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The Mathematics of Thermodynamics

Here we show the way to deal mathematically with Thermodynamics. We follow the ideas of B.

Known facts

Fist known facts Everyone, either in summer or in winter, feels differently: in summer we feel hot, while in winter we feel cold.

We attribute these feelings to a physical quantity named temperature.

We are able to distinguish between hot objects and cold objects; we say that hot objects have a higher temperature t H than the temperature t C of the cold objects: t H > t C .

To deal scientifically with any physical quantity we must be able to measure it.

Regarding the temperature, we experience the fact that if we mix a hot quantity of matter with a cold quantity of water, after some time, we feel the (mixed) matter + water at the same temperature t, and we say that they are in thermal equilibrium.

Later, we are able to make then the statement that thermal equilibrium is an equivalence class: IF the object A is in thermal equilibrium with an object C AND another object B is in thermal equilibrium with the same object C, THEN the objects A and B are in thermal equilibrium with each other. This is named the Zero th law of thermodynamics.

This law allows us to devise an object C [or more objects C] able to "measure" the temperature: it is named "thermometer". A common thermometer in everyday use consists of a mass of liquidusually mercury or alcohol-that expands into a glass capillary tube when heated. All thermometers use physical properties of objects that vary with the temperature. Common thermometers are made of a mercury column in a glass tube: if temperature rises, the glass and the mercury expand; the mercury expands more that the glass and therefore the mercury goes up in the glass tube (we say that the mercury has the larger coefficient of linear expansion than the glass). To make the "mercury column in the glass tube" able to measure the temperature we define a scale of temperature by stating that two points on the scale have the value 0 and the value 100: by dividing the interval 0 ----100 into 100 parts we then define the Celsius scale and measure the temperature in °C [Celsius degrees]. Another known fact is that IF an object has a higher temperature t H than the temperature t C of another object, t H > t C , THEN there is "something" flowing from the hotter object to the colder object: the "something" flowing is ENERGY, with a special name heat. Heating is the way to transfer energy, with the special name heat. We generalise all these facts by saying that in our physical (three-dimensional) space there exist a scalar thermal field, (P), at any point P. The energy flow depends on the gradient of the temperature, grad(P).

Second known facts

From Mechanics theory we know that solid bodies exhibit changes in shape and volume under the action of applied forces, that is, the forces deform the body.

Let P a point of the body before the forces application [before deformation] and P the "same" point of the body after the forces application [after deformation]: the vector s=P-P is named displacement and is considered as a (vectorial) function of the point P, s=s(P), named displacement field. Generally s is a "very small" vector: we consider mathematically a differential and we put s i the 3 components of the vector s=s(P), where x k are the 3 coordinates of the point P.

If we set s i/k =( ), we recognise the partial derivative of the coordinate x i of the point P with reference to the "axis" x k . The 9 functions s i/k form a "tensor", the tensor derivative of the displacement. Through it we define the tensor, function of the point P, = 1 2 / + / + / / which is named strain (deformation) tensor field. Let's consider a portion of a body, whose volume is  and whose surface (border) is ; let F be the force (vector) per unit of volume and f be the force (vector) per unit of surface. Inside  we consider a volume  whose border is ; let n be the vector in a point P of the surface  pointing towards the interior of the volume ; in the point P there is a force p (n) per unit of surface, which is named stress. It is shown that the vector p (n) can be represented by 9 components (of 3 other vectors related to the axes x i ) p ij giving a tensor, named stress tensor field, p ij =p ij (P). The tensor p ij (P) is symmetric: p ij =p ji . For an elastic body there is a relation [Hooke law] between the stress and strain tensor, through a 4-tensor c ijrs : p ij =c ijrs  rs where, using the usage of symbols in tensor analysis, the sums about the lower and upper indexes [rs here] are not shown. For any body, there are quantities such the position, the specific mass, the stress, the strain, able to define the state of the body; they are named state variables. There are also some functions, depending on the state variables, which are the state functions (or functions of state). One of such states functions is the internal energy: the important characteristic of all the state functions is that their differential is an "exact differential" which integrated provides the state function depending only on the state variables. For elastic bodies the internal energy (per unit of volume) is the elastic energy whose differential is dU= -p ik d ik =-c ikrs  rs  ik whose integral is U=-c ikrs  rs  ik /2 + const For isotropic bodies the 4-tensor c ijrs is very simple and so is the internal energy. For a fluid, the stress tensor is given by a simple function, the pression p=p(P), p (n) =pn, whichever is the normal vector n., which means p ik =p ik [ ik is the Kronecker symbol,  ik =0 for i≠k and  ik =1 for i=k].

Third known facts

We know many kinds of energy: mechanical, kinetic, gravitational, electromagnetic, nuclear, …, heat. There are kinds of energy that can be transformed into other kinds of energy… We can say that energy "flows" from one part of a system to other parts of it. Let's consider a system; we enclose it by a surface. We know that energy can flow into the volume [work done on the system] enclosed by the surface, can remain [work of the internal forces] in the volume and can flow out [work done by the system] the volume. We experience that, if A (initial) and B (final) are two states of the system, we have U(B)-U(A)=flow_in-flow_out We know two types of surfaces  Insulator (or adiabatic surface), is the one that does not allow the flux of the kind of energy named heat; all the others types of energy can cross the surface  Diathermic surface, is the one that allows the flux of the kind of energy named heat; therefore all types of energy can cross the diathermic surface Let's consider another system like in the figure; it is the schematic diagram of Joule's famous experiment.

The system of interest is the Earth, the two blocks, and the water in a thermally insulated container; therefore only energy by work can enter the container.

Figure 1

 Work is done within the system on the water by a rotating paddle wheel, which is driven by heavy blocks falling at a constant speed. If the energy transformed in the bearings and the energy passing through the walls by heat are neglected, the decrease in potential energy of the system as the blocks fall equals the work done by the paddle wheel on the water; Let the two blocks fall through a distance h; if where m is the mass of one block, the decrease in potential energy of the system is 2mgh: this energy causes the temperature of the water to increase. By varying the conditions of the experiment, we find that the decrease in mechanical energy is proportional to the product of the mass of the water and the increase in water temperature.  Now we consider another container thermally insulated, but the bottom diathermic so that only energy by heat can enter the container (having inside the same mass of water, as before). We heat the water: let the increase in water temperature be the same as before (previous mechanical experiments). What can we infer from these experiments? Work and heat enter the container and make the water have an increased energy that must be the same, because the final temperature is the same. The conclusion?

The internal energy depends only on the measured temperature, or the temperature provide the level of internal energy. Therefore U(t final )-U(t initial ) does not depend on the way we transfer energy to the container. Thus we confirm that, if we enclose a volume (system) by an insulator, the energy can flow into the volume [work done on the system] enclosed by the surface and it is stored [work of the internal forces] in the volume and does not flow out [as work done by the system or as heat leaving] the volume. We know that the internal energy, at temperature t, is provided by the kinetic energy of the atoms and molecules of the body considered.

The First and the Second Principles of Thermodynamics

We prefer the word "principles" to the word "laws", because both are driven by the experience and not derived by Theory from more basic principles.

Let =y 1 , y 2 ,…, y n  the set of the state variables y i defining the state of a system ; let  1 refer to the initial state of the system  and let  2 refer to the final state to which  is brought by the execution of some process P; we write ( ) ⟶ . Heating , working on  are extrinsic procedures that serve to alter the state of , called processes.

We indicate with  W[P] the energy injected during the execution of P by working on   Q[P] the energy injected during the execution of P by heating  An adiabatic process is one that entails no injection/extraction of heat, a process that proceeds under the presumption that  has been wrapped round and isolated from the rest of the universe by ideal insulation (insulator):

Q[P adiabatic ]=0

The First Principle of Thermodynamics

For any adiabatic process P adiabatic we have

U( 2 ) -U( 2 ) = W[P adiabatic ]
Equivalently we can say

For any process we have

U( 2 ) -U( 2 ) = W[P] + Q[P]
(which is the energy conservation Principle)

In differential form it is [for an infinitesimal transformation] dU = d*W + d*Q where  dU is the exact differential of the state function U  d*W is a differential form NOT exact  d*Q is a differential form NOT exact
For a cyclic process we have ∮ = 0 and therefore Q=-W

This principle states that a change in internal energy in a system can occur as a result of energy transfer by heat, by work, or by both. Although the first law of thermodynamics is very important, it makes no distinction between processes that occur spontaneously and those that do not.

The Second Principle of Thermodynamics

Is related to the ways that processes occur spontaneously versus those that do not. There are various forms of the 2 nd Principle which are to be considered as postulates to develop the theory; all the postulates state the impossibility of some processes.

We mention only some postulates:  the Clausius statement states: heat (energy) does not transfer spontaneously [that is without using (spending) energy by work] from a cold object to a hot object. In simpler terms, work input is required to do that transfer.

 Kelvin-Planck form states the following: It is impossible that the input of energy by heat from a single reservoir and to transform completely the heat into work, operating in a cycle.  Ostwald form states:

It is impossible the "perpetuum mobile of second kind".  Caratheodory form states: y 1 , y 2 ,…, y n  are the state coordinates

In any infinitesimal neighbourhood of every equilibrium state =y 1 , y 2 ,…, y n  there are states * that are adiabatically inaccessible from =y 1 , y 2 ,…, y n , through reversible adiabatic transformations.

One can prove that assuming one of the four postulates any other of them can be derived; we do not do that completely.

Here we want, instead, prove that the Caratheodory form enable us to derive mathematically some important conclusions:  There must exist a state function S, named entropy  And there exist the absolute temperature T To deal with the matter we follow some ideas of B. Finzi, who was one of my professors at Milan Politecnico; he wrote a paper "Che cosa è la termperatura?", published in the "Periodico di Matematiche, serie IV, vol. XIV, 1935"; there he stated that his ideas where similar to those of Caratheodory published in Mat. Ann., 67, 355, 1909, Berl. Ber. 39, 1935. In spite of that the present deployment of the theory is my own, because I use my own mathematical knowledge. We will deal first with cases with 2 independent state variables. We will deal secondly with cases with 3 independent state variables. Then we will state that the findings are valid for n>3 independent state variables.

The case of 2 independent state variables (2 nd Principle of Thermodynamics)

Here we present a graphical form of the Caratheodory postulate, when we have 2 independent state variables. This idea was found in the paper of M. W. ZEMANSKY (The City College of the City University of New York) entitled Kelvin and Caratheodory-A Reconciliation (published in 1966), where he credited Louis A. Turner of the original ideas. See the following figure, where we choose the volume V and the temperature  as variables defining the state of the system; the system is a very simple one, an idrostatic one. The figure enable us to see that the Caratheodory postulate of the 2 nd Principle of Thermodynamics is equivalent to the Kelvin-Plank postulate. We reject the Caratheodory postulate and consider a cycle made of two reversible adiabatic transformations and one transformation a constant temperature. From the equilibrium state i we assume that the system can arrive to two different equilibrium states f 1 and f 2 , with adiabatic reversible processes; during the isothermal transformation f 1 f 2 , the system receives a quantity of heat Q>0 from a reservoir at temperature  0 . The net result of this cycle is that we transform completely the heat into work, W=Q, with input energy by heat from a single reservoir, which is contrary to the Kelvin-Planck postulate. Therefore the points (equilibrium states) f 1 and f 2 must be the same state: Q=0 and then W=0. The points accessible from an equilibrium state MUST be on the same line, whose equation is

( , ) =

For any value of the constant we have a different adiabatic line; no adiabatic line intersect any other adiabatic lines. The total differential is ( , ) = 0 so that from d*Q=0 and d(,V)=0 we can put * = ( , ) ( , ) where (,V) is a suitable function. Let i the unit vector related to the axis V and j the unit vector related to the axis p. Let the d*Q/(p,V) [exact differential] be integrated and be (p,V) be the indefinite integral. There exists a vector, named gradient of (p,V) and written grad(p,V), defined by

Ψ( , ) = Ψ + Ψ = +
which is orthogonal to the lines (p,V)=constant.

If k is the unit vector orthogonal to the plane p,V [and to the unit vectors i and j] there exists another vector, named rotation (or curl), and written rot(p,V), defined by

[ + ] = -

This result is very important because it holds for any number n of independent thermodynamic variables, n>2, defining an equilibrium thermodynamic state of any system.

When two independent thermodynamic variables are considered, it is necessary and sufficient that rot[ + ] =0 in order that grad(p,V) exists. When two independent thermodynamic variables are considered, there is ALWAYS a vector such that rot[ + ]=0 which entails the existence of the integrating factor 1/(p,V). IF n=3, and x, y, z are the 3 independent thermodynamic variables considered, again it is necessary and sufficient that rot[ + + ]=0, in order that grad(x, y, z) exists, which entails the existence of the integrating factor 1/(x, y, z).

IF n>3, and x 1 , x 1 , x 2 , x i ,…., x n , are the n independent thermodynamic variables considered, it is necessary and sufficient that exist a tensor rot [ + + ⋯ + ⋯ ]=0, in order that the tensor grad(x 1 , x 1 , x 2 , x i ,…., x n ) exists, which entails the existence of the integrating factor 1/(x 1 , x 1 , x 2 , x i ,…., x n ).

The tensor grad(x 1 , x 1 , x 2 , x i ,…., x n ) is the potential related to the system.

Again on the case of 2 independent state variables (2 nd Principle of Thermodynamics)

We pursue our trip using gain some ideas of my professor B. Finzi. Let's consider two systems  1 and  2 ; at initial time 0, they are in the states  1 (p 1 , V 1 ; time 0) and  2 (p 2 , V 2 ; time 0); soon after they are put in contact through a diathermic wall; after "due time" they arrive at equilibrium states  1 (p 1 , V 1 ; "due time")= 2 (p 2 , V 2 ; "due time"); we know that at "due time" the two systems have the same temperature.

Figure 4

It is possible then to define, for any system, the quantity =f(p, V), able to define the thermal equilibrium.

We can consider as well a function F(f(p, V)), monotone, which is able to define the thermal equilibrium as does =f(p, V).

If we consider a perfect gas, the Boyle-Mariotte law gives us F()=p 0 V 0 /R. By putting =F() we have the state equation PV=R, for a mole of gas. It is very easy to find (see figure 3) that the ratio of the energy (heat) entering Q h and leaving Q c (during the isothermal transformations) equals the temperature of the isotherm curves  h =F( h ) and  c =F( c ) This formula is fundamental for our purpose of finding the integrating factor and a new state function, the entropy.

We saw previously that we can write either * = ( , ) ( , ), with (,V) a suitable function, or * = ( , ) ( , ), with (p,V) another suitable function. Now we use two new state variables, the temperature  and the function ; we can write * = ( , )

and from the previous "boxed" formula we derive * *

= (θ , ) (θ , ) = (θ , θ )
and therefore

( , ) = ( ) ( )

By putting = ( ) +
we find that the elementary quantity of heat * can be written as *

This new formula suggest assuming as TEMPERATURE the function ( ) itself.

Therefore we put = ( ) the TEMPERATURE and we name it absolute temperature.

variable S, which defines the adiabatic curves, is a state function, named ENTROPY. Because entropy is a state variable, the change in entropy during a process depends only on the endpoints and therefore is independent of the actual path followed. Since dS=0 refers to adiabatic processes we usually define the entropy as * Consider any infinitesimal process in which a system changes from one equilibrium state to another. If dQ r is the amount of energy transferred by heat when the system follows a reversible path between the states, the change in entropy dS is equal to this amount of energy divided by the absolute temperature of the system. We have assumed the temperature is constant because the process is infinitesimal. NOTICE that the entropy change for an irreversible process can be determined by calculating the entropy change for a reversible process that connects the same initial and final states. The entropy S is the potential NOTICE that in the formula there is a spatial part due to V and a thermal part due to T. We have, as well,

= ln -ln +

The entropy S is the potential

We know that in a reversible process, the system undergoing the process can be returned to its initial conditions along the same path on a PV diagram (see fig. 3), and every point along this path is an equilibrium state. We repeat here the figure 3 for convenience Figure 3 repeated A process that does not satisfy these requirements is irreversible.

All natural processes are known to be irreversible. Let's examine the adiabatic free expansion of a gas [1 mole]: this process cannot be reversible. Consider a gas in a thermally insulated container where a membrane separates the gas from a vacuum, where the gas and the vacuum have the same volume, V 0 . When the membrane is punctured, the gas expands freely into the vacuum. As a result of the puncture, the system has changed because it occupies a greater volume after the expansion: volume 2V 0 . Because the gas does not exert a force through a displacement, it does no work on the surroundings as it expands. In addition, no energy is transferred to or from the gas by heat because the container is insulated from its surroundings. Therefore, in this adiabatic process, the system has changed but the surroundings have not: the temperature of the gas has been lowered. For this process to be reversible, we must return the gas to its original volume and temperature without changing the surroundings… BUT to do so we MUST compress the gas by doing work!!! If this irreversible process the entropy MUST increase. IF we had used the previous formula of the entropy we could verify that actually S C =S B , as it must be, because B and C are points of the same adiabatic and Q r =0. We have

- = ln + ln = = ln + ln = = 0 0 = 0
as it must be. Why so? Because the temperature-dependent portion of the entropy, T c <T h , compensates the spatial portion?

BUT why there is no increase of the entropy, since we are sure that the process is irreversible?

The process is irreversible because during the sudden expansion, significant variations in pressure occur throughout the gas. Therefore, there is no well-defined value of the pressure [or of the temperature] for the entire system at any time between the initial and final states. In fact, the process cannot even be represented as a path on a PV diagram (or a TV diagram). The PV diagram for an adiabatic free expansion would show the initial and final conditions as points, but these points would not be connected by a path, contrary to our figure, where it is supposed a quasi-static process. Therefore, because the intermediate conditions between the initial and final states are not equilibrium states, the process is irreversible. let's see the figure 5, showing a Carnot cycle ABCD. As we saw before and as it must S C -S B =0; the temperature, during the adiabatic expansion drops from T h to T c and the volume after the expansion is 2V 0 , so that the ratio of the volumes is 2. To compute the increment of the entropy, we must find an equivalent reversible path of transformations going from B to C: we choose the path BEC, made of an isothermal reversible expansion BE, with energy entering the gas by heat from a reservoir to hold the temperature constant, the initial temperature T h of the gas.

For the isovolumetric process, from the temperature T h to T c ; the elementary heat is * = + =

, from which we derive * = = = and then [using the ratio of the temperatures for the adiabatic and the corresponding volumes] we get

- = = [2 ] = (2) to Figure 5
S is positive. This result indicates that the entropy of the gas increases as a result of the irreversible, adiabatic expansion. It is easy to see that the energy has spread after the expansion. Instead of being concentrated in a relatively small space, the molecules and the energy associated with them are scattered over a larger region.

The case of THREE independent state variables (2 nd Principle of Thermodynamics)

Here we present a graphical form of the Caratheodory postulate, when we have 3 independent state variables.

The argument for n>3 variables follows the same lines; we do not deal with that. This idea can be found in the paper of M. W. ZEMANSKY (The City College of the City University of New York) entitled Kelvin and Caratheodory-A Reconciliation (published in 1966), where he credited Louis A. Turner of the original ideas.

Here we indicate with x, y, z, the 3 thermodynamics coordinates, representing generalised displacements as volume V, length and magnetisation… and other variables, named generalised forces as the empirical temperature , or the pressure p, or the voltage, or the magnetic intensity, or … Before going on, the reader should look at figure 2, where we used a plane with two orthogonal axes  and V. Now we use a three-dimensional space with 3 orthogonal axes U, X and X. The figure is taken from ZEMANSKY.

U is the internal energy and X and X are two other variables.

As done with 2 variables, the figure enables us to see that the Caratheodory postulate of the 2 nd Principle of Thermodynamics is equivalent to the Kelvin-Plank postulate.

We reject the Caratheodory postulate and consider a cycle made of two reversible adiabatic transformations and one transformation at constant X and X, the transformation f 1 f 2 .

From the equilibrium state i we assume that the system can arrive to two different equilibrium states f 1 and f 2 , with adiabatic reversible processes; during the transformation f 1 f 2 , the system receives a quantity of heat Q>0.

The net result of this cycle is that we transform completely the heat into work, W=Q, which is contrary to the Kelvin-Planck postulate.

Therefore the points (equilibrium states) f 1 and f 2 must be the same state: Q=0 and then W=0. Hence, the locus of all points accessible from i by reversible adiabatic processes is a space of dimensionality 3-1, that is the points lie on a surface. The points accessible from an equilibrium state MUST be on the surface, whose equation is

Figure 2
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( , , ′) =

For any value of the constant we have a different adiabatic surface; no adiabatic surface intersects any other adiabatic surface. Surfaces corresponding to different initial states i would be represented by different values of the constant. The total differential is ( , , ′) = 0 so that from d*Q=0 and d(U, X, X)=0 we can put * = ( , , ′) ( , , ′)

where (U, X, X) is a suitable function. If we had chosen the empirical temperature , X and X as independent thermodynamic variables, we should have another function ( , , ′) = for the adiabatic surfaces. For any value of the constant we have a different adiabatic surface; no adiabatic surface intersects any other adiabatic surface. The total differential is ( , , ′) = 0 so that from d*Q=0 and d(, X, X)=0 we can put * = ( , , ′) ( , , ′)

where (, X, X) is a suitable function. Now let's consider the 1 st Principle of Thermodynamics, in the differential form [for an infinitesimal transformation] with 5 variables U, Y, Y, x, x, d*Q=dU + Ydx + Ydx where  dU is the exact differential of the state function U  Ydx is a differential form NOT exact  Ydx is a differential form NOT exact Considering a gaseous system (made of two subsystems, as in figure 4) for an adiabatic transformation we have the differential equation dU + Ydx + Ydx=0 whose solution, IF we can find analytically one, is ( , , ′) = Contrary to the case of 2 variables, NOT always we are able to find the above analytical surface.

So we are compelled to study the integrability of differential forms as [we consider a generic differential form, independently from thermodynamics … .] X(x, y, z) dx + Y(x, y, z) dy + Z(x, y, z) dz with X, Y, Z continuous functions of x, y, z. Such a form is named exact IF there exists a function (x, y, z) so that d=X dx + Y dy + Z dz In Calculus it is proved that if partial derivatives X y , X z , Y x , Y z , Z x , Z y of the functions X, Y, Z are also continuous, then it is necessary and sufficient for X dx + Y dy + Z dz being exact is

In such a case there exists a vector, named gradient of (x,y,z) and written grad(x,y,z) Ψ( , , ) = + + which is orthogonal to the surfaces (x,y,z)=constant., whose condition of existence is, symbolically,

Since, in 3 variables d*Q= X(x, y, z) dx + Y(x, y, z) dy + Z(x, y, z) dz

is not exact we must find a function (x,y,z) so that 1/(x,y,z) is an integrating factor of the NON_exact differential form d*Q, getting the exact differential d*Q/(x,y,z).

Letting (x,y,z) the potential we have

The scalar product (or dot product) is zero:

With this condition the is integrable by one relation of the form (which provides a surface)

The existence of the 2 nd Principle second assures that the differential form of d*Q referring to a physical system of 3 independent coordinates possesses an integrating factor 1/(x,y,z), providing the exact differential d*Q/(x,y,z).

As done before, let's consider two systems  1 and  2 ; see figure 4 here repeated; at initial time 0, they are in the states  1 (x 1 , y 1 , z 1 ; time 0) and  2 (x 2 , y 2 , z 2 ; time 0); soon after they are put in contact through a diathermic wall; after "due time" they arrive at equilibrium states  1 (x 1 , y 1 , z 1 ; "due time")= 2 (x 2 , y 2 , z 2 ; "due time"); we know that at "due time" the two systems have the same temperature.

Therefore we can always consider the temperature  as an independent variable. Then  1 (x 1 , y 1 ,  1 ) and  2 (x 2 , y 2 ,  2 ) are equilibrium states of two systems  1 and  2 .

Then we have * = ( , , ) ( , , ) for any of the two systems, i=1,2.

Let  the compound system: = 1 ∪ 2 .

We have * = ( , , , , , ) ( , , , , , ).

We chose  1 and  2 as independent variables in place of y 1 and y 2 ; when  is in thermal equilibrium, we have which entails that the hypersurface ( , , , , ) does not depend on x 1 , x 2 , and ; so is actually a surface ( , ).

Therefore also the partial derivatives do not depend on x 1 , x 2 ; we get = ( , ) ( , , ) = ( , ) ( , , ) where the ratios are -independent. The way to obtain this result is to put we find that the elementary quantity of heat * can be written as *

This formula suggests assuming as TEMPERATURE the function ( ) itself.

Therefore we put = ( ) the TEMPERATURE: the absolute temperature.

The variable S, which defines the adiabatic curves, is a state function, the ENTROPY, whose differential is *

Because entropy is a state variable, the change in entropy during a process depends only on the endpoints and therefore is independent of the actual path followed. Considering any infinitesimal process in which a system changes from one equilibrium state to another, if dQ r is the amount of energy transferred by heat when the system follows a reversible path between the states, the change in entropy dS is equal to this amount of energy divided by the absolute temperature of the system (the temperature is constant because the process is infinitesimal).

The case of n>3 independent state variables (2 nd Principle of Thermodynamics)

If we have a differential form of n>3 variables ( , … . , ) the necessary and sufficient conditions for integrability are = ( , = 1, … . , ; ≠ )

The theory follows as for the case n=3.

In this case (n>3) we must use tensors (instead of vectors).

The gradient of a tensor T is a tensor gradT, obtained by deriving the tensor T.

The rotor of a tensor T is a tensor R From this we derive:

for all the virtual transformations "according to the constraints", S=constant and y=constant.

= 0 for all the virtual transformations "according to the constraints", S=constant and Y=constant, where H is the enthalpy:

= -

for all the virtual transformations "according to the constraints", U=constant and y=constant.

th Principle

= 0 for all the virtual transformations "according to the constraints", T=constant and y=constant, where A is the first energy:

= -

th Principle

= 0 for all the virtual transformations "according to the constraints", T=constant and y=constant, where F is the second potential energy:

= -= -