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Introduction

Cooling systems are a crucial point of nuclear power plants safety. Transient operations are commonly encountered in such hydraulic systems, (Gao et al 2013, Farhadi et al 2007) and an accurate prediction of their behavior during these operations is necessary. Nevertheless, the performance of their components during these transient periods is rather different than during the steady one. Concerning pumps, this has been well established, through different studies dealing with :

-Starting periods in non cavitating (Tsukamoto and Ohashi (1982), Saito (1982), Ghelici (1993), Bolpaire (2000), Lefebvre and Barker (1995)) or cavitating conditions (Tanaka & Tsukamoto (1999), Duplaa et al (2010Duplaa et al ( , 2013)).

-Stopping periods (Tsukamoto et al, (1986)), -Valve opening and closure (Picavet, (1999) -Dazhuan et al ( 2010))

Quasi-steady models (using the steady performance of the pump) are still in use for the transient performance prediction of pumps during starting periods (Rizwan Uddin 1994). They give rather good results if the transient is relatively slow (i.e. if the transient effects are negligible compared with the steady one). However, to obtain reliable results compared with the experiments, in case of fast transient periods, more sophisticated models, including the effects due to the acceleration of the runner and of the flow, have been built (Tsukamoto et al (1982), Dazin et al (2007)).
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Besides, whereas the similarity laws for steady operation of hydraulic turbomachineries are well established, very few works are dealing with the non dimensional analysis of a fast start-up. Tsukamoto et al (1982) have introduced the non-dimensional parameter na f T ω (where ω f is the final rotation speed and T na is a time characteristic of the stat-up) as the most important parameter for the transient characteristics of a pump.

An attempt to determine which parameter are affecting the performance of a pump during a start-up has been proposed by Dazin et al (2006) through the study of experimental results: start-ups with various final operating points and acceleration were the support of an analysis of the performance of a pump operating in transient operations. Unfortunately, the analysis was limited because of some experimental constraints: the acceleration rate was not easily driven because the fast start-ups were obtained by an electromagnetic clutch which is not easy to control. It was also not possible to change the geometry of the test rig. On top of that, the relative uncertainty measurement is very high at the beginning of the start-up and the analysis of the results is thus difficult during the first period of the transient.

More recently, Elaoud et al (2011) have proposed a study based on the modelling of the governing equations of the transient flow in pipes to analyse the effect of pump starting times on the transient flow in pipes.

The purpose of the present work is to present a more universal analysis of pump start-ups. More precisely, it aims at giving the time scales associated to pumps start-up and to determine which parameters can affect them.

To do so, a model of a whole hydraulic test rig has been simulated using the bond graph methodology.

The prediction of the model proposed in the present paper is validated by comparison to experimental data from Bolpaire (2000). An analysis of the evolution with time of the terms contained in the instantaneous total pressure increase in the pump is proposed using non dimensional results with a log-log presentation allowing for a clear decomposition of a start-up into three periods whose duration can be estimated. Then, this analysis is used to investigate the impact of the variation of several parameters (acceleration rate, final rotation speed, final flow rate, pipe lengths) on the intensity and duration of the transient effects during a start-up. These analyses are made assuming non cavitating operation conditions. It is also assumed that the pressure wave propagation phenomena within the system and the pump are neglected, as the paper focuses on the interpretation of the instantaneous pump performance.

1/ BOND GRAPH MODEL

11/ Presentation of the model

The test rig modelled (Fig. 1) is a closed loop composed of a radial flow pump connected to a tank (at atmospheric pressure) through hydraulic pipes. A valve is also available on the test rig, in order to set the final operating point. The whole system is modelled using the bond-graph methodology.

A bond graph consists of subsystems linked together by half arrows, representing power bonds. They exchange instantaneous power at places called ports. The variables that are forced to be identical when two ports are connected are the power variables, considered as functions of time. A few basic types of elements are required in order to represent models in a variety of energy domains. For 1Dsystem modelling, basic 1-port elements represent power dissipation (R), energy storage (I, C) and power supply (effort and flow sources), changing of domains without power losses (TF and GY-elements). A causal stroke, placed perpendicularly to the bond, shows up the way the constitutive relations in an element have to be written.

The model bond graph can be directly simulated using software with a graphical bond graph interface, as 20Sim (Controllab Products) software used here. From the bond graph model can be derived dynamic mathematical models, under ODE (ordinary differential equation) or DAE (differential algebraic equation) equations, which can be simulated using software as Matlab/Simulink. Plenty of papers exist in the literature. For more details on this methodology, see for example Karnopp (1975).

Before describing the model, one can note that :

-all the pressures are expressed in terms of total pressure, -as the flow is considered to be incompressible, the volume flow rate q is the same in all the components that will be described in the following.

The synoptic of the bond graph model is presented Fig. 2. It is composed of: An effort source (a constant pressure boundary condition) used to model the tank.

A dissipative element (R) representing the hydraulic losses in the pipes and the valve. These losses are supposed to be proportional to the square of the volume flow rate.

( 1 )

Where are the total pressure losses in the pipe and the valve, q, the volume flow rate, ρ the fluid density, S the pipe cross-section area and k, the loss coefficient which is adjusted for each start-up in order to reach the desired final operating point (the adjustment of this parameter could be compared to the opening/closing of a valve to set an experimental operating point).

An inertial element (I) representing the inertial hydraulic effects in the pipes and depending on the geometry of the pipe:

( 2 )

Where L is the total pipe length and S, the pipe cross-section area.

The model of the pump is based on the one proposed by Dazin et al (2007) for radial flow pumps.

( 3 ) With:

ω, the instantaneous angular speed of the impeller, , the instantaneous pump total pressure rise, a steady term representing the steady total pressure rise of the pump (i.e.

the pressure rise obtained at a given velocity and flow rate in steady condition), supposed to be well described by the following polynomial approximation: The angular velocity evolution is imposed to the pump through a modulated flow source (MSf). This evolution is obtained with a first order transfer function whose equation is given by 9 :;

! " " " # ! " $ # ! " $ # % ( 
, where κ is the gain, τ, the time constant and s, the complex Laplace variable. In this function, the gain and time constant are set in order to fix the final angular velocity and start-up duration.

The integration method used to solve the equations system is a backward differentiation formula.

The geometrical parameters needed to model the pump are calculated using the geometry of the single volute radial flow pump used in the experiments realised by Bolpaire (2000) and reported by Dazin et al (2007).

The main geometrical characteristics of this pump are reminded in Table 1.

12/ Experimental validation

To check the validity of this model, its results are compared with experimental ones. To do so, the angular velocity input is replaced by an experimental velocity evolution (Fig. 3a) extracted from Bolpaire (2000). The pipe length and section are adjusted to reproduce the experimental test rig. The loss coefficient of the valve is adjusted to reach the final experimental operating point. The experimental evolution of the pump total pressure rise is compared with the evolution predicted by the model Fig. 3b. The differences between the experimental and model data are less than 1% during the first part of the start-up (t < 0.2 s) and are never exceeding 7%. This confirms the validity of the model (this validity has already been established in Dazin et al (2007) for a single pump model, but not for a complete loop).

13/ SIMULATION TEST PLAN

The test cases are summarized in Table 2. The first case (a reference case) corresponds to a start-up for which the final operating point corresponds to the pump nominal point. The time constant of the first order filter is set to

s 2 . 0 = τ
. The pipe length is set to L = 5m whereas the pipe diameter is 0.04 m. The second, third and fourth cases correspond to variation of the final steady operating point (final velocity for case 2 and final flow rate for cases 3 and 4), compared with the first case. Cases 5 and 6 correspond to start-ups ending at the same operating point as case 1 but with different acceleration rates. Case 7 corresponds to a variation of the pipe lengths (L = 10 m instead of 5 m). The pipe diameter is remained unchanged whatever the case considered is. 

2/ REFERENCE CASE -TIME SCALES ASSOCIATED TO A START-UP

Fig. 4 presents typical simulation results for the reference case (case 1 in table 2). These are typical results obtained for a fast start-up. The acceleration rate is relatively high (it takes 0.32 s to reach 80% of the final impeller angular speed).

The pressure and flow rate are rising with a lag due to inertial effects in the pump and pipes. (Tsukamoto et Ohashi (1982), Saito (1982), Lefebvre et Baker (1995)). Two phenomena can be identified. At the beginning of the start-up, the pressure coefficient is higher than the steady one because of angular acceleration effect. In a second stage, the pressure coefficient is lower than the steady one, because of inertial effects in the pump. At the end of the start-up, the pump is reaching its final (steady) operating point.

The time evolutions of several pressure coefficients are presented in Fig. 7. On this figure can be found:

-< =>?= " ! " " , the instantaneous total pressure coefficient of the pump.

-< " ! " " : the steady term that seems to be nearly constant during a great part of the start-up. This is due to the fact that the flow coefficient remains at a very low value while t/τ is lower than 10 -1 (Fig. 8) because the angular velocity of the runner is increasing more rapidly than the volume flow rate (Fig. 5). The pump is then operating in the left part (δ < 0.001) of its steady characteristics curve where the pressure coefficient is nearly constant.
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: the acceleration effects on the pump performance. It is the dominant term at the very beginning of the start-up because the acceleration rate is great and the velocity is low. It can be noticed that the evolution of this parameter is quasi-linear when plotted in a log-log scale (with a slope equal to -2). This is due to the fact that the impeller acceleration is nearly constant during a great part of the start-up. Thus, the pressure coefficient time-evolution is proportional to C D , that is to E D .

As the velocity increases rapidly, this term decreases rapidly and becomes negligible for E F G H6HI.

-
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:the inertial terms in the impeller and in the pump stator.

They are quite important during a great part of the start-up. It can also be noticed that, because of the geometry of the pump studied, the inertial effects are greater in the stator (diffuser and volute) than in the rotor. At the beginning of the start-up (t*<0.01), these terms are also proportional to t -2 . This can be explained easily from the equations governing the system. The one governing the pipes can be written as follows:

P 8 Q R ( 5a )
Where

S "
Which gives, in a dimensionless form :

=T=U " ! " " @ " " ! " " " ! " " (5b) 
It can be noticed that the pressure delivered by the pump P is equal to the pressure P 8 Q required by the system. Consequently, combining equation ( 3) and ( 5) gives : R

Which gives, in a dimensionless form :

< < < +* Q < J 8 Q < J8 < J . *- (6b) 
Where < +* Q @ " " ! " " , and represents the non-dimensional pressure losses in the pipes and in the valve, and < J 8 Q represents the dimensionless hydraulic inertial effects in the pipe.

At the beginning of the start-up, as pointed out above, the dominant term of this equation is the angular acceleration term. More precisely, the steady term P is negligible (see Fig. 7). The resistive term is also negligible because the flow rate is very low at the beginning of the start-up. Finally, equation (6a) becomes:

V (7)
This proves that, at the beginning of the start-up, the evolution of the flow acceleration is proportional to the angular acceleration.

In a second time period (from E F H6HI to E F I), the two terms < J8 @ K B " ! " " and < J . *-
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appear to be nearly constant. This can also be explained through the analysis of equation ( 6): as pointed out above, in this equation, the angular acceleration term is negligible when E F G H6HI. Besides, the first term of the right hand side of equation (6a & b), that is the resistive term, is also negligible from E F H6HI to E F I because the flow rate is still very low.

Consequently, from E F H6HI to E F I, equation ( 6) can be written:

< V B ! " " " . (8) 
As the steady pressure coefficient is constant during the beginning of the start-up, the term

B ! " " "
is also constant while the resistive effects in the test rig are negligible compared to the resistive effect in the pipe.

Consequently, is proportional to t 2 . This explains why the flow rate q is proportional to t 3 (as observed Fig. 6.)

Finally, the start-up of a pump can be decomposed into three periods. This period lasts as long as

W i.e. < W @ A A X Y " ! " " (9) 
The order of magnitude of < is 1.

The order of magnitude of is V ! " " ./0 ?

, whereYZ is the mean value of the relative flow angle in the impeller, defined as the average of the outlet and inlet relative flow angle.

The order of magnitude of Y is [ ; , where C \ is the final speed of the impeller. And consequently, the order of magnitude of the instantaneous speed is C V [ ; E. Consequently, the first period of the start-up ends at a normalised time E F defined as follows:

E F 3 ; V ] ./0 ? [ ; (10) 
It can be noticed that, in the previous expression, τ can be replaced by another time characteristic of the start-up.

Thus, in the expression of E F , the non-dimensional parameter C \ ^ introduced by Tsukamoto et al (1982) as a parameter characteristic of the start-up, can be identified.

For the first case of table 2, and using the expression of equation ( 10), one obtainYE F V H6HI, which matches very well with the duration of the first period observed in Fig. 7.

Second period: In the second period (0.01 < t* < 1), the start up is governed by the inertial effects in the test rig.

During that period the flow rate is evolving as t 3 if the acceleration of the impeller is constant.

This period lasts as long as the inertial effects in the loop are greater than the resistive effects in the pipes, i.e. as long as UK _ , where & Q is the equivalent length of the whole loop and is defined as :

& Q ` & ` & ` & )*+ `)*+ During this time period, UK V a C V a [ " ; " E And consequentlyYR V % UK a [ "
; " E % , and so:
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Consequently, the second period ends at a normalized time

E F E F " ; V b S 3 c ] UK ! " [ ; (11) 
In the present case (first case of table 2), and using the expression of equation ( 11), one obtain E F V I6e. It can be noticed that these value gives the correct order of magnitude of the observed time duration of the second time period which was estimated to be around 1 by the observation of Fig 7.

Third period: At last, in a third period, the resistive effects in the pipes are increasing and the start up tends to a quasi steady start -up.

Using the analysis of the pressure coefficients evolution, the impact of the parameters having an influence on the start-up is easier, and is illustrated by the simulation of cases 2 to 7 in the following section. -The reference test case for which the acceleration time is short (^ H6fYg),

3/ PARAMETERS AFFECTING THE

-test case 5, for which the acceleration time is moderate (^ fYg),

-test case 6, for which the acceleration time is long (^ fHYg).

It appears that, as expected, an increase of the acceleration rate (i.e. a decrease of the time constant τ) leads to an increase of the pressure coefficient < (Fig. 9a). It can also be observed (fig 9b and9c) that the durations of the first and second periods of the start-up are increased. This is consistent with the definition of the normalized times E F and E F introduced in equations ( 10) and ( 11): a decrease of τ leads to an increase of the duration of the first and second periods. The effect of a diminution of the final speed (Fig. 10) is similar to the effect of an increase of the acceleration rate of the angular velocity as the parameters ^ and C \ play similar roles in equations ( 10) and ( 11).

32/ Effect of the pipe length and resistance

The evolution of < (fig 11a), < J8 (fig 11b) and < (fig 11c) is now plotted for 2 different pipe lengths.

As the angular acceleration is imposed, there is no influence of the pipe length: the angular acceleration coefficient pressure coefficient < is similar in both cases (fig 11a). On the contrary the hydraulic inertia pressure coefficients are plotted Fig. 11b. This term is obviously smaller when longer pipes are used. This is well explained by equations ( 7) and ( 8) showing that longer pipes lead to a decrease of the time derivative of the flow rate. On the contrary, the duration of the second time period increases when the pipe length is higher, which is coherent with the definition of t 2 * (Equation 11).

A change of the pipe resistance has also been tested. To do so, the pressure loss coefficient k of the pipes has been changed. It has been adjusted to reach the design flow rate of the pump for the reference case, 0.5 q n for case 3 of table 2 and 1.5 q n for case 4 of table 2. during the second time period (t* < 1) as the viscous effects are negligible during this period. Besides, this second time period is shorter when the final flow rate is greater, which is coherent with the estimation of the duration t 2 *, showing an increase when the loss coefficient is smaller.

CONCLUSION

In the present contribution, a detailed analysis of the start-up of a hydraulic system composed of a radial flow pump and its suction and delivery pipes is proposed. It is based upon simulations obtained using the bond-graph methodology.

The analysis of the results shows that the start-up of the pump can be decomposed into three main periods :

-In the first period, the effects of the angular acceleration are the dominant ones. During this phase, the flow acceleration is proportional to the angular acceleration. The order of magnitude of this stage duration is E I

F E I ^V ] I E#hZ i 6C j 6^ . -
In the second period, the angular acceleration effects become negligible and the hydraulic inertial effects are dominant compared with the viscous effects. During this second period, the parameter " is constant and consequently the flow rate is proportional to E % , if the acceleration rate of the runner is constant. This second time period ends at E f

F E f ^V Ik I l m & nR a f I C j ^.
-In the third period the viscous effects become dominant and the start-up is quasi-steady.

Consequently, concerning pump transient modelling it can be said that a quasi-steady simulation of a pump startup is sufficient:

-for the simulation third period identified above.

-for the whole simulation if the two first periods identified above are short (i.e. if E I F and E f F are very small compared with 1). This happens when C j ^is great.

Besides, an analysis of the variation of several parameters is proposed.

An increase of the acceleration rate or a decrease of the final speed have similar effects. They lead to an increase of the transient effect as well as an increase of the duration of the two first periods of the start-up described

above.

An increase of the pipe length leads to an increase of the duration of the second period of the start-up as well as a decrease of the inertial effects amplitude.

At last, an increase of the losses in the pipe does not affect the amplitude of the transient effects but leads to a decrease of the duration of the second period of the transient period. 

Nomenclature

  4)& , ' ( & )*+ and ' )*+ are the equivalent lengths and sections of the diffuser and volute of the pump, and are used to estimate the hydraulic inertial effects in the pump stator. which allows estimating the impact of the angular acceleration effects on the pump instantaneous total pressure rise. which allows estimating the impact of the fluid inertia in the impeller on the pump instantaneous total pressure rise.In this two expressions, R 1 and R 2 are the inlet and outlet radii of the impeller, b the height of the blade passage and β is the relative flow angle.These steady and angular acceleration terms are modelled by a gyrator (MGY). The hydraulic inertial effects in the rotor and in the stator (diffuser and volute) are modelled separately by two inertial elements.

  Fig 5 shows what can be the interest of using log log scale to present such results : the flow rate and the pump rotation speed are normalized by their final values in steady operating conditions and time is normalized by τ : as expected, the evolution of the velocity is linear as it is imposed by the first order filter ; but it is also very clear on fig 5, that the evolution of the flow rate is proportional to t 3 during a large part of the start-up. This evolution will be explained in the next paragraphs of the present paper. The comparison of the steady non dimensional characteristics and of the non dimensional characteristics of the start-up is proposed in Fig 6. It is very similar to the ones observed experimentally

First

  period: During the very beginning of the start-up (t* < 0.01 on Fig 7) the dominant effects are the angular acceleration effects in the pump. During this period, the flow acceleration is proportional to the angular acceleration. It can be said that in this first period, the start-up is governed by the motor and the driving shaft characteristics.

  of the acceleration rate and final speed To compare the effect of the acceleration rate on the start-up, the evolution of < (fig 9a), < J8 (fig 9b) and < (fig 9c) are plotted for three different test cases :

  The evolution of < (fig 10a), < J8 (fig 10b) and < (fig 10c) is now plotted for two different rotation speeds (2900 rpm and 1450 rpm).

  It corresponds to what would have been obtained in an experimental test-rig by opening or closing of a valve. The evolution of < (fig 12a), < J8 (fig 12b) and < (fig 12c) is now plotted for 3 final flow rates (and consequently, three values of the pipe loss coefficient. It does not affect at all the beginning of the start-up as it can be seen Fig. 12. The angular acceleration coefficient is not affected by the final flow rate because the angular acceleration is imposed in the model. The flow acceleration is also not affected by the resistance of the pipe
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 12 Figure 1 : Sketch of the hydraulic test rig

Figure 3 :Figure 4 :

 34 Figure 3 : Time evolution of the experimental angular velocity (a) and comparison of the pressure evolution (b)

Figure 5 :

 5 Figure 5 : Time-evolutions of the pump angular velocity and of the flow rate (log-log representation).

Figure 6 :

 6 Figure 6 : a. Pump pressure coefficient as a function of the pump flow coefficient during the start-up (in blue) compared with the pump steady characteristics (in red). b. zoom on the initial instants of the start-up.

Figure 7 :

 7 Figure 7: Time evolution of several pressure coefficients in a Log-log presentation.

Figure 8 :

 8 Figure 8: Time evolution of the flow coefficient.

Figure 9 :Figure 10 :Figure 11 :

 91011 Figure9: Comparison of the pressure coefficient evolution for three acceleration rates (cases 1, 5 and 6 of table2)

Figure 12 :

 12 Figure12: Effect of the pipe resistance (and consequently of the final flow rate -case 1, 3 and 4 from table 2)

Table 1 :

 1 Pump specifications

	Impeller geometric specifications	Diffuser geometric specifications Hydraulic Specifications
	Inlet vane angle β 1α	32.2°	Inlet Diameter R 3	101.5 mm	Nominal speed	2900 rpm
	Outlet vane angle β 2α	23°	Outlet Diameter R 4 120 mm	Nominal flow rate	23 m 3 /h
	Number of vanes	5	Constant width b 3 6 mm	Nominal total pump	
					pressure	4.15 bar
	Inlet diameter R 1	19.25 mm				
	Outer diameter R 2	101.25 mm				
	Outer width b 2	7 mm				

Table 2 :

 2 Test plan

		Final speed (rpm)	Final flow rate (m 3 /h)	Pressure loss coefficient k	Time constant	Pipe
	1	2900	23 (q n )	33.2	τ=0.2 s	Short (L = 5 m)
	2	1450	11.5 (q n )	33.2	τ=0.2 s	Short (L = 5 m)
	3	2900	34.5 (1.5 q n )	10	τ=0.2 s	Short (L = 5 m)
	4	2900	11.5 (0.5 qn)	157	τ=0.2 s	Short (L = 5 m)
	5	2900	23 (q n )	33.2	τ=2 s	Short (L = 5 m)
	6	2900	23 (q n )	33.2	τ=20 s	Short (L = 5 m)
	7	2900	23 (q n )	33.2	τ=0.2 s	Long (L = 10 m)