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Introduction

In recent years, conservation laws with non-local flux gained growing attention for a wide field of applications. Indeed, they turned out to be suitable to describe several phenomena: flux functions depending on space-integrals of the unknown appear for example in models for sedimentation [START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF], supply chains [START_REF] Gröschel | Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity[END_REF], conveyor belts [START_REF] Göttlich | Modeling, simulation and validation of material flow on conveyor belts[END_REF], crowd motions [START_REF] Colombo | A class of nonlocal models for pedestrian traffic[END_REF] and traffic flows [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF][START_REF] Chiarello | Non-local multi-class traffic flow models[END_REF][START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]. For this type of equations, general existence and uniqueness results have been established in [START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF][START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF][START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF] for specific classes of scalar equations in one space-dimension, and in [START_REF] Aggarwal | Nonlocal systems of conservation laws in several space dimensions[END_REF][START_REF] Chiarello | Non-local multi-class traffic flow models[END_REF] for systems of equations coupled through the non-local term.

In this paper, we propose a one-dimensional scalar model, arising in traffic flow modeling. The main difference with respect to the above mentioned literature is that the flux function may involve different velocity functions on different parts of the road. The model focuses on a non-local mean downstream velocity and can therefore describe the behavior of drivers on two stretches of a road with different velocities and capacities, without violating the maximal density constraint on each road segment. Hence, we are modelling a 1-to-1 junction and this model can be seen as a first step towards a network formulation for traffic flow models with non-local flux. Note that the work [START_REF] Shen | Traveling Waves for Conservation Laws with Nonlocal Flux for Traffic Flow on Rough Roads[END_REF] is dealing with a similar setting, where the author studies traveling waves profiles of conservation laws with non-local flux functions, describing traffic flow on a road with just different maximum velocities. We approximate the solution using an adapted Godunov or rather upwind type scheme. Deriving several properties of the scheme and relying on a Kružkov type entropy condition, we are able to prove the well-posedness of the model.

Since it is still an open question whether the solution of the non-local model tends to the solution of the corresponding local equation when the support of the kernel function tends to zero, see for example [START_REF] Colombo | Recent results on the singular local limit for nonlocal conservation laws[END_REF] for an overview, we investigate this issue only from the numerical point of view.

The paper is organized as follows: In Section 2, we present our model and the main result of this work. In Section 3, we prove the Lipschitz continuous dependence of weak entropy solutions with respect to the initial data, which implies their uniqueness. In Section 4, we introduce an adapted upwind type scheme and derive important properties: the maximum principle, uniform total variation (BV) estimates and a discrete entropy inequality. Afterwards, we prove the convergence of the scheme and the main theorem in Section 5. In the last section, we present some numerical simulations of our non-local junction model and we numerically investigate the behaviour of the corresponding solutions as the support of the kernel function tends to zero.

Modeling

Based on the model presented in [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF] we consider the following conservation law

∂ t ρ(t, x) + ∂ x f (t, x, ρ) = 0, x ∈ R, t > 0, (2.1) 
where f (t, x, ρ) := ρ(t, x)V 1 (t, x) + g(ρ(t, x))V 2 (t, x), (2.2) with g(ρ) := min{ρ, ρ 2 max }, (2.3)

V 1 (t, x) := min{x+η,0} min{x,0}
v 1 (ρ(t, y))ω η (y -x)dy, (2.4)

V 2 (t, x) := max{x+η,0} max{x,0} v 2 (ρ(t, y))ω η (y -x)dy, (2.5) 
for any η > 0. We couple the equation (2.1) with the initial datum

ρ(0, x) = ρ 0 (x) ∈ BV(R), s.t. ρ 0 (x) ∈ [0, ρ 1 max ] for x < 0 and ρ 0 (x) ∈ [0, ρ 2 max ] for x > 0.
(2.6)

The model assumes that drivers adapt their speed based on a weighted mean of downstream velocities. In the considered setting, changes in road characteristics at x = 0 may translate in different velocity functions, v 1 and v 2 , and in different road capacities, ρ 1 max and ρ 2 max , for x < 0 and x > 0 respectively. An example of such a situation on a road is illustrated in Figure 1. Here, different maximum capacities and different velocity functions can be "seen" by the
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Figure 1: Illustration of cars on a road with different parameters on each segment. The grey area represents the non-local traffic downstream information of the car in light grey. In this model, this car slows down in advance with respect to the density of cars in front of it. The illustration describes a microscopic evolution but can also be used for our macroscopic model.

car in light grey. In (2.2), the flux also accounts for the maximum capacity of the second road segment.

The special structure of the flux function (2.2) does not fit into the framework proposed in e.g. [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF][START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF][START_REF] Keimer | Existence, uniqueness and regularity results on nonlocal balance laws[END_REF]. Only for v 1 ≡ v 2 and therefore ρ 1 max = ρ 2 max the model coincides with the one presented in [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]. Therefore, we have to investigate its well-posedness in the general case.

We impose the following reasonable hypotheses on v i , i ∈ {1, 2} and ω η :

v i ∈ C 2 ([0, ρ i max ]; R + ) : v i ≤ 0, v i (ρ i max ) = 0, ω η ∈ C 1 ([0, η]; R + ) : ω η ≤ 0, η 0 ω η (x)dx = 1 ∀η > 0, (2.7) 
where η represents the look-ahead distance of the drivers. Since the flux function (2.2) is continuous in x, entropy weak solutions of (2.1), (2.6) are intended in the following way: Definition 1 (Entropy weak solution (see [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF])). A measurable function

ρ ∈ C([0, +∞); L 1 (R)) : [0, +∞) × R → [0, max{ρ 1 max , ρ 2 max }]
is an entropy weak solution of the initial value problem (2.1)-(2.6) if for any test function

ϕ ∈ C 1 c ([0, +∞) × R; R + ) and for any constant c ∈ R, ∞ 0 R |ρ -c|∂ t ϕ + sgn(ρ -c)(f (t, x, ρ) -f (t, x, c))∂ x ϕ -sgn(ρ -c)∂ x f (t, x, c)ϕ dxdt + ∞ -∞ |ρ 0 (x) -c|ϕ(0, x) dx ≥ 0.
(2.8)

Remark 1. We note that the entropy condition is essential to obtain the uniqueness of solutions in the framework of our proof 's technique. Under suitable assumptions, an alternative could be to follow the approach considered in [START_REF] Keimer | Existence, uniqueness and regularity results on nonlocal balance laws[END_REF], where the uniqueness is obtained as a consequence of the Banach fixed point theorem and therefore no entropy condition is needed.

The main result of this paper is the following theorem:

Theorem 1. Let ρ 0 ∈ BV(R; [0, max{ρ 1 max , ρ 2 max }]
) such that ρ 0 (x) ≤ ρ 1 max for x < 0 and ρ 0 (x) ≤ ρ 2 max for x ≥ 0, and hypotheses (2.7) hold. Then the Cauchy problem

∂ t ρ(t, x) + ∂ x f (t, x, ρ) = 0, x ∈ R, t > 0, ρ(0, x) = ρ 0 (x), x ∈ R,
admits a unique entropy weak solution in the sense of Definition 1 and

0 ≤ ρ(t, x) ≤ ρ 1 max for a.e. x < 0, t > 0, 0 ≤ ρ(t, x) ≤ ρ 2 max
for a.e. x ≥ 0, t > 0.

(2.9)

Theorem 1 is proved at the end of Section 5.

Uniqueness

Let us start to prove the Lipschitz continuous dependence of weak entropy solutions with respect to the initial data, which ensures the uniqueness of entropy solutions of the model (2.1)-(2.6). We follow [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF][START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF], using Kružkov's doubling of variables technique [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF].

Theorem 2. Under hypotheses (2.7), let ρ and ρ be two entropy solutions of (2.1) with initial datum ρ 0 and ρ0 , respectively. Then, for any T > 0, there holds

ρ(t, •) -ρ(t, •) L 1 ≤ exp(KT ) ρ 0 -ρ0 L 1 ∀t ∈ [0, T ], (3.1) 
with K given by (3.7).

Proof. The functions ρ and ρ are weak entropy solutions of

∂ t ρ(t, x) + ∂ x ρ(t, x)V 1 (t, x) + g(ρ)V 2 (t, x) = 0, ρ(0, x) = ρ 0 (x), ∂ t ρ(t, x) + ∂ x ρ(t, x) Ṽ1 (t, x) + g(ρ) Ṽ2 (t, x) = 0, ρ(0, x) = ρ0 (x),
respectively. V i , Ṽi for i = 1, 2 are defined as in (2.4) and (2.5), where the convolution is computed over the velocity of ρ and ρ, respectively. They are bounded measurable functions and Lipschitz continuous w.r.t.

x since ρ, ρ ∈ (L ∞ ∩ BV) (R + × R; R).
Using the classical doubling of variables technique, see [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients[END_REF][START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF], we get the following inequality:

ρ(t, •) -ρ(t, •) L 1 ≤ ρ 0 -ρ0 L 1 + T 0 R ∂ x ρ(t, x) V 1 (t, x) -Ṽ1 (t, x) dxdt + T 0 R ∂ x ρ(t, x) V 2 (t, x) -Ṽ2 (t, x) dxdt (3.2) + T 0 R |ρ| ∂ x V 1 -∂ x Ṽ1 dxdt + T 0 R g(ρ) ∂ x V 2 -∂ x Ṽ2 dxdt,
where ∂ x ρ must be understood in the sense of measures. Applying the mean value theorem and using the properties of the kernel function, we deduce

V i (t, x) -Ṽi (t, x) ≤ ω η (0) v i ∞ ρ(t, •) -ρ(t, •) L 1 , for i = 1, 2. (3.3) 
Using the Leibniz integral rule and again the mean value theorem, we can also obtain for a.e.

x ∈ R

∂ x V 1 (t, x) -∂ x Ṽ1 (t, x) =                          0, if x > 0, 0 x (v 1 (ρ(t, y)) -v 1 (ρ(t, y)))ω η (y -x)dy + v 1 (ρ(t, x)) -v 1 (ρ(t, x)) ω η (0) , if -η < x < 0, x+η x (v 1 (ρ(t, y)) -v 1 (ρ(t, y)))ω η (y -x)dy -v 1 (ρ(t, x + η)) -v 1 (ρ(t, x + η)) ω η (η) + v 1 (ρ(t, x)) -v 1 (ρ(t, x)) ω η (0) , if x < -η ≤ ω η ∞ v 1 ∞ ρ(t, •) -ρ(t, •) L 1 (3.4) + ω η (0) v 1 ∞ |ρ -ρ|(t, x + η) + |ρ -ρ|(t, x) .
Similarly, we obtain

∂ x V 2 (t, x) -∂ x Ṽ2 (t, x) ≤ ω η ∞ v 2 ∞ ρ(t, •) -ρ(t, •) L 1 (3.5) + ω η (0) v 2 ∞ |ρ -ρ|(t, x + η) + |ρ -ρ|(t, x) . (3.6) 
Plugging (3.3), (3.4), (3.5) into (3.2), we obtain

ρ(t, •) -ρ(t, •) L 1 ≤ ρ 0 -ρ0 L 1 + max i=1,2 v i ∞ T 0 ρ(t, •) -ρ(t, •) L 1 dt 2ω η (0) sup t∈[0,T ] ρ(t, •) BV(R) + ω η ∞ sup t∈[0,T ] ρ(t, •) L 1 + sup t∈[0,T ] g(ρ(t, •)) L 1   + max i=1,2 v i ∞ ω η (0) sup t∈[0,T ] ρ(t, •) ∞ + sup t∈[0,T ] g(ρ(t, •)) ∞ T 0 R |ρ -ρ|(t, x + η) + |ρ -ρ|(t, x) dxdt ≤ ρ 0 -ρ0 L 1 + K T 0 ρ(t, •) -ρ(t, •) L 1 dt, with K := max i=1,2 v i ∞ 2ω η (0) sup t∈[0,T ] ρ(t, •) BV(R) + ω η ∞ sup t∈[0,T ] ρ(t, •) L 1 + sup t∈[0,T ] g(ρ(t, •)) L 1 +2ω η (0) sup t∈[0,T ] ρ(t, •) ∞ + sup t∈[0,T ] g(ρ(t, •)) ∞   . (3.7)
By Gronwall's lemma we get the thesis and for ρ 0 = ρ0 the uniqueness of entropy solutions.

Remark 2. Note that we cannot directly apply previous results in the literature [START_REF] Chiarello | Stability estimates for non-local scalar conservation laws[END_REF][START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF][START_REF] Karlsen | On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients[END_REF] to the present model, because it does not fit precisely the assumptions therein. Moreover, direct computations allow to recover sharper estimates on the coefficients.

Numerical scheme

In order to prove the well-posedness of model (2.1)-(2.6), we prove the existence of solutions via a numerical scheme which is based on the scheme from [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]. Even though this scheme has been introduced in [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF] as a Godunov type scheme, it reduces to an upwind type scheme.

For j ∈ Z and n ∈ N, let x j-1/2 = j∆x be the cell interfaces, x j = (j + 1/2)∆x the cells centers, corresponding to a space step ∆x such that η = N η ∆x for some N η ∈ N, and let t n = n∆t be the time mesh. In particular, x = x -1/2 = 0 is a cell interface. We aim at constructing a finite volume approximate solution

ρ ∆x such that ρ ∆x (t, x) = ρ n j for (t, x) ∈ [t n , t n+1 [ ×[x j-1/2 , x j+1/2 [.
To this end, we approximate the initial datum ρ 0 with the cell averages

ρ 0 j = 1 ∆x x j+1/2 x j-1/2 ρ 0 (x)dx, j ∈ Z.
Following [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF], we consider the numerical flux function

F n j+1/2 (ρ n j ) := ρ n j V 1,n j + g(ρ n j )V 2,n j (4.1) with V 1,n j = min{-j-2,Nη-1} k=0 γ k v 1 (ρ n j+k+1 ), V 2,n j = Nη-1 k=max{-j-1,0} γ k v 2 (ρ n j+k+1 ), (4.2) 
γ k = (k+1)∆x k∆x ω η (x)dx, k = 0, . . . , N η -1, (4.3) 
where we set, with some abuse of notation b k=a = 0 whenever b < a. In this way we can define the following finite volume numerical scheme

ρ n+1 j = ρ n j -λ F n j+1/2 (ρ n j ) -F n j-1/2 (ρ n j-1 ) with λ := ∆t ∆x . (4.4) 
Note that, due to the accurate calculation of the integral in (4.3) and the definition of the convoluted velocities in (4.2), there holds

0 ≤ V 1,n j ≤ v 1 max , 0 ≤ V 2,n j ≤ v 2 max , 0 ≤ V 1,n j + V 2,n j ≤ max{v 1 max , v 2 max }, ∀ j ∈ Z, n ∈ N.
We set

v := max{ v 1 ∞ , v 2 ∞ }, v := max{ v 1 ∞ , v 2 ∞ }, ρ := max{ρ 1 max , ρ 2 max }
and consider the following CFL condition:

λ ≤ 1 γ 0 v ρ + v . (4.5) 
We will show that, under this CFL condition, the numerical scheme (4.1)-(4.4) satisfies a maximum principle, uniform BV estimates and a discrete entropy inequality. Equipped with these properties, we will show in Section 5 that the sequence of approximate solutions ρ ∆x converges towards the entropy solution of (2.1)-(2.6). Note that, for v 1 ≡ v 2 , the scheme (4.1)-(4.4) coincides with the scheme in [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF].

In the following proofs, we will omit the dependence on n of the flux function and the velocity whenever possible, in order to simplify the notation.

Maximum principle

The solutions generated by the numerical scheme (4.4) stay always positive and they are bounded by the maximum road capacity of each road segment as stated by the following lemma.

Lemma 1. Under hypothesis (2.6) and the CFL condition (4.5), the sequence generated by the numerical scheme (4.1)-(4.4) satisfies the following maximum principle:

0 ≤ ρ n j ≤ ρ 1 max for j ≤ -1 and 0 ≤ ρ n j ≤ ρ 2 max for j ≥ 0, ∀n ∈ N.
Proof. We start by showing the positivity. We directly obtain

ρ n+1 j = ρ n j -λ F n j+ 1 2 (ρ n j ) -F n j-1 2 (ρ n j-1 ) ≥ ρ n j -λF n j+ 1 2 (ρ n j ) ≥ ρ n j -λ v ρ n j ≥ 0.
Here we used the CFL condition (4.5) and g(ρ n j ) ≤ ρ n j . The rest of the proof follows closely the proof of [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]Theorem 3.1]. Therefore, we compute the differences of the velocities and obtain

V 1,n j-1 -V 1,n j =              Nη-1 k=1 (γ k -γ k-1 )v 1 (ρ n j+k ) -γ Nη-1 v 1 (ρ n j+Nη ) + γ 0 v 1 (ρ n j ), j ≤ -N η -1, -j-1 k=1 (γ k -γ k-1 )v 1 (ρ n j+k ) + γ 0 v 1 (ρ n j ), -N η ≤ j ≤ -2, γ 0 v 1 (ρ n -1 ), j = -1, 0, j ≥ 0, (4.6) 
and

V 2,n j-1 -V 2,n j =              0, j ≤ -N η -1, -γ Nη-1 v 2 (ρ n 0 ), j = -N η , Nη-1 k=-j (γ k -γ k-1 )v 2 (ρ n j+k ) -γ Nη-1 v 2 (ρ n j+Nη ), -N η + 1 ≤ j ≤ -1, Nη-1 k=1 (γ k -γ k-1 )v 2 (ρ n j+k ) -γ Nη-1 v 2 (ρ n j+Nη ) + γ 0 v 2 (ρ n j ), j ≥ 0. (4.
7) It is easy to see that the following estimates hold:

V 1,n j-1 -V 1,n j ≤ γ 0 v 1 (ρ n j ) j ≤ -1, 0, j ≥ 0, and V 2,n j-1 -V 2,n j ≤ 0 j ≤ -1, γ 0 v 2 (ρ n j ), j ≥ 0.
Using v 1 (ρ 1 max ) = v 2 (ρ 2 max ) = 0 and the mean value theorem we get

V 1,n j-1 -V 1,n j ≤ γ 0 v (ρ 1 max -ρ n j ) j ≤ -1, 0, j ≥ 0, and V 2,n j-1 -V 2,n j ≤ 0 j ≤ -1, γ 0 v (ρ 2 max -ρ n j ), j ≥ 0.
Now we consider the case j ≤ -1 and multiply the first inequality by ρ 1 max , subtract V 1,n j ρ n j and we get

V 1,n j-1 ρ 1 max -V 1,n j ρ n j ≤ γ 0 v ρ + V 1,n j (ρ 1 max -ρ n j ).
Similarly, we get

V 2,n j-1 g(ρ 1 max ) -V 2,n j g(ρ n j ) ≤ V 2,n j g(ρ 1 max ) -g(ρ n j ) ≤ V 2,n j (ρ 1 max -ρ n j ).
Adding the last two inequalities we obtain,

V 1,n j-1 ρ 1 max -V 1,n j ρ n j + V 2,n j-1 g(ρ 1 max ) -V 2,n j g(ρ n j ) ≤ γ 0 v ρ + v (ρ 1 max -ρ n j ).
Due to the CFL condition (4.5), we have for j ≤ -1

ρ n+1 j ≤ ρ n j + λ V 1,n j-1 ρ 1 max -V 1,n j ρ n j + V 2,n j-1 g(ρ 1 max ) -V 2,n j g(ρ n j ) ≤ ρ 1 max .
For j ≥ 0 the bound

V 2,n j-1 ρ 2 max -V 2,n j ρ n j ≤ γ 0 v ρ + v (ρ 2 max -ρ n j )
follows analogously to above. Note that V 1,n j = 0 for j ≥ -1. Since g(ρ n j-1 ) ≤ ρ 2 max holds even for j = 0 and g(ρ n j ) = ρ n j for j ≥ 0, we obtain

ρ n+1 j ≤ ρ n j + λ V 2,n j-1 ρ 2 max -V 2,n j ρ n j ≤ ρ 2 max .
This concludes the proof.

Remark 3. The role of the limiter g given by (2.3) in the flux function (2.2) is essential for the discrete maximum principle above. Indeed, let us consider the model without this limiter.

In order to deal with meaningful velocities, we set v 2 (ρ) = 0 if ρ > ρ 2 max , such that we have

V 2 (t, x) = max{x+η,0} max{x,0} max{0, v 2 (ρ(t, y))}ω η (y -x)dy.
For this model, it is possible to prove a maximum principle on [0, max{ρ 1 max , ρ 2 max }] as above and similar BV estimates as below, so that the convergence to a solution is ensured. Nevertheless, this solution has an interesting behavior for η → ∞ and an initial datum of compact support; in this case, V 1 (t, x) + V 2 (t, x) converges pointwise to v 2 (0) and it is possible to prove that the solution will converge to the solution of a linear transport with velocity v 2 (0) (see [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF]Corollary 1.3] for a similar result). Therefore, it is obvious that, if ρ 1 max > ρ 2 max , for any initial datum ρ 0 of compact support, such that ρ 2 max < ρ 0 (x) ≤ ρ 1 max for x < 0, the corresponding solution does not satisfy (2.9), i.e. ρ(x, t) > ρ 2 max for x ∈ ]0, a[, a > 0, and t and η large enough.

BV estimate

In addition to the L ∞ bound, we also need a uniform estimate on the total variation of the sequence of approximate solutions. The crucial part here lies in the presence of the limiter g at x = 0. Lemma 2. Let ρ ∆x be constructed by (4.1)-(4.4) and let the CFL condition (4.5) hold, then for every T > 0 the following discrete space BV estimate is satisfied:

T V (ρ ∆x (T, •)) ≤ exp T w η (0) 2 v + v ρ T V (ρ 0 ) + T 2ω η (0) v ρ =: K(T ). (4.8) 
Proof. For all j ∈ Z, we set ∆ n j := ρ n j+1 -ρ n j . In the following we consider a regularization of the function g defined in (2.3), namely

g ε (ρ) = 1 2 ρ + ρ 2 max -(ρ -ρ 2 max ) 2 + ε , ε > 0. (4.9)
The function g ε is differentiable for every ε > 0 with g ε ≤ 1 for all ε > 0. This will allow us to use the mean value theorem in the following computations. In particular, we will denote by ξ n j a value between ρ n j and ρ n j+1 such that g ε (ξ n j )∆ n j = g ε (ρ n j+1 ) -g ε (ρ n j ) holds. We obtain:

∆ n+1 j =∆ n j -λ F n j+ 3 2 (ρ n j+1 ) -2F n j+ 1 2 (ρ n j ) + F n j-1 2 (ρ n j-1 ) =∆ n j -λ V 1,n j+1 + g ε (ξ n j )V 2,n j+1 ∆ n j -V 1,n j-1 + g ε (ξ n j-1 )V 2,n j-1 ∆ n j-1 +ρ n j V 1,n j+1 -2V 1,n j + V 1,n j-1 + g ε (ρ n j ) V 2,n j+1 -2V 2,n j + V 2,n j-1
.

Let us now consider the differences of the velocities. With the differences already computed in (4.6) and (4.7) and the help of the mean value theorem, where ζ n j is a value between ρ n j and ρ n j+1 for which

v i (ζ n j )∆ n j = v i (ρ n j+1 ) -v i (ρ n j ) for i ∈ {1, 2} holds, we derive V 1,n j+1 -2V 1,n j + V 1,n j-1 =                      Nη-1 k=1 (γ k-1 -γ k )v 1 (ζ n j+k )∆ n j+k + γ Nη-1 v 1 (ζ n j+Nη )∆ n j+Nη -γ 0 v 1 (ζ n j )∆ n j , j ≤ -N η -2, Nη-1 k=1 (γ k-1 -γ k )v 1 (ζ n j+k )∆ n j+k -γ Nη-1 v 1 (ρ n -1 ) -γ 0 v 1 (ζ n j )∆ n j , j = -N η -1, -j-2 k=1 (γ k-1 -γ k )v 1 (ζ n j+k )∆ n j+k + (γ -j-1 -γ -j-2 )v 1 (ρ n -1 ) -γ 0 v 1 (ζ n j )∆ n j , -N η ≤ j ≤ -3, (γ 1 -γ 0 )v 1 (ρ n -1 ) -γ 0 v 1 (ζ n j )∆ n j , j = -2, γ 0 v 1 (ρ n -1 ), j = -1, 0, j ≥ 0, and 
V 2,n j+1 -2V 2,n j + V 2,n j-1 =                        0, j ≤ -N η -2, γ Nη-1 v 2 (ρ n 0 ), j = -N η -1, γ Nη-1 v 2 (ζ n j+Nη )∆ n j+Nη + (γ Nη-1 -γ Nη )v 2 (ρ n 0 ), j = -N η , Nη-1 k=-j (γ k-1 -γ k )v 2 (ζ n j+k )∆ n j+k + γ Nη-1 v 2 (ζ n j+Nη )∆ n j+Nη + (γ -j-2 -γ -j-1 )v 2 (ρ n 0 ), -N η + 1 ≤ j ≤ -2, Nη-1 k=1 (γ k-1 -γ k )v 2 (ζ n j+k )∆ n j+k + γ Nη-1 v 2 (ζ n j+Nη )∆ n j+Nη -γ 0 v 2 (ρ n 0 ), j = -1, Nη-1 k=1 (γ k-1 -γ k )v 2 (ζ n j+k )∆ n j+k + γ Nη-1 v 2 (ζ n j+Nη )∆ n j+Nη -γ 0 v 2 (ζ n j )∆ n j , j ≥ 0.
Putting everything together we have

∆ n+1 j = 1 -λ V 1,n j+1 + g ε (ξ n j )V 2,n j+1 -γ 0 a n j ∆ n j + λ V 1,n j-1 + g ε (ξ n j-1 )V 2,n j-1 ∆ n j-1 + λ Nη-1 k=1 (γ k-1 -γ k )b n j+k ∆ n j+k + λγ Nη-1 c n j+Nη ∆ n j+Nη + λd n j ρ j v 1 (ρ n -1 ) -g ε (ρ n j )v 2 (ρ n 0 ) , (4.10) 
where

a n j =        v 1 (ζ n j )ρ n j , j ≤ -2, 0, j = -1, v 2 (ζ n j )ρ n j , j ≥ 0, b n j+k =        -v 1 (ζ n j+k )ρ n j , j + k ≤ -2, 0, j + k = -1, -v 2 (ζ n j+k )g ε (ρ n j ), j + k ≥ 0, c n j+Nη =        -v 1 (ζ n j+Nη )ρ n j , j ≤ -N η -2, 0, j = -N η -1, -v 2 (ζ n j+Nη )g ε (ρ n j ), j ≥ -N η , d n j =                  0, j ≤ -N η -2, γ Nη-1 , j = -N η -1, γ -j-2 -γ -j-1 , -N η ≤ j ≤ -2, -γ 0 , j = -1, 0, j ≥ 0.
Since the coefficients in (4.10) are positive due to the CFL condition (4.5), we take absolute values, sum over j and rearrange the indices, which gives us

j |∆ n+1 j | ≤ j 1 -λ V 1,n j+1 + g ε (ξ n j )V 2,n j+1 -γ 0 a n j |∆ n j | + λ V 1,n j-1 + g ε (ξ n j-1 )V 2,n j-1 |∆ n j-1 | + λ Nη-1 k=1 (γ k-1 -γ k )b n j+k |∆ n j+k | + λγ Nη-1 c n j+Nη |∆ n j+Nη | +λ|d n j | ρ j v 1 (ρ n -1 ) -g ε (ρ n j )v 2 (ρ n 0 ) = j 1 -λ V 1,n j+1 + g ε (ξ n j )V 2,n j+1 -V 1,n j -g ε (ξ n j )V 2,n j + λ γ 0 a n j + Nη-1 k=1 (γ k-1 -γ k )b n j + γ Nη-1 c n j |∆ n j | + j λ|d n j | ρ j v 1 (ρ n -1 ) -g ε (ρ n j )v 2 (ρ n 0 )
. Now we use that V i,n j -V i,n j+1 ≤ γ 0 v and g ε ≤ 1 for the first term and for the second term we have a n j ≤ 0 and b n j , c n j ≤ v ρ , which gives us

j |∆ n+1 j | ≤ 1 + λγ 0 2 v + v ρ j |∆ n j | + j λ|d n j | ρ j v 1 (ρ n -1 ) -g ε (ρ n j )v 2 (ρ n 0 ) .
Since j |d n j | = 2γ 0 holds, using also λγ 0 ≤ ∆tω η (0) we finally obtain

j |∆ n+1 j | ≤ 1 + ∆tω η (0) 2 v + v ρ j |∆ n j | + ∆t2ω η (0) v ( ρ + √ ε 2 ).
This estimate holds for any ε > 0 and for ε → 0 we obtain the following estimate for the total variation

T V (ρ(T, •)) ≤ 1 + ∆tω η (0) 2 v + v ρ T /∆t T V (ρ 0 ) + T 2ω η (0) v ρ ≤ exp ω η (0) 2 v + v ρ T T V (ρ 0 ) + T 2ω η (0) v ρ .
To finally apply Helly's Theorem we also need an estimate for the discrete total variation in space and time, which we are now able to provide. Lemma 3. Let ρ ∆x be constructed by (4.1)-(4.4) and let the CFL condition (4.5) hold, then for every T > 0 the following discrete space and time total variation estimate is satisfied:

T V (ρ ∆x ; R × [0, T ]) ≤ T K(T )(1 + v ρ + v )
with K(T ) defined as in (4.8).

Using the regularization of g given by (4.9), the proof is entirely analogous to the one of [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]Theorem 3.3].

Discrete Entropy Inequality

In the following, we use the notation a ∧ b = max{a, b}, a ∨ b = min{a, b} and follow [START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF][START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF][START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]. 

ρ n+1 j -c ≤ ρ n j -c -λ H n j+1/2 (ρ n j ) -H n j-1/2 (ρ n j-1 ) (4.11) -λ sgn(ρ n+1 j -c) F n j+1/2 (c) -F n j-1/2 (c) ,
where

H n j+1/2 (u) = F n j+1/2 (u ∧ c) -F n j+1/2 (u ∨ c). Proof. Let G n j (u, w) = w -λ(F n j+1/2 (w) -F n j-1/2 (u)
). Under the CFL condition (4.5) and using the regularization (4.9) of g, G j is monotone in both its arguments, since we obtain

∂G n j ∂w = 1 -λ(V 1,n j+ 1 2 + g ε (w)V 2,n j+ 1 2 ) ≥ 0, ∂G n j ∂u = λ(V 1,n j-1 2 + g ε (u)V 2,n j-1 2 ) ≥ 0.
The monotonicity implies that

G n j (ρ n j-1 ∧ c, ρ n j ∧ c) ≥ G n j (ρ n j-1 , ρ n j ) ∧ G n j (c, c) (4.12) G n j (ρ n j-1 ∨ c, ρ n j ∨ c) ≤ G n j (ρ n j-1 , ρ n j ) ∨ G n j (c, c). (4.13)
Subtracting (4.13) from (4.12), we obtain

G n j (ρ n j-1 , ρ n j ) -G n j (c, c) ≤ ρ n j -c -λ H n j+1/2 (ρ n j ) -H n j-1/2 (ρ n j-1 ) . (4.14)
The left side of (4.14

) is ρ n+1 j -c + λ(F n j+1/2 (c) -F j-1/2 (c))
, and we get

ρ n+1 j -c + λ(F n j+1/2 (c) -F n j-1/2 (c)) ≥ sgn(ρ n+1 j -c) ρ n+1 j -c + λ(F n j+1/2 (c) -F n j-1/2 (c)) = ρ n+1 j -c + λ sgn(ρ n+1 j -c) F n j+1/2 (c) -F n j-1/2 (c) . (4.15)
The proof is completed by combining (4.14) and (4.15).

Convergence

Lemma 5. Let ρ = ρ(t, x) ∈ L ∞ ∩ BV([0, +∞) × R; [0, max{ρ 1 max , ρ 2 max }) be the L 1 loc -limit of approximations ρ ∆x generated by the upwind scheme (4.4) and let c ∈ R, ϕ ∈ C 1 c ([0, +∞)×R). Then ρ satisfies the entropy inequality given by (2.8).

Proof. Let ϕ ∈ C 1 c ([0, +∞) × R) and set ϕ n j = ϕ(t n , x j ). We multiply the discrete entropy inequality (4.11) by ϕ n j ∆x, and then apply summation by parts to get

∆x∆t n≥0 j∈Z ρ n+1 j -c (ϕ n+1 j -ϕ n j )/∆t + ∆x j ρ 0 j -c ϕ 0 j (5.1) + ∆x∆t n≥0 j∈Z H n j-1/2 (ϕ n j -ϕ n j-1 )/∆x (5.2) -∆x∆t n≥0 j∈Z sgn(ρ n+1 j -c) F n j+1/2 (c) -F n j-1/2 (c) ϕ n j /∆x ≥ 0.
(5.3) By Lebesgue's dominated convergence theorem, as ∆x → 0, we have

(5.1) → ∞ 0 R |ρ -c|ϕ t dxdt + ∞ -∞ |ρ 0 (x) -c|ϕ(0, x)dx.
As ∆x → 0, the sums in (5.2) converge by standard arguments, see [START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF], [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF]Sec. 4 Proof of Theorem 1], [START_REF] Karlsen | L 1 -stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF], to

∞ 0 R sgn(ρ -c)(f (t, x, ρ) -f (t, x, c))ϕ x dxdt.
Now let us study the sum (5.3) and we have

(5.3) = -∆x∆t n≥0 j∈Z sgn(ρ n+1 j -c) cV 1 j + g(c)V 2 j -cV 1 j-1 -g(c)V 2 j-1 ϕ n j /∆x = -∆x∆t n≥0 j∈Z sgn(ρ n+1 j -c) c V 1 j -V 1 j-1 ∆x + g(c) V 2 j -V 2 j-1 ∆x ϕ n j = -∆x∆t n≥0 j∈Z (sgn(ρ n+1 j -c) -sgn(ρ n j -c)) c V 1 j -V 1 j-1 ∆x + g(c) V 2 j -V 2 j-1 ∆x ϕ n j -∆x∆t n≥0 j∈Z sgn(ρ n j -c) c V 1 j -V 1 j-1 ∆x + g(c) V 2 j -V 2 j-1 ∆x ϕ n j .
The second term in the last equality clearly converges to

- ∞ 0 ∞ -∞ sgn(ρ -c) c(V 1 ) x + g(c)(V 2 ) x ϕ)dxdt.
We will show now that the first term vanishes as ∆x → 0. We follow here [START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF][START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF] and we perform a summation by parts, which gives us:

∆t n≥0 j∈Z sgn(ρ n+1 j -c)ϕ n j c V 1,n+1 j -V 1,n+1 j-1 -V 1,n j -V 1,n j-1 +g(c) V 2,n+1 j -V 2,n+1 j-1 -V 2,n j -V 2,n j-1 + ∆t∆t∆x n≥0 j<0 sgn(ρ n+1 j -c)   c V 1,n+1 j -V 1,n+1 j-1 ∆x + g(c) V 2,n+1 j -V 2,n+1 j-1 ∆x    ϕ n+1 j -ϕ n j ∆t .
As can be seen in (4.6) and (4.7)

V i,n+1 j -V i,n+1 j-1
≤ ∆xω η (0) v holds and due to the compactness of the support function the second term vanishes as ∆x, ∆t → 0. For the first term we first obtain that

V 1,n+1 j -V 1,n+1 j-1 -V 1,n j -V 1,n j-1 =                        Nη-1 k=1 (γ k-1 -γ k )(v 1 (ρ n+1 j+k -v 1 (ρ n j+k )) + γ Nη-1 (v 1 (ρ n+1 j+Nη ) -v 1 (ρ n j+Nη )) -γ 0 (v 1 (ρ n+1 j ) -v 1 (ρ n j )), j ≤ -N η -1, -j-1 k=1 (γ k-1 -γ k )(v 1 (ρ n+1 j+k ) -v 1 (ρ n j+k )) -γ 0 (v 1 (ρ n+1 j ) -v 1 (ρ n j )), -N η ≤ j ≤ -2, γ 0 (v 1 (ρ n+1 -1 ) -v 1 (ρ n -1 )), j = -1, and 
V 2,n+1 j -V 2,n+1 j-1 -V 2,n j -V 2,n j-1 =              0, j ≤ -N η -1, γ Nη-1 (v 2 (ρ n+1 j+Nη ) -v 2 (ρ n j+Nη )), j = -N η , Nη-1 k=-j (γ k-1 -γ k )(v 2 (ρ n+1 j+k ) -v 2 (ρ n j+k )) + γ Nη-1 (v 2 (ρ n+1 j+Nη ) -v 2 (ρ n j+Nη )), -N η + 1 ≤ j ≤ -1.
Now we use the compact support of the test function. There exist T > 0 and R > 0 such that ϕ(t, x) = 0 for t > T and |x| > R. Let N T ∈ N and j 0 , j 1 ∈ Z be such that

T ∈ ]n T ∆t, (n T + 1)∆t], -R ∈]x j 0 -1 2 , x j 0 + 1 2 ], R ∈]x j 1 -1 2 , x j 1 + 1 2
]. We only consider j 0 < 0, since otherwise the term is already 0. In addition, similar to [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]Theorem 3.3], the following estimate is derived during the proof of Lemma 3:

N T n=0 j ∆x|ρ n+1 j -ρ n j | ≤ K,
By plugging in the equality obtained before, using the mean value theorem, the above mentioned estimate and g(c) ≤ c we obtain

∆t n≥0 j<0 sgn(ρ n+1 j -c)ϕ n j c V 1,n+1 j -V 1,n+1 j-1 -V 1,n j -V 1,n j-1 +g(c) V 2,n+1 j -V 2,n+1 j-1 -V 2,n j -V 2,n j-1 ≤ ∆t ∆x ϕ v c   γ Nη-1 N T n=0 min{-1,j 1 } j=j 0 ∆x|ρ n+1 j+Nη -ρ n j+Nη |+ Nη-1 k=1 (γ k-1 -γ k ) N T n=0 min{-1,j 1 } j=j 0 ∆x|ρ n+1 j+k -ρ n j+k | + γ 0 N T n=0 min{-1,j 1 } j=j 0 ∆x|ρ n+1 j -ρ n j |   ≤ ∆t ϕ v c K2ω η (0),
which goes to zero as ∆x → 0 (and then ∆t → 0). This concludes the proof.

Proof of Theorem 1.

Similar to [8, Theorem 1], [17, Theorem 2.3] or [6, Theorem 1], the convergence of the approximate solutions constructed by the upwind scheme (4.4) to the unique weak entropy solution can be proven by applying Helly's theorem, see [START_REF] Eymard | Finite volume methods[END_REF]Lemma 5.6]. Due to Lemma 1 and Lemma 3, there exists a sub-sequence of approximate solutions that converges to some ρ ∈ (L ∞ ∩ BV)([0, +∞) × R; [0, max{ρ 1 max , ρ 2 max }]). Lemma 5 shows that the limit function ρ is a weak entropy solution of (2.1)-(2.6) in the sense of Definition 1. Adding the uniqueness result in Theorem 2, we conclude the proof of Theorem 1.

Numerical simulations

In this section, we show some simulation results to illustrate the numerical solutions of the non-local model (2.1). The behaviour of solutions is also studied as the look-ahead distance η tends to zero. To this end, we will consider Riemann initial data of the type

ρ 0 (x) = ρ L , if x < 0, ρ R , if x > 0. (6.1)
We take a spatial step size of ∆x = 10 -3 . Due to the CFL condition (4.5) the time step size ∆t is given by ∆t ≈ 0.9∆x/(γ 0 v ρ + v ).

We divide this section into three parts. In the first part we analyze how our model behaves for a fixed look ahead distance η > 0. For non-local conservation laws, it is still an open question whether the model tends to the corresponding local equation for η tending to zero (see for example [START_REF] Colombo | Recent results on the singular local limit for nonlocal conservation laws[END_REF] for a recent overview). For this reason, we will investigate the limit question as η → 0 from the numerical point of view in Section 6.2. Overall, we will consider the following settings: The first two settings are used to show that the obtained solutions are reasonable also for nonlinear velocity functions, while the last two settings turn out to be interesting in Section 6.2. For all the tests, the kernel function is given by ω η (x) = 2(η -x)/η 2 and the final simulation time is T = 1. Finally, in Section 6.3, we will show that our model can be easily extended to more than two stretches and therefore to a sequence of 1-to-1 junctions to simulate traffic.

Test 1: v i (ρ) = v i max 1 - ρ ρ i max 2 for i ∈ {1, 2}, with v 1 max = 1, v 2 max = 2, ρ 1 max = ρ 2 max = 1, ρ L = 0.75, ρ R = 0.5; Test 2: as in Test 1, but with v 1 max = 2, v 2 max = 1; Test 3: v i (ρ) = v i max 1 -ρ ρ i max for i ∈ {1, 2}, with v 1 max = 2, v 2 max = 1, ρ 1 max = 0.5, ρ 2 max = 1, ρ L = 0.

Fixed look-ahead distance η

We set η = 0.1. Let us consider the first test. Here we start with a congested situation on the first road segment. In addition, the maximum velocity on the first road is lower than the one on the second road segment. Therefore, the traffic jam resolves over time as can be seen in Figure 2, left. In contrast to Test 1, Test 2 presents the opposite situation: the velocity on the first road segment is now higher than the second one. Hence, the traffic jam can not resolve and we get a backward traveling increase of the density (see Figure 2, right).

In the last two settings we can see that the presence of the look ahead distance results in a smoothing of the density close to the end of the first and the beginning of the second road segment, see Figure 3. 

Look-ahead distance η tending to zero

As mentioned above, the behaviour of solutions for η tending to zero is of special interest for non-local conservation laws. Concerning non-local LWR traffic flow models as in [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF][START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF], or model (2.1) with v 1 ≡ v 2 , so far the convergence to the classical LWR traffic flow model [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] can only be proven for monotone initial data (see [START_REF] Colombo | Recent results on the singular local limit for nonlocal conservation laws[END_REF][START_REF] Keimer | On approximation of local conservation laws by nonlocal conservation laws[END_REF]), since the solution is monotonicity preserving and therefore has a strict maximum principle and a bounded total variation, uniformly in η. Unfortunately, similar results do not hold for model (2.1) with v 1 = v 2 , since the model is, in general, not monotonicity preserving even for constant initial data. Therefore, we just investigate the limit numerically.

The local (discontinuous) conservation law corresponding to model (2.1) is given by:

ρ t + f (x, ρ) x = 0, with f (x, ρ) := H(-x)ρv 1 (ρ) + H(x)ρv 2 (ρ), (6.2) 
where H(x) is the Heaviside function. As pointed out in [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF][START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF], (6.2) admits many L 1 contraction semigroups, one for each so-called (A, B)-connection. The two most common connections are the one corresponding to the supply-demand approach [START_REF] Lebacque | The Godunov scheme and what it means for first order traffic flow models[END_REF], and the vanishing viscosity solution (see [START_REF] Karlsen | Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition[END_REF]Definition 3.1]), which is a weak solution satisfying, besides the Kruzkov entropy inequalities for x < 0 and x > 0, the Γ-condition of [START_REF] Diehl | On scalar conservation laws with point source and discontinuous flux function[END_REF][START_REF] Diehl | A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients[END_REF], see also [START_REF] Karlsen | Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition[END_REF]Definition 3.1] and [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF].

For instance, the vanishing viscosity solution can be obtained by a Godunov scheme considering a grid where x = 0 is a cell midpoint, see [START_REF] Karlsen | Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition[END_REF].

In the following, we will consider η ∈ {0.05, 0.01, 0.005, 0.001} and ∆x = 10 -4 to keep the nonlocal impact. We compare it to the solution of (6.2)-(6.1), which will be computed by the Godunov scheme as presented in [START_REF] Karlsen | Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition[END_REF], since we are interested in the vanishing viscosity solution. Note that, due to the different grids, we do not compute L 1 -errors between the different solutions.

We will now investigate the previous four test cases. In the first two settings, as η → 0 the solution of (2.1) with initial conditions (6.1) is very similar to the vanishing viscosity solution of the corresponding local problem, see Figure 4. We also remark that, in the parameters settings Test 1 and Test 2, the solution obtained by the supply-demand approach is equal to the vanishing viscosity solution.

Let us now consider Tests 3 and 4. The initial datum in both of them is exactly the density corresponding to the maximum fluxes attainable on each road segment. Therefore, the solution of the supply and demand approach is given by a stationary discontinuity coinciding with the initial datum. As can be seen in Figure 5, in both tests the limit of model (2.1) behaves as the vanishing viscosity solution. In Test 4, the numerical results also coincide with supply-demand solution. The most interesting case is Test 3. For these parameters, the vanishing viscosity solution differs from the supply-demand solution and, as can be seen in Figure 5 (left picture) the solution of the model (2.1) seems to converge to the vanishing viscosity solution for η tending to zero.

Linear network scenario

Finally, we show that the model can be extended to more than two stretches of a road. We consider the case of road works on a highway, modeled by the segment [0, L], with L = 2, where the road capacity and the maximal speed are smaller. Therefore, we have three different As in Section 6.1, the look ahead distance is η = 0.1, and as in Section 6.2 we also present the vanishing viscosity solution obtained by the Godunov scheme of [START_REF] Karlsen | Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition[END_REF] to get an impression of the corresponding local problem. As can be seen in Figure 6, the presence of the road works results in a traffic jam upstream and a decrease of the density downstream. As noticed in Section 6.2, the numerical solution of the non-local problem tends for small η towards the vanishing viscosity solution.

Conclusion

In this work we have presented a non-local flux model, which can handle different maximum velocities and capacities, i.e. different velocity functions, on the road and therefore models a 1-to-1 junction. The model considers a non-local mean downstream velocity on both road segments and satisfies a maximum principle on each road segment. We have proven its wellposedness, i.e. existence, uniqueness and continuous dependence of solutions with respect to the initial data, via an upwind numerical scheme. Numerical examples suggest that the solution tends to the vanishing viscosity solution of the corresponding local conservation law as the look-ahead distance goes to 0. We intend to further investigate this question in future work.

In addition, the model can be extended to more than two stretches to model traffic behavior on a more complex road segment, as shown in Section 6.3. Hence, this model can be seen as a first step towards non-local traffic flow models on networks. In the future, we aim to extend this model from the current simple network structure to a more general network formulation.
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 4 Let ρ ∆x be constructed by (4.1)-(4.4). If the CFL condition (4.5) holds, then for c ∈ R we have the following discrete entropy inequality
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 6134 Figure 6: Numerical solution for three road segments at T = 1
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