}(Q). Then the
solution u € H}(Q) to the problem

Au=f in €,
{ u=0 on 09,

satisfies the bound
(3.12) lullmsy S 111l @)

Proof. First, note that since  C R? is a convex polygonal domain, we have u €
H?(Q) N H(Q) with [[ul g2y S [1f]l120), see [13]. Since f € Hg(S2), there exists
a sequence of smooth functions with compact support (f,)m C C°(Q2) such that
fm — f in HY(Q). Let (upn)m C H(Q) be the sequence of solutions in Hj ()

to Au,, = frn, in , and note that (u,), C C*>(Q2) since the functions f,, satisfy
compatibility conditions of any order, see [13, Sec. 5.1]. Again we use the H?*-
regularity result for solutions of Poisson’s problem on convex polygons to obtain

tm — ull 2y S N fm — fllz2 — 0,

i.e., U, — uin H*(Q).
Next, we shall use the fact that

(3.13) ol = IV(AD)[|2) Vv e {we H(Q) : Aw e HL(Q)} N C®(<),

see [17]. We apply (3.13) to the difference of two elements of the sequence ()
to find that (), is a Cauchy sequence in H3((), using that f,, — f in H*(Q).
Thus, u,, — u in H3(Q) and passing to the limit in (3.13) applied to the functions
Uy, yields

|ul g3y = IV flz2@)-
Since ||ullg2@) S || fllz2(0), we conclude the bound (3.12). O

Remark 3.2. The assumption f € H}(2) in Lemma 3.4 can be weakened provided
f satisfies certain compatibility conditions, see [13, Theorem 5.1.2.4].

Now we are in a position to prove Lemma 3.3, using standard elliptic regularity
theory, Lemma 3.4, and a scaling argument.
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Proof of Lemma 3.3. We start with the case (7). To this end, let (2, A, f) € G'?
with 92 € C3. Then, by elliptic regularity theory, we have u? € H*(Q). Using
elliptic regularity for problem (3.10) yields

lugll sy S If + (A° = A3) = D*ugllma) S I fllae) + hllug s

with constants independent of h, i.e., for h > 0 sufficiently small, (3.11) holds with
the constant being independent of h.

Let us now show the claim for the case (iz). To this end, let (2, A, f) € H! with
Q) C R? being a polygon and f € H}(). Since

Ay =A%+ (A) — A%) = A’ + B,
is symmetric and elliptic for A > 0 sufficiently small, there exists an orthogonal
matrix Qp, € R¥? with Q,QF = QL Qy, = I, such that
Qn (A° + By) QF = diag(Ai, Ay) = A,

where )\f > () are given by

1

20 = tr (A°+ By) & (0 (A7 + By))” = ddet (A + By) )

We note that, by Lemma 3.1, the entries of B, = (b?j)lgi’jgg satisfy b;‘j < h, and
therefore, for h > 0 sufficiently small, we have 0 < \¥ + (AF)™F < 1.
The problem (3.8) in the new coordinates reads

{AUh = Fh in Ph,

(3.14) Uy=0 on 0P,

where U, := ul! <Q2A2 . ), F,=f <Q;A,§L : ), and P, := A, 2QnQ. Note that P,

is still a bounded convex polygonal domain and that Fj, € Hj(P,). By the change
of variables formula and the orthogonality of @,

Iy = [ (04190 = et [ (|7 (@i )]+ [or (@fai-)[)
:detA%/ (|Fh|2+‘QgA,§5VFh
Py

)
)

> / (B + [E) = [ Ful -
h

1 _1
:detAfb/ (’Fh|2+ ‘AhQVFh
Py,

Using Lemma 3.4, we have that, for h > 0 sufficiently small, the solution to (3.14)
satisfies

1Ol ey S Nl g1y S Nl

with constants independent of h. It remains to show the bound

(3.15) lugllzz0) S U ()
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By the change of variables formula and the orthogonality of (), we obtain similarly
as before,

2
2 2 2
iy = [ (bl + Vel + D2 ) + 3 [ D0
i=1
3 2 TA"3 2
:detAh/ Ul +‘QhAh VU,
P,
_1 _1
Z Qh Ji EAhQ D2ajUh AhQQh

2
+ZdetA;/
i=1 j=1 \/ (An) ]J
_1 2>
2
h

:detA,,%/ <|Uh|2+‘A,:2VUh’ +|a Do A
Py

2 1
detAfL/
+
Z (An)ii Jp,

=1

_1 _1
+ ’QEA}LQ D2Uh AhQQh

)

2

Py

112

A, 2D2aUhA z

2
5/ (|Uh|2+|VUh|2+|D2Uh\2> +Z/ |D20,U4[" = |Unll o,
Py i=1 7 Pn

i.e., we have established the bound (3.15). We conclude that, for h > 0 sufficiently
small, we have (3.11), i.e

lugllms@) S N1 f Il o),
where the constant is independent of h. O

Then an H2(Q) N HE(Q)-conforming finite element approximation u/™* to the
solution ul! of (3.8), that satisfies the error bound

(3.16) s = wt]| S bl gy S F 1

Q) "~
provides by Lemma 3.2 and the triangle inequality an approximation to wuy.

Theorem 3.3 (H?-norm approximation of ug). Assume either that (Q, A, f) € G12

or that (Q, A, f) € H', and assume (3.11). Then, the approzimation ug’k obtained
by the procedure described above satisfies

[0 =" S 2 BN e

Remark 3.3 (Improvements). We note that if we assume that A € W*>(Y'), then
we have the following improved results.

(i) Approzimation of m: In this case, m € H*(Y) and we have that

S hllm| g2y
H(Y)

inf ||m — (0, + )| m vy < Hm—Ihm—/(m—Ihm)
Y

op EMy,

by choosing v, = Iym — fY Iym, and using an interpolation error bound.
Therefore, Theorem 3.1 yields

||m — thL2(y) + h||m - thH1 ) < < h? Hm”H2
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(i1) Approzimation of A°: By an interpolation error bound and the fact that my,
18 piecewise linear, one has

llazymn — Zn(aigma) | vy S 02llas|lweoo oIl ).
Therefore, the proof of Lemma 3.1 yields

 ax |a); — af; | < PP Allwzeeor Imllzery S PPl Allwze iy
(1ii) Approzimation of ug: It follows that the results of Lemma 3.2, Theorem 3.2

and Theorem 3.3 can be improved to second-order convergence in h, i.e.,
[0 =", ) S 1Al o)+ B ) = O + ),
for s = 1,2, respectively.

For the approximation of derivatives of uy of higher than second order, the post-
processing method of Babuska in [4] can be used to obtain error bounds in norms
involving derivatives of higher order than the energy norm (the norm natural to the
problem).

For bounded convex polygonal domains 2 C R?, an H?-conforming approximation
to the solution of (3.8) can be obtained as follows. Assume that f € Hj(Q) so that
(3.11) holds. Consider a shape-regular triangulation of € into triangles with longest
edge k > 0, and let

Vi C H*(Q) N Hy(Q)
be an appropriate finite element space. In practice, the Hsieh—Clough—Tocher ele-
ment and the Argyris element can be used as H?-conforming elements. Then, for

h > 0 sufficiently small, standard finite element analysis can be used to show that
there is a unique function uf"* € Vj such that

(3.17) / <A2 : DQuQ’k> (A} : D*¢) = / [ (4} D*py) Vor € Vi,
Q Q
and that the error bound (3.16) holds.

3.2. Approximation of the Corrector. We now address problem (2.9) and
present a method for A € W2°°(Y'). To simplify the notation and the arguments,
we assume that we know the invariant measure m and the matrix A% = (ag;)1<ij<n
exactly instead of working with our approximation A9.

For a given Y-periodic right-hand side g € W2>(Y'), we address the problem

—V - (AVY) + (divA) - Vx =—g inY,
x is Y-periodic, fY x = 0.

Obtaining an approximation for second-order derivatives via finite elements is not

straightforward since the natural solution space is Wye(Y'). We present a method

of successively approximating higher derivatives.
Let xp be a Woe(Y)-conforming finite element approximation to x;, i.e.,

xXn € Vi, /AVXh-Vgo—i—/go(diVA)-VXh:—/ggo Vo e Vy,
Y Y Y
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with Vj, C Woe(Y) finite-dimensional, and satisfying the error estimate
Ixn = Xllm vy S b
Let r € {1,...,n} and write & := J,x. Then, using the equation
—V - (AVYx) + (divA) - Vx =—g inY,
we find that weakly, there holds
—V - (AVE,) + (divA) - V& = —0kg + V - (OkA Vx) — (div(0kA4)) - Vx inY.

Further, we claim that & € W (Y). Indeed, this follows from the regularity and

periodicity of x and
/&X:/ xv - e, =0.
Y oY

Therefore, & € Wy (Y) satisfies

-V - (AVE,) + (divA) - V¢, = =0, + V - (0,A V) — (div(0,A4)) - Vx inY,
& is Y-periodic, [, & = 0.
Now we use our H!'-conforming approximation for y for the right-hand side and

use a Wye(Y)-conforming finite element method for approximating the solution
v € Wpher(Y) to the following problem:

(3.18)
—V - (AV0) + (divA) - Vo = =0, + V - (0,A Vxp) — (div(0,A)) - Vxr —c¢ inY,
v is Y-periodic, [, v =0,

where ¢ is such that this problem admits a unique solution (such that the solvability
condition (2.5) is satisfied). By looking at the problem for v — &, one obtains the
comparison result

v =& Nlayy SV - (0rA V(Xh — X)) lwpee vy + [ (div(0:A)) - V(X — X) [ Wper (v
S HAHW?*OO(Y)HXh - X||H1(Y)
S hl|Allwze vy = O(h).

Let v, be a Wye(Y)-conforming finite element approximation of (3.18) satisfying
th — U”Hl(y) S Ch

for some constant C' = C(||A||w2e(y)) > 0. Then, using the triangle inequality, we
obtain

lon = & llarvy < Ch

for some constant C' = C(||A|lwzee(y)) > 0. Using this procedure for r = 1,...,n,
we eventually obtain approximations to derivatives of order up to two of y.
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3.3. Approximation of wu.. We assume either that (2,4, f) € G*? or that
(Q,A, f) € H? Let n € {2,3}, € € (0,1], and assume that

Uy € H4(Q)
Then we know that (2.11) is satisfied, and by Theorem 2.5 we have that

n
2 ) 2
Us — Uy — € E Xij <g> D;;uo

1,j=1

(3.19) S Ve lluollweee() + elluoll o),

H?(Q)

where wu is the solution to the homogenized problem, and x;; are the corrector
functions given as the solutions to (2.9). This result can be used to construct an
approximation of ., i.e., to the solution of problem (2.2) for small e. We note that
(3.19) implies that

|ue — uol| r1(a) + Z
(3.20) k=1

e — (au + > (Ohw) (2) M)

3,j=1

L2(Q)
S Ve lugllwzoe @) + €lltoll ga)-

This leads to the following approximation result for wu..

Theorem 3.4 (Approximation of wu.). In the situation described above, let
(won)ns0 C H?(Q) be a family of H?-conforming approzimations for ug satisfying
the error bound

[uo = wonllm20) S Al fllm @),
and for 1 <i,5,k, 1 <n, let (ijl,h>h>o C Lf)er(Y) be a family of L? approzimations
for 0%xi; satisfying the error bound
100xis — 2 w2y S b
Then, by writing
Kl . 92 kl ) 2
i,j=1
we have that

n
e — UO,hHHl(Q) + Z ||8,31u5 o u];lh”Ll(Q)
k=1

S (Ve + h) lluollwzes o) + elluoll meg) + hll fll )
Proof. We use (3.20) and the triangle inequality to obtain
e — wopllr) < |Jue — ol mr () + [Juo — vonlmr @)

S Ve uollwzee @) + €lluoll ma) + Rl @)



26 Y. CAPDEBOSCQ, T. SPREKELER, AND E. SULI
and for 1 < k,[ <n,
| Ofyue — Uf,thLl(Q) S VE lluollwzee) + lluollaa) + 2l fll a0

+ Z H alelJ ( > Uo — Zlkjlh (g) a?juo,hHLl(m :

7j_

It remains to study the last term on the right-hand side of the above inequality. For
fixed 1 <1i,7 < n, we use again the triangle inequality to obtain

(@) (2) o =t (2) s
<t (2) @0 uas)|
0 (e
< ([0 ()

In the last step, we used that by the transformation formula and periodicity (cover
/e by O(¢~") many cells of unit length), there holds

L(Q)
ks 50 ()

2 kl )
[uo = wonllm2() + H (Okxii — zij.0) <‘> HLZ(Q) [[uol w22 ()

<]

L) LH(Q)

<-

3

1l + Huouwz,oo<m> |

20k < ||0Fi — 2 S
(321) H (aleU Zth) (5)’ L2(Q) ~ Halel] Zl]»hHLQ(Y) ~ h
We claim that
KL <h+1
Z .
‘ iJ:h (5)‘ ) "~

Indeed, we use the triangle inequality, (3.21) and the fact that x;; € W*>(Y) to

obtain
Ko
6 ()]

The approximations of uy and the corrector functions can be obtained as described
in Section 3.1 and 3.2. Let us conclude this section by remarking that if the second
derivatives of the corrector functions are approximated in the space L*(Y) or if the
solution to the homogenized problem is approximated in the space W2 (), then

one obtains by a similar proof an approximation result for the second derivatives of
u. in L*(Q).

= H(%XU ~ %) <_>‘

€

+ Ha]%lxinLoo(Y) 5 h + 1.

L2(2) L2(Q)

O

Remark 3.4. If (zF zi L ) hso C L2, (Y) is a family of L> approzimations for %X
satisfying the error bound

||8131Xij - ijl,hHLw(Y) = O(h),

and (uop)n>o s as in Theorem 3.4, then we have that

|ue — wonl| (o) + Z ||8,§lu5 — ufthm(Q) = O(e+h).

k=1
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The same holds true when (ugp)nso C W2®(Q) is a family of W™ -conforming
approximations for ug satisfying the error bound

l|lug — UO,hHw?mm) = O(h),
and (2}, )n>0 is as in Theorem 3.4.

3.4. Nonuniformly Oscillating Coefficients. In this section, we discuss the case
of nonuniformly oscillating coefficients, i.e., coefficients depending on x and Z. We
consider the problem

A(-,;>:D25: in €,
(3.22) E u:=J i
u. =0 on 0f),
where the triple (2, A, f) satisfies one of the following sets of assumptions.

Definition 3.1 (Sets of assumptions G, H). For m € Ny, we write
(1) (A, f) €G if and only if Q@ C R"™ is a bounded C*7 domain, f € L*(Q),
and A = AT : Q x R* — R™" satisfies
A= Ax,y) € W (Q; WH(Y)) for some q € (n, o0,
(3.23) A(x,-) is Y -periodic,
ANA>0: MEP < Alx,y)E-E <AL VEyeR™ z e

(i1) (Q, A, f) € H if and only if Q@ C R" is a bounded convex domain, f € L*(Q),
and A = AT : Q x R* — R™" satisfies (3.23) and

Az, y)I? 1
3.24 36 € (0,1]: < \ € 2 xR".
In view of Remark 2.1, we see that the Cordes condition (3.24) is always satisfied
when n = 2. Well-posedness to the problem (3.22) is guaranteed by the following
theorem, see [12, Theorem 9.15] and [19, Theorem 3].

Theorem 3.5 (Existence and uniqueness of strong solutions). Assume either that
(Q A, f) €G, orthat (2, A, f) € H. Then, for any e > 0, the problem (3.22) admits
a unique solution u. € H*(2) N Hy ().

As in Section 2, uniform a priori estimates for the solution to (3.22) allow passage
to the limit in equation (3.22), see [5, 6]. The coefficient matrix of the homogenized
problem now depends on the slow variable z, and is obtained by integrating against
an invariant measure. Corrector results can then be shown as before.

Theorem 3.6 (Nonuniformly oscillating coefficients). Assume that ¢ € (0, 1] and

either that (2, A, f) € G, or that (2, A, f) € H. Then the following assertions hold.

(i) Uniform a priori estimate: The solution u. € H?*(Q) N H}(Q) to (3.22)
satisfies

uellz2) S 1 fllz2 -
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(it) Homogenization: The solution u. € H?*(Q) N Hy() to (3.22) converges
weakly in H*(Q) to the solution ug € H*(Q) N Hy () of the homogenized
problem

(3.25)

AO : D2U0 = f m Q,
ug =0 on 09,

with A° : Q@ — R™™ given by

)= [ AlwJmia.),

where m = m(x,y) is the unique function m : Q x R" — R with m €
CAxR™), 0<m<m< M for some constants m, M > 0, such that

m(x,-) is Y-periodic, [, m(z,-) =1,
for any fixed x € Q). The function m is called the invariant measure.
(iit) Corrector estimate: Assume that f € H?*(Q) and uy € H*(Q2) N W>(Q).
Introducing the corrector function x;j, 1 <1,j < n, as the solution to
Az, y) : D;Xij(x7y) = a?j(iﬁ) —ai(z,y), (v,y) €QxY,
Xij (2, -) is Y -periodic, [, xij(z,) =0,
we have that

n
2 ) 2
Ue —Upg — € § Xij ('a g) 8@‘“0

,j=1

S Velluollwze ) + elluoll (o)
H2(Q)

Proof. (i) For (Q, A, f) € H, one shows similarly to the proof of [19, Theorem 3]
and Theorem 2.2 that
trA (-, E)

A ()P

For (2, A, f) € G, the claim follows from the method of freezing coefficients, using
the uniform estimate from Theorem 2.2 for the operators L,, := A (:1:0, g) . D? for

fixed zy € €.

[ fllze) S I1fllz2@)-
1(9)

||Ua||H2(Q) ~>

(i) The uniform estimate from (i) yields weak convergence in H?*(2) and
strong convergence in H'({)) for a subsequence of (u.).~o to some limit function
up € H*(Q) N H} (). We multiply (3.22) by m (-, 2) and follow the transformation
performed in [5] to find that

mf =2V . (fFVuE + [divx/q ) u) —9 [divxfl] TV,
— [ch : flr u. — D?: (A€u€>

holds weakly, where A := Am and v° denotes v (-, g) Passing to the limit, we
obtain that wg is a weak solution of (3.25). We conclude the proof by noting that
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(3.25) admits a unique strong solution, since A is uniformly elliptic and Lipschitz
continuous on €2, see [12, 13].

(737) This can be proved similarly to Theorem 2.4 and Theorem 2.5, using that,
by the assumptions made on A and elliptic regularity, we have

Xits [0z Xwtl” 5 [0y Xl [351.ij1<;1] : [9;1;].)%1} € L*(Q)
forany 1 <14,7,k,1 <n. [l

Let us explain how the numerical scheme from Section 3.1 can be used for the
numerical homogenization of (3.22).

First, we consider a triangulation 7; on € consisting of nodes {z;};c; with grid
size k > 0, and a triangulation 7;, on Y with grid size h > 0. Then, for any i € I, we
can use the scheme from Section 3.1 (see Theorem 3.1) to obtain an approximation
mt € H'(Y) to m,, = m(z;,-) such that

Ima, = mi L2y + hllmae, = millmey Shinf [lme, — (0 + D).

opEMp,
Further, we obtain that

AYt = /YZh (A(zy, ) mp,)
is an approximation to A%(z;) (see Lemma 3.1),
(3.26) |A%(z;) — A)'| S
Now we define A}, to be a continuous piecewise linear function on Q such that
A9 (z) = A
Then, using (3.26) and denoting the continuous piecewise linear interpolant of a
function ¢ on the grid {x;}ic; by Zxo, we have
[A® = A} illzee(e) < 1A% = ThA®| o) + 1 T6A” = Af gll (o)
S 1A = T A°|| oo ) + e

We observe that, similarly to the proof of Lemma 3.2, we obtain that the solution
up® € H2(Q) N HH(Q) to

(3.27)

(3.28)

A%ﬁk D2t = f in Q,
up® =0 on 09,

satisfies, for h, k > 0 sufficiently small,

hk
luo — ug™ || 2y S 11A° — AD gl oo @) 1 f1 200
and in view of (3.27),

bk
o — ug™ || 2y S ([[A° = e A%|| o) + ) || fll 2200

where g is the solution to the homogenized problem (3.25). Finally, the solution to
(3.28) can be approximated by a standard finite element method on the triangulation
Tr which yields an approximation ugx € H?(Q) N HE(Q) to ug in the H?(2)-norm.
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The approximation of u, can be obtained based on the corrector estimate from
Theorem 3.6 analogously as in Section 3.3.

4. NUMERICAL EXPERIMENTS
4.1. Problem with a Known wu. We consider the homogenization problem
(4.1) {A (E) :D*u. = f inQ,
u. =0 on 0f,
on the domain
Q:=Y =(0,1)%
with the matrix-valued map

AR SR ) = (e ) i) ),
and the right-hand side f : €2 — R to be specified below. We observe that the
matrix-valued function A satisfies (2.1) with ¢ = oco. Further, note that

Aly) = (aij(y1)h<ij<e
depends only on the first coordinate of y = (y1,y2) € R?; see Figure 1.

-0.5 1 1 1 L

Y1
FIGURE 1. The functions a;;(y;) plotted on the interval (0,1).

In this case we know that the homogenized problem is given by
{AO :D*ug=f inQ,

4.2
(42) up =0 on 09,
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where A° € R2*2 denotes the constant matrix

Aoz/Am
Y

with m being the invariant measure

Loar '
m: R? > R, m(yl,yg)—(/ )
0

an(t) an(y1)’

see [11]. Explicit computation yields that

1 -1
ad = / dt ~ 1.4684,
o an(t)
ajy = (/1 T >_1/1 w2l) gy
2 o an(t) o an(t) ’
)

Uodat \ 7 Y an(t
a3, = ( / ) / 9228 4t ~ 2.6037.
o ai(t) o an(t)

We consider the right-hand side given by
frQ=R, flar,2) = apai(zr — 1) + ayya(z — 1).

Then it is straightforward to check that the exact solution ug € H*(2) N H () to
the homogenized problem (4.2) is given by

1
up: Q= R, gy, 22) = 5901@1 — Dza(z2 — 1).

Note that we are in the situation (2, 4, f) € H?, that f = 0 in the corners of Q and
that ug € H*(Q).

We use the scheme presented in Section 3.1 to approximate m, A° and ug. We
use the same mesh for approximating m and ug. The Hsieh—Clough—Tocher (HCT)
element in FreeFem++ is used in the formulation (3.17) for the H? approximation
of ug; see [14]. The gradient on the boundary is set to be the gradient of an H'
approximation by P, elements on a fine mesh.

. m-m || 2 . 050
Il w2 max, | |aj-a;, |

slope
107 1.9942

10t 103 102 10t
h h

FIGURE 2. Approximation error for the invariant measure m (left)
and the matrix A° (right).
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Figure 2 shows the error in the approximation of m and A°. For the approximation
of the invariant measure we observe convergence of order

3
(43) i = i zry = O(h3),
and superconvergence of order O(h?) for h > 0 when grid points fall on the line
{1 = %}, which is the set along which dym possesses a jump. The observed rate of
convergence (4.3) is consistent with Theorem 3.1. Indeed, we have m € Hz*(Y)

for any € > 0, and Theorem 3.1 yields

lm = mpll2vy + hllm = mal oy Sh inf [[m = (O + Dl vy
vp€Mp,

Sh

~Y

m—Iym— [ (m—ZIym)

Y H(Y)

§_~
5 h2 6||m||H%*5(Y)7

by making the choice v, = Zm— fY Ipm, and using an interpolation error bound. In

connection with the superconvergence we note that m|(0’%)x(071) € H*((0,4)x (0,1))

and m[1 1), 1) € H?((1,1) x (0,1)). For the approximation of the matrix A°, we
2> )

observe second-order convergence.
Concerning the approximation of u., from Sections 2 and 3.3 we obtain that

2
e — <a/§z“0 + Z (9%xis) <g> Q-quo)

,j=1

= O(Ve),

L2(Q)

2
lue = wollm@) + )
k=1

where x;; (1 <14,j < 2) denotes the solution to
A: D = af; —a;; inY,
Xij is Y-periodic, fY Xi; = 0.
Note that since A only depends on y;, we have that
ag; — aij(y1)

a}ilXij (Y1, 92) = a1 (Y1)
0 , otherwise.

Ck=1=1,

Therefore, there holds

HUE - UOH%”(Q) + Haéuf - 8f2u0Hiz(Q) + HaSZUE - a§2u0Hiz(Q)

2 2
9. — <a§1u0 + 3 (@) (2) agjuo>

ij=1

(4.4)

+ = O(e).

L2(Q)

For the numerical approximation, we replace u. by an H?-conforming finite ele-
ment approximation on a fine mesh, based on the formulation

trA (3)

waA'U VUGH,

' : trd (;) ). P2 _
FmduEEH. QwA(g>DU€AU_
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where H := H*(Q)NH (). To this end, we use again the HCT element and set the
gradient on the boundary to be the gradient of an H' approximation by P, elements
on a fine mesh.

107 107

Mgl

1073

slope
104 A slope 0.99064
2.0029

104
1072 10t 1072 10t 10°
h )

FIGURE 3. Approximation error for ug (left) and the squared error
(4.4) in the approximation of u. for different values of € (right).

Figure 3 shows the error in the approximation of uy and we observe second-order
convergence. Further, with the exact uy being available, we can compute the error
(4.4) for different values of ¢; see Figure 3. We observe first-order convergence as ¢
tends to zero, as expected from (4.4).

4.2. Problem with an Unknown ug. Next, let us consider the problem (4.1) with
the same domain §2 and matrix-valued function A as before, but with the right-hand
side given by

1
f:Q_>R7 f('xl)xQ) ‘= eXp <_ ) )
P S
Note that we are in the situation (€2, A, f) € H2. Further, since the right-hand side
[ € H*(Q) of the homogenized problem (4.2) satisfies f = 0 at the corners of Q, the
solution ug to (4.2) belongs to the class H*(£2); see [16, Prop. 2.6].
As before, we use the scheme presented in Section 3.1 to approximate m, A% and

up. Using the second-order H? approximation up,, to up obtained as previously
described,

luo — UO,h“H2(Q) = O(h?),
we have that

Huf - Uoﬁ“?p«n + ||8%2u8 - a%2u0,hHi2(Q) + Ha222u€ - 6222u0,h||i2(9) +

2

1,7=1

2

(45) = O(e + hY).

L*(Q)

Figure 4 shows the squared error (4.5) of the approximation of u. for different grid

sizes and € = %00 fixed. We observe fourth-order convergence in h for the squared

error as expected from (4.5).
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6
15 210 10

1.4

13
1.2 ) 107

1.1

108
0.9

0.8
107

0.6
102 10t 102 10t
h h

FIGURE 4. The squared error (4.5) in the approximation of u. for a
fixed value, ¢ = 1—(1)0, (left) and the squared error after subtraction of
6.0657 - 107 (right), which is approximately the limit of (4.5) in the
figure on the left for this fixed value of ¢ as h tends to zero.

4.3. Nonuniformly Oscillating Coefficients. We consider the homogenization
problem

(4.6) {A (+):Du:=f mo
u. =0 on 01,
on the domain
Q:=Y =(0,1)%
with the matrix-valued map A : Q x R? — R2x2,

B ™72 + L1z|? arcsin (sin®(7y;)) 0
(2,y) = (@1, 22), (41, 82)) = ( 0 2+ zycos(2mys + 1) )

and the right-hand side f : 2 — R to be specified below. We observe that the
matrix-valued function A satisfies (3.23) with ¢ = co. Further, note that it is of the
form

A(z,y) = diag (a11(x, y1), aza (7, y2)) -

In this case we know that the homogenized problem is given by

AY: D%y = in )
(4.7) =/ nf,
up =0 on 0f),

where AY : Q0 — R?*2 is given by

) = [ Al ym, )

with m being the invariant measure

—1
dsdt 1

m: QxR =R, m(z,y) (// i ) ’

an T,Ss a22 x t) a11($,y1)a2z(iﬁ,y2)
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see [11]. Therefore, we have

N A
0 = 5 1<4,95<2.
a5 (7) = 03 (/0 @ij(ﬂfat)) I

We consider the right-hand side given by

f:Q=R, o= (r1,20) > f(2) := ady(x) 21(xy — 1) + ay(x) 22(z2 — 1).

Then it is straightforward to check that the exact solution ug € H*(Q2) N HJ () to
the homogenized problem (4.7) is given by

1
up: Q2 =R, ug(xy, ) = Exl(xl — Dzg(zy — 1).

Note that the assumptions of Theorem 3.6 (ii7) are satisfied.

For k > 0 such that % € N, we take a triangulation 7; on €2 consisting of nodes

{(sk,7k)}s,=0,...1/k, and a triangulation 7, on Y with grid size h = %. We use
the scheme presented in Section 3.4 to approximate A° and ug, and we observe
second-order convergence; see Figure 5.

For the approximation of u., Theorem 3.6 yields

2

e — uol| 1) + Z

k=1

2
Ot = (aﬁzuo + D (Oxi) ( g) 3%“0)
1,j=1 L2(Q)

where x;; (1 <14,j < 2) denotes the solution to
A(:c,y) : D;X¢j<x7y) = CL%(Q?) - aij<x7y)7 <x7y) € xy,
Xij(, ) is Y-periodic, [, xi;(z,-) = 0.

We observe that we have

(&(1)1(1')—a11(f[),y1) ’ Z:]:k:l:]_,
all(xayl)
aSkleZ](x7y> - a%Z(x) — CLQQ(.T,yQ) ’ i :] —k=]= 2’
a22($7y2)
0 , otherwise.

Therefore, we have that
2
| ue — UOH%{l(Q) + H(?%lue - (831140 + [ajllellr afWO) HLQ(Q)
2

+ ”8%2% - G%QUOH%?(Q) + ||8§2u5 - (8222U0 + [852y2X22]5 agzuo) HL2(Q) = O(e),
where [(’351_% Xiir = (8;1_%_ Xii) (-, g) for ¢ € {1,2}. For the numerical approximation,
we replace u. by an H?-conforming finite element method on a fine mesh, based on
the formulation

trA (-, )

alA(2)P

Find u. € H : == fAv Vv e H,
Q ’A ('7 E)’Q

A (-, g> : D*u. Av =
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where H := H*(Q)NH (). To this end, we use again the HCT element and set the
gradient on the boundary to be the gradient of an H' approximation by P, elements
on a fine mesh.

101

—F— 0,0
max o g IAZAR DirkskI

——llugug pllyg)

102
10

slope 10°
2 slope
1.9858

10® 107
102 10! 10° 102 1071 10°
k

FIGURE 5. Approximation error for A and ug for different values of
k, using h = ﬁ, (left) and the squared error (4.8) in the approximation
of u. for different values of ¢ (right).

Finally, let us consider the problem (4.6) with the same domain 2 and matrix-
valued function A as before, but with the right-hand side given by

f:Q_>R7 f($17x2) = €exp <_1 i )2> )

@b -

Note that we are in the situation (2, A, f) € H. Further, since the right-hand side
[ € H*(Q) of the homogenized problem (4.7) satisfies f = 0 at the corners of Q, the
solution ug to (4.7) belongs to the class H*(€2), see [16, Prop. 2.6].

Using the second-order H?-conforming approximation ugj to uy obtained as pre-
viously described (again with h = %),

[luo — UOJC”HQ(Q) = O(k?),

we have that

(4.9)

lue — ol oy + |07 — o — [03,,x11]) okl

+ [|0%ue — afzuok”%?(g) + H3§2u5 — O3aio k — [3§2yg><22]a 8222u07kHi2(Q) = O(e +kY).
Figure 6 shows the squared error (4.9) of the approximation of u. for different grid

sizes and £ = % fixed. We observe fourth-order convergence in k for the squared
error as expected from (4.9).
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107 10°

10

10°®

108

10

10 o 10 10
slope
10 4.0198

10 1012
102 10t 10° 1072 10t 10°
k k

FIGURE 6. The squared error (4.9) in the approximation of u. for a
fixed value, € = %, (left) and the squared error after subtraction of
2.2653 - 107 (right), which is approximately the limit of (4.9) in the
figure on the left for this fixed value of ¢ as k tends to zero.

5. CONCLUSION

In this paper we introduced a scheme for the numerical approximation of elliptic
problems in nondivergence-form with rapidly oscillating coefficients on C*7 and
polygonal domains, which is based on a W?? corrector estimate for such problems
derived in the first part of this work.

We proved an optimal-order error bound for a finite element approximation of the
corresponding invariant measure using continuous Y -periodic piecewise linear basis
functions on a shape-regular triangulation of the unit cell Y under weak regularity
assumptions on the coefficients. The coefficients are integrated against the so ob-
tained approximation of the invariant measure after piecewise linear interpolation
on the mesh to obtain an approximation of the constant coefficient-matrix of the
homogenized problem. Using an H? comparison result for the solution of this per-
turbed problem, we eventually obtained an approximation of the solution ug to the
homogenized problem in the H?-norm. In the case of a polygonal domain in two
space dimensions, we made use of compatibility conditions for the source term to
ensure sufficiently high Sobolev-regularity of wug.

We obtained an approximation to the solution u. of the original problem, i.e., the
problem with oscillating coefficients, by making use of the H? approximation of uy,
finite element approximations to second-order derivatives of the corrector functions,
as well as an H? corrector result. A method of successively approximating higher
derivatives for the approximation of corrector functions was provided and analyzed.
The corrector functions are necessary in order to obtain an approximation of D?u.
whereas the task of approximating u. in the H'-norm can be achieved using only
an H' approximation of w.

Furthermore, we generalized our results to the case of nonuniformly oscillating
coefficients, i.e., we derived an analogous corrector result and studied the approx-
imation of the solution ug to the homogenized problem and the solution u. of the
e-dependent problem in this case.
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In the final part of the paper, we presented numerical experiments matching
the theoretical results for problems with both known and unknown ug, as well as
problems with nonuniformly oscillating coefficients. We illustrated the performance
of the scheme for the approximation of the invariant measure, the solution wug to
the homogenized problem and the solution u. to the problem involving oscillating
coefficients for a fixed value of ¢.

Future work will focus on weakening of the regularity assumptions on the coeffi-
cients and the approximation of fully nonlinear nondivergence-form problems with
oscillating coefficients such as the Hamilton—-Jacobi-Bellman equation.
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