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Abstract

We present a model for a class of non-local conservation laws arising in traffic flow
modeling at road junctions. Instead of a single velocity function for the whole road, we
consider two different road segments, which may differ for their speed law and number of
lanes (hence their maximal vehicle density). We use an upwind type numerical scheme to
construct a sequence of approximate solutions and we provide uniform L∞ and total vari-
ation estimates. In particular, the solutions of the proposed model stay positive and below
the maximum density of each road segment. Using a Lax-Wendroff type argument and
the doubling of variables technique, we prove the well-posedness of the proposed model.
Finally, some numerical simulations are provided and compared with the corresponding
(discontinuous) local model.

Keywords: non-local scalar conservation laws, upwind scheme, macroscopic traffic
flow models on networks.

AMS subject classifications: 35L65, 65M12, 90B20

1 Introduction

In recent years, conservation laws with non-local flux gained growing attention for a wide
field of applications. Indeed, they turned out to be suitable to describe several phenomena:
flux functions depending on space-integrals of the unknown appear for example in models
for sedimentation [5], supply chains [19], conveyor belts [18], crowd motions [12] and traffic
flows [8, 9, 17]. For this type of equations, general existence and uniqueness results have been
established in [3, 8, 17] for specific classes of scalar equations in one space-dimension, and in
[2, 9] for systems of equations coupled through the non-local term.

In this paper, we propose a one-dimensional scalar model, arising in traffic flow modeling.
The main difference with respect to the above mentioned literature is that the flux function
may involve different velocity functions on different parts of the road. The model focuses on
a non-local mean downstream velocity and can therefore describe the behavior of drivers on
two stretches of a road with different velocities and capacities, without violating the maximal
density constraint on each road segment. Hence, we are modelling a 1-to-1 junction and this
model can be seen as a first step towards a network formulation for traffic flow models with
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non-local flux.
We approximate the solution using an adapted Godunov or rather upwind type scheme. De-
riving several properties of the scheme and relying on a Kružkov type entropy condition, we
are able to prove the well-posedness of the model.

Since it is still an open question whether the solution of the non-local model tends to the
solution of the corresponding local equation when the support of the kernel function tends to
zero, see for example [11] for an overview, we investigate this issue only from the numerical
point of view.

The paper is organized as follows: In Section 2, we present our model and the main result
of this work. In Section 3, we prove the Lipschitz continuous dependence of weak entropy
solutions with respect to the initial data, which implies their uniqueness. In Section 4, we
introduce an adapted upwind type scheme and derive important properties: the maximum
principle, uniform total variation (BV) estimates and a discrete entropy inequality. After-
wards, we prove the convergence of the scheme and the main theorem in Section 5. In the last
section, we show numerical simulations fixing the support of the kernel function that appears
in the non-local flux and we present some results regarding the limit model as the support
tends to zero.

2 Modeling

Based on the model presented in [17] we consider the following conservation law

∂tρ(t, x) + ∂xf(t, x, ρ) = 0, x ∈ R, t > 0, (2.1)

where
f(t, x, ρ) := ρ(t, x)V1(t, x) + g(ρ(t, x))V2(t, x), (2.2)

with

g(ρ) := min{ρ, ρ2
max}, (2.3)

V1(t, x) :=

∫ min{x+η,0}

min{x,0}
v1(ρ(t, y))ωη(y − x)dy, (2.4)

V2(t, x) :=

∫ max{x+η,0}

max{x,0}
v2(ρ(t, y))ωη(y − x)dy, (2.5)

for any η > 0. We couple the equation (2.1) with the initial datum

ρ(0, x) = ρ0(x) ∈ BV(R),

s.t. ρ0(x) ∈ [0, ρ1
max] for x < 0 and ρ0(x) ∈ [0, ρ2

max] for x > 0.
(2.6)

The model assumes that drivers adapt their speed based on a weighted mean of downstream
velocities. In the considered setting, changes in road characteristics at x = 0 may translate
in different velocity functions, v1 and v2, and in different road capacities, ρ1

max and ρ2
max, for

x < 0 and x > 0 respectively. In (2.2), the flux also accounts for the maximum capacity of
the second road segment. An illustration of the model can be seen in Figure 1.

The special structure of the flux function (2.2) does not fit into the framework proposed
in e.g. [8, 17, 23]. Only for v1 ≡ v2 and therefore ρ1

max = ρ2
max the model coincides with the

one presented in [17]. Therefore, we have to investigate its well-posedness in the general case.
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Figure 1: Illustration of the non-local traffic flow model (2.1) and (2.6) for different parameters
on each road segment

We impose the following reasonable hypotheses on vi, i ∈ {1, 2} and ωη:

vi ∈ C2([0, ρimax];R+) : v′i ≤ 0, vi(ρ
i
max) = 0,

ωη ∈ C1([0, η];R+) : ω′η ≤ 0,

∫ η

0
ωη(x)dx = 1 ∀η > 0,

(2.7)

where η represents the look-ahead distance of the drivers.
Since the flux function (2.2) is continuous in x, entropy weak solutions of (2.1), (2.6) are

intended in the following way:

Definition 1 (Entropy weak solution (see [25])). A measurable function

ρ : ΠT := [0, T [×R→ [0,max{ρ1
max, ρ

2
max}]

is an entropy weak solution of the initial value problem (2.1)–(2.6) if for any test function
ϕ ∈ C1

c (ΠT ;R+) and for any constant c ∈ R,∫∫
ΠT

(
|ρ− c|ϕt + sgn(ρ− c)(f(t, x, ρ)− f(t, x, c))ϕx − sgn(ρ− c)f(t, x, c)xϕ

)
dxdt

+

∫ ∞
−∞
|ρ0(x)− c|ϕ(0, x) dx ≥ 0.

(2.8)

The main result of this paper is the following theorem:

Theorem 1. Let ρ0 ∈ BV(R; [0,max{ρ1
max, ρ

2
max}]) such that ρ0(x) ≤ ρ1

max for x < 0 and
ρ0(x) ≤ ρ2

max for x ≥ 0, and hypotheses (2.7) hold. Then the Cauchy problem{
∂tρ(t, x) + ∂xf(t, x, ρ) = 0, x ∈ R, t > 0,

ρ(0, x) = ρ0(x), x ∈ R,

admits a unique entropy weak solution in the sense of Definition 1 and

0 ≤ ρ(t, x) ≤ ρ1
max for a.e. x < 0, t > 0,

0 ≤ ρ(t, x) ≤ ρ2
max for a.e. x ≥ 0, t > 0.

Theorem 1 is proved at the end of Section 5.
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3 Uniqueness

Let us start to prove the Lipschitz continuous dependence of weak entropy solutions with
respect to the initial data, which ensures the uniqueness of entropy solutions of the model
(2.1)–(2.6). We follow [6, 8, 17], using Kružkov’s doubling of variables technique [25].

Theorem 2. Under hypotheses (2.7), let ρ and ρ̃ be two entropy solutions of (2.1) with initial
datum ρ0 and ρ̃0, respectively. Then, for any T > 0, there holds∥∥ρ(t, ·)− ρ̃(t, ·)

∥∥
L1 ≤ exp(KT )‖ρ0 − ρ̃0‖L1 ∀t ∈ [0, T ], (3.1)

with K given by (3.7).

Proof. The functions ρ and ρ̃ are weak entropy solutions of

∂tρ(t, x) + ∂x
(
ρ(t, x)V1(t, x) + g(ρ)V2(t, x)

)
= 0, ρ(0, x) = ρ0(x),

∂tρ̃(t, x) + ∂x

(
ρ̃(t, x)Ṽ1(t, x) + g(ρ̃)Ṽ2(t, x)

)
= 0, ρ̃(0, x) = ρ̃0(x),

respectively. Vi, Ṽi for i = 1, 2 are defined as in (2.4) and (2.5), where the convolution is
computed over the velocity of ρ and ρ̃, respectively. They are bounded measurable functions
and Lipschitz continuous w.r.t. x since ρ, ρ̃ ∈

(
L1 ∩ L∞ ∩ BV

)
(R+ × R;R).

Using the classical doubling of variables technique, see [21, 25], we get the following inequality:

∥∥ρ(t, ·)− ρ̃(t, ·)
∥∥
L1 ≤‖ρ0 − ρ̃0‖L1 +

∫ T

0

∫
R

∣∣∂xρ(t, x)
∣∣∣∣∣V1(t, x)− Ṽ1(t, x)

∣∣∣dxdt
+

∫ T

0

∫
R

∣∣∂xρ(t, x)
∣∣∣∣∣V2(t, x)− Ṽ2(t, x)

∣∣∣dxdt (3.2)

+

∫ T

0

∫
R
|ρ|
∣∣∣∂xV1 − ∂xṼ1

∣∣∣dxdt+

∫ T

0

∫
R

∣∣g(ρ)
∣∣∣∣∣∂xV2 − ∂xṼ2

∣∣∣dxdt,
where ∂xρ must be understood in the sense of measures. Applying the mean value theorem
and using the properties of the kernel function, we deduce∣∣∣Vi(t, x)− Ṽi(t, x)

∣∣∣ ≤ ωη(0)
∥∥v′i∥∥∞∥∥ρ(t, ·)− ρ̃(t, ·)

∥∥
L1 , for i = 1, 2. (3.3)

Using the Leibniz integral rule and again the mean value theorem, we can also obtain for a.e.
x ∈ R

∣∣∣∂xV1(t, x)− ∂xṼ1(t, x)
∣∣∣ =



0, if x > 0,∣∣∣∫ 0
x (v1(ρ(t, y))− v1(ρ̃(t, y)))ω′η(y − x)dy

+
(
v1(ρ̃(t, x))− v1(ρ(t, x))

)
ωη(0)

∣∣∣ , if − η < x < 0,∣∣∣∫ x+η
x (v1(ρ(t, y))− v1(ρ̃(t, y)))ω′η(y − x)dy

+
(
v1(ρ̃(t, x+ η))− v1(ρ(t, x+ η))

)
ωη(η)

+
(
v1(ρ̃(t, x))− v1(ρ(t, x))

)
ωη(0)

∣∣∣ , if x < −η

≤
∥∥∥ω′η∥∥∥∞∥∥v′1∥∥∞∥∥ρ(t, ·)− ρ̃(t, ·)

∥∥
L1 (3.4)
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+ ωη(0)
∥∥v′1∥∥∞ (|ρ− ρ̃|(t, x+ η) + |ρ− ρ̃|(t, x)

)
.

Similarly, we obtain∣∣∣∂xV2(t, x)− ∂xṼ2(t, x)
∣∣∣ ≤ ∥∥∥ω′η∥∥∥∞∥∥v′2∥∥∞∥∥ρ(t, ·)− ρ̃(t, ·)

∥∥
L1 (3.5)

+ ωη(0)
∥∥v′2∥∥∞ (|ρ− ρ̃|(t, x+ η) + |ρ− ρ̃|(t, x)

)
. (3.6)

Plugging (3.3), (3.4), (3.5) into (3.2), we obtain∥∥ρ(t, ·)− ρ̃(t, ·)
∥∥
L1 ≤ ‖ρ0 − ρ̃0‖L1

+ max
i=1,2

{∥∥v′i∥∥∞}∫ T

0

∥∥ρ(t, ·)− ρ̃(t, ·)
∥∥
L1dt

[
2ωη(0) sup

t∈[0,T ]

∥∥ρ(t, ·)
∥∥

BV(R)

+
∥∥∥ω′η∥∥∥∞

(
sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
L1 + sup

t∈[0,T ]

∥∥g(ρ(t, ·))
∥∥
L1

)
+ max
i=1,2

{∥∥v′i∥∥∞}ωη(0)

(
sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
∞ + sup

t∈[0,T ]

∥∥g(ρ(t, ·))
∥∥
∞

)
∫ T

0

∫
R

(
|ρ− ρ̃|(t, x+ η) + |ρ− ρ̃|(t, x)

)
dxdt

≤‖ρ0 − ρ̃0‖L1 +K

∫ T

0

∥∥ρ(t, ·)− ρ̃(t, ·)
∥∥
L1dt,

with

K := max
i=1,2

{∥∥v′i∥∥∞}
[

2ωη(0) sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥

BV(R)

+
∥∥∥ω′η∥∥∥∞

(
sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
L1 + sup

t∈[0,T ]

∥∥g(ρ(t, ·))
∥∥
L1

)

+2ωη(0)

(
sup
t∈[0,T ]

∥∥ρ(t, ·)
∥∥
∞ + sup

t∈[0,T ]

∥∥g(ρ(t, ·))
∥∥
∞

) . (3.7)

By Gronwall’s lemma we get the thesis and for ρ0 = ρ̃0 the uniqueness of entropy solutions.
�

Remark 1. Note that we cannot directly apply previous results in the literature [10, 13, 21] to
the present model, because it does not fit precisely the assumptions therein. Moreover, direct
computations allow to recover sharper estimates on the coefficients.

4 Numerical scheme

In order to prove the well-posedness of model (2.1)–(2.6), we prove the existence of solutions
via a numerical scheme which is based on the scheme from [17]. Even though this scheme has
been introduced in [17] as a Godunov type scheme, it reduces to an upwind type scheme.
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For j ∈ Z and n ∈ N, let xj−1/2 = j∆x be the cell interfaces, xj = (j + 1/2)∆x the
cells centers, corresponding to a space step ∆x such that η = Nη∆x for some Nη ∈ N,
and let tn = n∆t be the time mesh. In particular, x = x−1/2 = 0 is a cell interface. We
aim at constructing a finite volume approximate solution ρ∆x such that ρ∆x(t, x) = ρnj for
(t, x) ∈ [tn, tn+1[×[xj−1/2, xj+1/2[. To this end, we approximate the initial datum ρ0 with the
piecewise constant function

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx, j ∈ Z.

Following [17], we consider the numerical flux function

Fnj+1/2(ρnj ) := ρnj V
1,n
j + g(ρnj )V 2,n

j (4.1)

with

V 1,n
j =

min{−j−2,Nη−1}∑
k=0

γkv1(ρnj+k+1), V 2,n
j =

Nη−1∑
k=max{−j−1,0}

γkv2(ρnj+k+1), (4.2)

γk =

∫ (k+1)∆x

k∆x
ωη(x)dx, k = 0, . . . , Nη − 1, (4.3)

where we set, with some abuse of notation
∑b

k=a = 0 whenever b < a. In this way we can
define the following finite volume numerical scheme

ρn+1
j = ρnj − λ

(
Fnj+1/2(ρnj )− Fnj−1/2(ρnj−1)

)
with λ :=

∆t

∆x
. (4.4)

Note that, due to the accurate calculation of the integral in (4.3) and the definition of the
convoluted velocities in (4.2), there holds

0 ≤ V 1,n
j ≤ v1

max, 0 ≤ V 2,n
j ≤ v2

max, 0 ≤ V 1,n
j + V 2,n

j ≤ max{v1
max, v

2
max}, ∀ j ∈ Z, n ∈ N.

We set

‖v‖ := max{‖v1‖∞, ‖v2‖∞}, ‖v′‖ := max{‖v′1‖∞, ‖v′2‖∞}, ‖ρ‖ := max{ρ1
max, ρ

2
max}

and consider the following CFL condition:

λ ≤ 1

γ0‖v′‖‖ρ‖+ ‖v‖
. (4.5)

We will show that, under this CFL condition, the numerical scheme (4.1)–(4.4) satisfies a
maximum principle, uniform BV estimates and a discrete entropy inequality. Equipped with
these properties, we will show in Section 5 that the sequence of approximate solutions

{
ρ∆x

}
converges towards the entropy solution of (2.1)–(2.6). Note that, for v1 ≡ v2, the scheme
(4.1)–(4.4) coincides with the scheme in [17].

In the following proofs, we will omit the dependence on n of the flux function and the
velocity whenever possible, in order to simplify the notation.
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4.1 Maximum principle

The solutions generated by the numerical scheme (4.4) stay always positive and they are
bounded by the maximum road capacity of each road segment as stated by the following
lemma.

Lemma 1. Under hypothesis (2.6) and the CFL condition (4.5), the sequence generated by
the numerical scheme (4.1)–(4.4) satisfies the following maximum principle:

0 ≤ ρnj ≤ ρ1
max for j ≤ −1 and 0 ≤ ρnj ≤ ρ2

max for j ≥ 0, ∀n ∈ N.

Proof. We start by showing the positivity. We directly obtain

ρn+1
j = ρnj − λ

(
Fn
j+ 1

2

(ρnj )− Fn
j− 1

2

(ρnj−1)

)
≥ ρnj − λFnj+ 1

2

(ρnj ) ≥ ρnj − λ‖v‖ρnj ≥ 0.

Here we used the CFL condition (4.5) and g(ρnj ) ≤ ρnj .
The rest of the proof follows closely the proof of [17, Theorem 3.1]. Therefore, we compute
the differences of the velocities and obtain

V 1,n
j−1 − V

1,n
j =



∑Nη−1
k=1 (γk − γk−1)v1(ρnj+k)− γNη−1v1(ρnj+Nη) + γ0v1(ρnj ), j ≤ −Nη − 1,∑−j−1
k=1 (γk − γk−1)v1(ρnj+k) + γ0v1(ρnj ), −Nη ≤ j ≤ −2,

γ0v1(ρn−1), j = −1,

0, j ≥ 0,

(4.6)
and

V 2,n
j−1 − V

2,n
j =


0, j ≤ −Nη − 1,

−γNη−1v2(ρn0 ), j = −Nη,∑Nη−1
k=−j (γk − γk−1)v2(ρnj+k)− γNη−1v2(ρnj+Nη), −Nη + 1 ≤ j ≤ −1,∑Nη−1
k=1 (γk − γk−1)v2(ρnj+k)− γNη−1v2(ρnj+Nη) + γ0v2(ρnj ), j ≥ 0.

(4.7)
It is easy to see that the following estimates hold:

V 1,n
j−1 − V

1,n
j ≤

{
γ0v1(ρnj ) j ≤ −1,

0, j ≥ 0,
and V 2,n

j−1 − V
2,n
j ≤

{
0 j ≤ −1,

γ0v2(ρnj ), j ≥ 0.

Using v1(ρ1
max) = v2(ρ2

max) = 0 and the mean value theorem we get

V 1,n
j−1 − V

1,n
j ≤

{
γ0‖v′‖(ρ1

max − ρnj ) j ≤ −1,

0, j ≥ 0,
and V 2,n

j−1 − V
2,n
j ≤

{
0 j ≤ −1,

γ0‖v′‖(ρ2
max − ρnj ), j ≥ 0.

Now we consider the case j ≤ −1 and multiply the first inequality by ρ1
max, subtract V

1,n
j ρnj

and we get

V 1,n
j−1ρ

1
max − V

1,n
j ρnj ≤

(
γ0‖v′‖‖ρ‖+ V 1,n

j

)
(ρ1

max − ρnj ).

7



Similarly, we get

V 2,n
j−1g(ρ1

max)− V 2,n
j g(ρnj ) ≤ V 2,n

j

(
g(ρ1

max)− g(ρnj )
)
≤ V 2,n

j (ρ1
max − ρnj ).

Adding the last two inequalities we obtain,

V 1,n
j−1ρ

1
max − V

1,n
j ρnj + V 2,n

j−1g(ρ1
max)− V 2,n

j g(ρnj ) ≤
(
γ0‖v′‖‖ρ‖+ ‖v‖

)
(ρ1

max − ρnj ).

Due to the CFL condition (4.5), we have for j ≤ −1

ρn+1
j ≤ ρnj + λ

(
V 1,n
j−1ρ

1
max − V

1,n
j ρnj + V 2,n

j−1g(ρ1
max)− V 2,n

j g(ρnj )
)
≤ ρ1

max.

For j ≥ 0 the bound

V 2,n
j−1ρ

2
max − V

2,n
j ρnj ≤

(
γ0‖v′‖‖ρ‖+ ‖v‖

)
(ρ2

max − ρnj )

follows analogously to above. Note that V 1,n
j = 0 for j ≥ −1. Since g(ρnj−1) ≤ ρ2

max holds
even for j = 0 and g(ρnj ) = ρnj for j ≥ 0, we obtain

ρn+1
j ≤ ρnj + λ

(
V 2,n
j−1ρ

2
max − V

2,n
j ρnj

)
≤ ρ2

max.

This concludes the proof. �

Remark 2. The role of the limiter g given by (2.3) in the flux function (2.2) is essential
for the maximum principle above. Indeed, let us consider for example an approximate initial
datum ρ0

j = ρ1
max for j ≤ −1, ρ0

0 = ρ2
max in the first cell on the right of x = 0 and ρ0

j = 0 for
j ≥ 1. The flux entering the cell j = 0 is given by (1− γ0)v2

maxρ
1
max and the flux leaving this

cell is given by v2
maxρ

2
max. Obviously, choosing ρ1

max > ρ2
max/(1 − γ0) results in a violation of

the maximum principle in the cell j = 0 (as long as η > ∆x).

4.2 BV estimate

In addition to the L∞ bound, we also need a uniform estimate on the total variation of the
sequence of approximate solutions. The crucial part here lies in the presence of the limiter g
at x = 0.

Lemma 2. Let ρ∆x be constructed by (4.1)–(4.4) and let the CFL condition (4.5) hold, then
for every T > 0 the following discrete space BV estimate is satisfied:

TV (ρ∆x(T, ·)) ≤ exp
(
Twη(0)

(
2‖v‖+ ‖v′‖‖ρ‖

)) (
TV (ρ0) + T2ωη(0)‖v‖‖ρ‖

)
=: K(T ).

(4.8)

Proof. We set
∆n
j := ρnj+1 − ρnj .

In the following we consider a regularization of the function g defined in (2.3), namely

gε(ρ) =
1

2

(
ρ+ ρ2

max −
√

(ρ− ρ2
max)2 + ε

)
, ε > 0. (4.9)
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The function gε is differentiable for every ε > 0 with ‖g′ε‖ ≤ 1 for all ε > 0. This will allow us
to use the mean value theorem in the following computations. In particular, we will denote
by ξnj a value between ρnj and ρnj+1 such that g′ε(ξnj )∆n

j = gε(ρ
n
j+1)− gε(ρnj ) holds. We obtain:

∆n+1
j =∆n

j − λ
(
Fn
j+ 3

2

(ρnj+1)− 2Fn
j+ 1

2

(ρnj ) + Fn
j− 1

2

(ρnj−1)

)
=∆n

j − λ
((

V 1,n
j+1 + g′ε(ξ

n
j )V 2,n

j+1

)
∆n
j −

(
V 1,n
j−1 + g′ε(ξ

n
j−1)V 2,n

j−1

)
∆n
j−1

+ρnj

(
V 1,n
j+1 − 2V 1,n

j + V 1,n
j−1

)
+ gε(ρ

n
j )
(
V 2,n
j+1 − 2V 2,n

j + V 2,n
j−1

))
.

Let us now consider the differences of the velocities. With the differences already computed
in (4.6) and (4.7) and the help of the mean value theorem, where ζnj is a value between ρnj
and ρnj+1 for which v′i(ζ

n
j )∆n

j = vi(ρ
n
j+1)− vi(ρnj ) for i ∈ {1, 2} holds, we derive

V 1,n
j+1 − 2V 1,n

j + V 1,n
j−1 =

∑Nη−1
k=1 (γk−1 − γk)v′1(ζnj+k)∆

n
j+k + γNη−1v

′
1(ζnj+Nη)∆n

j+Nη
− γ0v

′
1(ζnj )∆n

j , j ≤ −Nη − 2,∑Nη−1
k=1 (γk−1 − γk)v′1(ζnj+k)∆

n
j+k − γNη−1v1(ρn−1)− γ0v

′
1(ζnj )∆n

j , j = −Nη − 1,∑−j−2
k=1 (γk−1 − γk)v′1(ζnj+k)∆

n
j+k + (γ−j−1 − γ−j−2)v1(ρn−1)− γ0v

′
1(ζnj )∆n

j , −Nη ≤ j ≤ −3,

(γ1 − γ0)v1(ρn−1)− γ0v
′
1(ζnj )∆n

j , j = −2,

γ0v1(ρn−1), j = −1,

0, j ≥ 0,

and

V 2,n
j+1 − 2V 2,n

j + V 2,n
j−1 =

0, j ≤ −Nη − 2,

γNη−1v2(ρn0 ), j = −Nη − 1,

γNη−1v
′
2(ζnj+Nη)∆n

j+Nη
+ (γNη−1 − γNη)v2(ρn0 ), j = −Nη,∑Nη−1

k=−j (γk−1 − γk)v′2(ζnj+k)∆
n
j+k + γNη−1v

′
2(ζnj+Nη)∆n

j+Nη
+ (γ−j−2 − γ−j−1)v2(ρn0 ), −Nη + 1 ≤ j ≤ −2,∑Nη−1

k=1 (γk−1 − γk)v′2(ζnj+k)∆
n
j+k + γNη−1v

′
2(ζnj+Nη)∆n

j+Nη
− γ0v2(ρn0 ), j = −1,∑Nη−1

k=1 (γk−1 − γk)v′2(ζnj+k)∆
n
j+k + γNη−1v

′
2(ζnj+Nη)∆n

j+Nη
− γ0v

′
2(ζnj )∆n

j , j ≥ 0.

Putting everything together we have

∆n+1
j =

(
1− λ

(
V 1,n
j+1 + g′ε(ξ

n
j )V 2,n

j+1 − γ0a
n
j

))
∆n
j + λ

(
V 1,n
j−1 + g′ε(ξ

n
j−1)V 2,n

j−1

)
∆n
j−1

+ λ

Nη−1∑
k=1

(γk−1 − γk)bnj+k∆n
j+k + λγNη−1c

n
j+Nη∆n

j+Nη

+ λdnj

(
ρjv1(ρn−1)− gε(ρnj )v2(ρn0 )

)
, (4.10)

where

anj =


v′1(ζnj )ρnj , j ≤ −2,

0, j = −1,

v′2(ζnj )ρnj , j ≥ 0,

bnj+k =


−v′1(ζnj+k)ρ

n
j , j + k ≤ −2,

0, j + k = −1,

−v′2(ζnj+k)gε(ρ
n
j ), j + k ≥ 0,

9



cnj+Nη =


−v′1(ζnj+Nη)ρnj , j ≤ −Nη − 2,

0, j = −Nη − 1,

−v′2(ζnj+Nη)gε(ρ
n
j ), j ≥ −Nη,

dnj =



0, j ≤ −Nη − 2,

γNη−1, j = −Nη − 1,

γ−j−2 − γ−j−1, −Nη ≤ j ≤ −2,

−γ0, j = −1,

0, j ≥ 0.

Since the coefficients in (4.10) are positive due to the CFL condition (4.5), we take absolute
values, sum over j and rearrange the indices, which gives us

∑
j

|∆n+1
j | ≤

∑
j

[(
1− λ

(
V 1,n
j+1 + g′ε(ξ

n
j )V 2,n

j+1 − γ0a
n
j

))
|∆n

j |+ λ
(
V 1,n
j−1 + g′ε(ξ

n
j−1)V 2,n

j−1

)
|∆n

j−1|

+ λ

Nη−1∑
k=1

(γk−1 − γk)bnj+k|∆n
j+k|+ λγNη−1c

n
j+Nη |∆

n
j+Nη |

+λ|dnj |
∣∣∣ρjv1(ρn−1)− gε(ρnj )v2(ρn0 )

∣∣∣]
=
∑
j

[
1− λ

(
V 1,n
j+1 + g′ε(ξ

n
j )V 2,n

j+1 − V
1,n
j − g′ε(ξnj )V 2,n

j

)

+ λ

(
γ0a

n
j +

Nη−1∑
k=1

(γk−1 − γk)bnj + γNη−1c
n
j

)]
|∆n

j |

+
∑
j

λ|dnj |
∣∣∣ρjv1(ρn−1)− gε(ρnj )v2(ρn0 )

∣∣∣ .
Now we use that V i,n

j − V i,n
j+1 ≤ γ0‖v‖ and ‖g′ε‖ ≤ 1 for the first term and for the second term

we have anj ≤ 0 and bnj , c
n
j ≤ ‖v′‖‖ρ‖, which gives us∑

j

|∆n+1
j | ≤

(
1 + λγ0

(
2‖v‖+ ‖v′‖‖ρ‖

))∑
j

|∆n
j |

+
∑
j

λ|dnj |
∣∣∣ρjv1(ρn−1)− gε(ρnj )v2(ρn0 )

∣∣∣ .
Since

∑
j |dnj | = 2γ0 holds, using also λγ0 ≤ ∆tωη(0) we finally obtain

∑
j

|∆n+1
j | ≤

(
1 + ∆tωη(0)

(
2‖v‖+ ‖v′‖‖ρ‖

))∑
j

|∆n
j |+ ∆t2ωη(0)‖v‖(‖ρ‖+

√
ε

2
).

This estimate holds for any ε > 0 and for ε→ 0 we obtain the following estimate for the total
variation

TV (ρ(T, ·)) ≤
(

1 + ∆tωη(0)
(
2‖v‖+ ‖v′‖‖ρ‖

))T/∆t (
TV (ρ0) + T2ωη(0)‖v‖‖ρ‖

)
≤ exp

(
ωη(0)

(
2‖v‖+ ‖v′‖‖ρ‖

)
T
) (
TV (ρ0) + T2ωη(0)‖v‖‖ρ‖

)
.

�
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To finally apply Helly’s Theorem we also need an estimate for the discrete total variation
in space and time, which we are now able to provide.

Lemma 3. Let ρ∆x be constructed by (4.1)–(4.4) and let the CFL condition (4.5) hold, then
for every T > 0 the following discrete space and time total variation estimate is satisfied:

TV (ρ∆x;R× [0, T ]) ≤ TK(T )(1 + ‖v′‖‖ρ‖+ ‖v‖)

with K(T ) defined as in (4.8).

Using the regularization of g given by (4.9), the proof is entirely analogous to the one of
[17, Theorem 3.3].

4.3 Discrete Entropy Inequality

In the following, we use the notation a∧ b = max{a, b}, a∨ b = min{a, b} and follow [3, 8, 17].

Lemma 4. Let ρ∆x be constructed by (4.1)–(4.4). If the CFL condition (4.5) holds, then for
c ∈ R we have the following discrete entropy inequality∣∣∣ρn+1

j − c
∣∣∣ ≤ ∣∣∣ρnj − c∣∣∣− λ(Hn

j+1/2(ρnj )−Hn
j−1/2(ρnj−1)

)
(4.11)

− λ sgn(ρn+1
j − c)

(
Fnj+1/2(c)− Fnj−1/2(c)

)
,

where
Hn
j+1/2(u) = Fnj+1/2(u ∧ c)− Fnj+1/2(u ∨ c).

Proof. Let
Gnj (u,w) = w − λ(Fnj+1/2(w)− Fnj−1/2(u)).

Under the CFL condition (4.5) and using the regularization (4.9) of g, Gj is monotone in both
its arguments, since we obtain

∂Gnj
∂w

= 1− λ(V 1,n

j+ 1
2

+ g′ε(w)V 2,n

j+ 1
2

) ≥ 0,
∂Gnj
∂u

= λ(V 1,n

j− 1
2

+ g′ε(u)V 2,n

j− 1
2

) ≥ 0.

The monotonicity implies that

Gnj (ρnj−1 ∧ c, ρnj ∧ c) ≥ Gnj (ρnj−1, ρ
n
j ) ∧Gnj (c, c) (4.12)

Gnj (ρnj−1 ∨ c, ρnj ∨ c) ≤ Gnj (ρnj−1, ρ
n
j ) ∨Gnj (c, c). (4.13)

Subtracting (4.13) from (4.12), we obtain∣∣∣Gnj (ρnj−1, ρ
n
j )−Gnj (c, c)

∣∣∣ ≤ ∣∣∣ρnj − c∣∣∣− λ(Hn
j+1/2(ρnj )−Hn

j−1/2(ρnj−1)
)
. (4.14)

The left side of (4.14) is
∣∣∣ρn+1
j − c+ λ(Fnj+1/2(c)− Fj−1/2(c))

∣∣∣, and we get∣∣∣ρn+1
j − c+ λ(Fnj+1/2(c)− Fnj−1/2(c))

∣∣∣
≥ sgn(ρn+1

j − c)
(
ρn+1
j − c+ λ(Fnj+1/2(c)− Fnj−1/2(c))

)
=
∣∣∣ρn+1
j − c

∣∣∣+ λ sgn(ρn+1
j − c)

(
Fnj+1/2(c)− Fnj−1/2(c)

)
. (4.15)

The proof is completed by combining (4.14) and (4.15). �
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5 Convergence

Lemma 5. Let ρ = ρ(t, x) ∈ L1 ∩L∞ ∩BV(R+ ×R; [0,max{ρ1
max, ρ

2
max}) be the L1

loc-limit of
approximations ρ∆x generated by the upwind scheme (4.4) and let c ∈ R, ϕ ∈ C1

c (ΠT ). Then
ρ satisfies the entropy inequality given by (2.8).

Proof. Let ϕ ∈ C1
c (ΠT ) and set ϕnj = ϕ(tn, xj). We multiply the discrete entropy inequality

(4.11) by ϕnj ∆x, and then apply summation by parts to get

∆x∆t
∑
n≥0

∑
j∈Z

∣∣∣ρn+1
j − c

∣∣∣(ϕn+1
j − ϕnj )/∆t+ ∆x

∑
j

∣∣∣ρ0
j − c

∣∣∣ϕ0
j (5.1)

+ ∆x∆t
∑
n≥0

∑
j∈Z

Hn
j−1/2(ϕnj − ϕnj−1)/∆x (5.2)

−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
Fnj+1/2(c)− Fnj−1/2(c)

)
ϕnj /∆x ≥ 0. (5.3)

By Lebesgue’s dominated convergence theorem, as ∆x→ 0, we have

(5.1)→
∫∫

ΠT

|ρ− c|ϕtdxdt+

∫ ∞
−∞
|ρ0(x)− c|ϕ(0, x)dx.

As ∆x → 0, the sums in (5.2) converge by standard arguments, see [5], [6, Sec. 4 Proof of
Theorem 1], [20], to ∫∫

ΠT

sgn(ρ− c)(f(t, x, ρ)− f(t, x, c))ϕx dxdt.

Now let us study the sum (5.3) and we have

(5.3) =−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
cV 1

j + g(c)V 2
j − cV 1

j−1 − g(c)V 2
j−1

)
ϕnj /∆x

=−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
c
V 1
j − V 1

j−1

∆x
+ g(c)

V 2
j − V 2

j−1

∆x

)
ϕnj

=−∆x∆t
∑
n≥0

∑
j∈Z

(sgn(ρn+1
j − c)− sgn(ρnj − c))

(
c
V 1
j − V 1

j−1

∆x
+ g(c)

V 2
j − V 2

j−1

∆x

)
ϕnj

−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρnj − c)

(
c
V 1
j − V 1

j−1

∆x
+ g(c)

V 2
j − V 2

j−1

∆x

)
ϕnj .

The second term in the last equality clearly converges to

−
∫ T

0

∫ −η
−∞

sgn(ρ− c)
(
c(V1)x + g(c)(V2)x

)
ϕ)dxdt.

We will show now that the first term vanishes as ∆x → 0. We follow here [5, 6] and we
perform a summation by parts, which gives us:

∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)ϕnj

[
c

[(
V 1,n+1
j − V 1,n+1

j−1

)
−
(
V 1,n
j − V 1,n

j−1

)]
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+g(c)

[(
V 2,n+1
j − V 2,n+1

j−1

)
−
(
V 2,n
j − V 2,n

j−1

)]]

+ ∆t∆t∆x
∑
n≥0

∑
j<0

sgn(ρn+1
j − c)

c
(
V 1,n+1
j − V 1,n+1

j−1

)
∆x

+ g(c)

(
V 2,n+1
j − V 2,n+1

j−1

)
∆x


(
ϕn+1
j − ϕnj

)
∆t

.

As can be seen in (4.6) and (4.7) V i,n+1
j − V i,n+1

j−1 ≤ ∆xωη(0)‖v‖ holds and due to the com-
pactness of the support function the second term vanishes as ∆x,∆t→ 0. For the first term
we first obtain that(

V 1,n+1
j − V 1,n+1

j−1

)
−
(
V 1,n
j − V 1,n

j−1

)

=



Nη−1∑
k=1

(γk−1 − γk)(v1(ρn+1
j+k − v1(ρnj+k))

+ γNη−1(v1(ρn+1
j+Nη

)− v1(ρnj+Nη))− γ0(v1(ρn+1
j )− v1(ρnj )),

j ≤ −Nη − 1,

−j−1∑
k=1

(γk−1 − γk)(v1(ρn+1
j+k )− v1(ρnj+k))− γ0(v1(ρn+1

j )− v1(ρnj )), −Nη ≤ j ≤ −2,

γ0(v1(ρn+1
−1 )− v1(ρn−1)), j = −1,

and(
V 2,n+1
j − V 2,n+1

j−1

)
−
(
V 2,n
j − V 2,n

j−1

)

=


0, j ≤ −Nη − 1,

γNη−1(v2(ρn+1
j+Nη

)− v2(ρnj+Nη)), j = −Nη,
Nη−1∑
k=−j

(γk−1 − γk)(v2(ρn+1
j+k )− v2(ρnj+k)) + γNη−1(v2(ρn+1

j+Nη
)− v2(ρnj+Nη)), −Nη + 1 ≤ j ≤ −1.

Now we use the compact support of the test function. There exist T > 0 and R > 0 such
that ϕ(t, x) = 0 for t > T and |x| > R. Let nT ∈ N and j0, j1 ∈ Z be such that T ∈
]nT∆t, (nT + 1)∆t],−R ∈]xj0− 1

2
, xj0+ 1

2
], R ∈]xj1− 1

2
, xj1+ 1

2
]. We only consider j0 < 0, since

otherwise the term is already 0. In addition, similar to [17, Theorem 3.3], the following
estimate is derived during the proof of Lemma 3:

NT∑
n=0

∑
j

∆x|ρn+1
j − ρnj | ≤ K̃,

By plugging in the equality obtained before, using the mean value theorem, the above men-
tioned estimate and g(c) ≤ c we obtain

∆t
∑
n≥0

∑
j<0

sgn(ρn+1
j − c)ϕnj

[
c

((
V 1,n+1
j − V 1,n+1

j−1

)
−
(
V 1,n
j − V 1,n

j−1

))

+g(c)

((
V 2,n+1
j − V 2,n+1

j−1

)
−
(
V 2,n
j − V 2,n

j−1

))]
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≤ ∆t

∆x
‖ϕ‖‖v′‖c

γNη−1

NT∑
n=0

min{−1,j1}∑
j=j0

∆x|ρn+1
j+Nη

− ρnj+Nη |+

Nη−1∑
k=1

(γk−1 − γk)
NT∑
n=0

min{−1,j1}∑
j=j0

∆x|ρn+1
j+k − ρ

n
j+k|+ γ0

NT∑
n=0

min{−1,j1}∑
j=j0

∆x|ρn+1
j − ρnj |


≤ ∆t‖ϕ‖‖v′‖cK̃2ωη(0),

which goes to zero as ∆x→ 0 (and then ∆t→ 0). This concludes the proof. �

Proof of Theorem 1.
Similar to [8, Theorem 1], [17, Theorem 2.3] or [6, Theorem 1], the convergence of the ap-
proximate solutions constructed by the upwind scheme (4.4) to the unique weak entropy
solution can be proven by applying Helly’s theorem, see [16, Lemma 5.6]. Due to Lemma 1
and Lemma 3, there exists a sub-sequence of approximate solutions that converges to some
ρ ∈ (L1 ∩L∞ ∩BV)(R+ ×R; [0,max{ρ1

max, ρ
2
max}]). Lemma 5 shows that the limit function ρ

is a weak entropy solution of (2.1)–(2.6) in the sense of Definition 1. Adding the uniqueness
result in Theorem 2, we conclude the proof of Theorem 1. �

6 Numerical simulations

The aim of this section is to give some numerical examples to show how our model’s behaviour.
To this end, we will consider Riemann initial data of the type

ρ0(x) =

{
ρL, if x < 0,

ρR, if x > 0.
(6.1)

We take a spatial step size of ∆x = 10−3. The time step size ∆t is given by the CFL condition
(4.5).
We divide this section into three parts. In the first part we analyze how our model behaves for
a fixed look ahead distance η > 0. For non-local conservation laws, it is still an open question
whether the model tends to the corresponding local equation for η tending to zero (see for
example [11] for a recent overview). For this reason, we will investigate the limit question as
η → 0 from the numerical point of view in Section 6.2. Overall, we will consider the following
settings:

Test 1: vi(ρ) = vimax

(
1−

(
ρ

ρimax

)2
)

for i ∈ {1, 2}, with v1
max = 1, v2

max = 2, ρ1
max = ρ2

max =

1, ρL = 0.75, ρR = 0.5;

Test 2: as in Test 1, but with v1
max = 2, v2

max = 1;

Test 3: vi(ρ) = vimax

(
1− ρ

ρimax

)
for i ∈ {1, 2}, with v1

max = 2, v2
max = 1, ρ1

max = 0.5, ρ2
max =

1, ρL = 0.25, ρR = 0.5;

Test 4: vi as in Test 3, but with v1
max = 1, v2

max = 2, ρ1
max = 1, ρ2

max = 0.5, ρL = 0.5, ρR = 0.25.
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Figure 2: Numerical solutions at T = 1 corresponding to Test 1 (left) and Test 2 (right).

The first two settings are used to show that the obtained solutions are reasonable also for non-
linear velocity functions, while the last two settings turn out to be interesting in Section 6.2.
For all the tests, the kernel function is given by ωη(x) = 2(η − x)/η2 and the final simulation
time is T = 1.
Finally, in Section 6.3, we will show that our model can be easily extended to more than two
stretches and therefore to a sequence of 1-to-1 junctions to simulate traffic.

6.1 Fixed look-ahead distance η

We set η = 0.1. Let us consider the first test. Here we start with a congested situation on
the first road segment. In addition, the maximum velocity on the first road is lower than the
one on the second road segment. Therefore, the traffic jam resolves over time as can be seen
in Figure 2, left. In contrast to Test 1, Test 2 presents the opposite situation: the velocity
on the first road segment is now higher than the second one. Hence, the traffic jam can not
resolve and we get a backward traveling increase of the density (see Figure 2, right).

In the last two settings we can see that the presence of the look ahead distance results in
a smoothing of the density close to the end of the first and the beginning of the second road
segment, see Figure 3.

6.2 Look-ahead distance η tending to zero

As mentioned above, the behaviour of solutions for η tending to zero is of special interest
for non-local conservation laws. Concerning non-local LWR traffic flow models as in [8, 17],
or model (2.1) with v1 ≡ v2, so far the convergence to the classical LWR traffic flow model
[27, 28] can only be proven for monotone initial data (see [11, 24]), since the solution is
monotonicity preserving and therefore has a strict maximum principle and a bounded total
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Figure 3: Numerical solutions at T = 1 for the Test 3 (left) and Test 4 (right).

variation, uniformly in η. Unfortunately, similar results do not hold for model (2.1) with
v1 6= v2, since the model is, in general, not monotonicity preserving even for constant initial
data. Therefore, we just investigate the limit numerically.

The local (discontinuous) conservation law corresponding to model (2.1) is given by:

ρt + f(x, ρ)x = 0, with f(x, ρ) := H(−x)ρv1(ρ) +H(x)ρv2(ρ), (6.2)

where H(x) is the Heaviside function. As pointed out in [1, 7], (6.2) admits many L1 contrac-
tion semigroups, one for each so-called (A,B)-connection. The two most common connections
are the one corresponding to the supply-demand approach [26], and the vanishing viscosity
solution (see [22, Definition 3.1]), which is a weak solution satisfying, besides the Kruzkov
entropy inequalities for x < 0 and x > 0, the Γ-condition of [14, 15], see also [22, Definition
3.1] and [4].
For instance, the vanishing viscosity solution can be obtained by a Godunov scheme consid-
ering a grid where x = 0 is a cell midpoint, see [22].

In the following, we will consider η ∈ {50∆x, 10∆x, 2∆x} and compare it to the solution
of (6.2)–(6.1), which will be computed by the Godunov scheme as presented in [22], since we
are interested in the vanishing viscosity solution. Note that, due to the different grids, we do
not compute L1-errors between the different solutions.

We will now investigate the previous four test cases. In the first two settings, as η → 0 the
solution of (2.1) with initial conditions (6.1) is very similar to the vanishing viscosity solution
of the corresponding local problem, see Figure 4. We also remark that, in the parameters
settings Test 1 and Test 2, the solution obtained by the supply-demand approach is equal to
the vanishing viscosity solution.
Let us now consider Tests 3 and 4. The initial datum in both of them is exactly the density
corresponding to the maximum fluxes attainable on each road segment. Therefore, the solution
of the supply and demand approach is given by a stationary discontinuity coinciding with the
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Figure 4: Numerical solutions at T = 1 corresponding to Test 1 (left) and Test 2 (right) and
different values of η.

initial datum. As can be seen in Figure 5, in both tests the limit of model (2.1) behaves as the
vanishing viscosity solution. In Test 4, the numerical results also coincide with supply-demand
solution. The most interesting case is Test 3. For these parameters, the vanishing viscosity
solution differs from the supply-demand solution and, as can be seen in Figure 5 (left picture)
the solution of the model (2.1) seems to converge to the vanishing viscosity solution for η
tending to zero.

6.3 Linear network scenario

Finally, we show that the model can be extended to more than two stretches of a road. We
consider the case of road works on a highway, modeled by the segment [0, L], with L = 2,
where the road capacity and the maximal speed are smaller. Therefore, we have three different
road segments, ]−∞, 0[, [0, L[ and [L,∞[, and we consider the linear velocity function as in
Test 3, with v1

max = v3
max = ρ1

max = ρ3
max = 1 before and after the road works, and v2

max = 0.5
and ρ2

max = 0.8 for x ∈ [0, L]. We start with a higher density on the segment with the road
works, i.e.

ρ0(x) =


0.4, if x < 0,

0.5, if 0 < x < L,

0.4, if L < x.

(6.3)

As in Section 6.1, the look ahead distance is η = 0.1, and as in Section 6.2 we also present the
vanishing viscosity solution obtained by the Godunov scheme of [22] to get an impression of
the corresponding local problem. As can be seen in Figure 6, the presence of the road works
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Figure 5: Numerical solutions at T = 1 corresponding to Test 3 (left) and Test 4 (right) and
different values of η

results in a traffic jam upstream and a decrease of the density downstream. As noticed in
Section 6.2, the numerical solution of the non-local problem tends for small η towards the
vanishing viscosity solution.

7 Conclusion

In this work we have presented a non-local flux model, which can handle changes of velocities
and maximum capacities on the road and therefore models a 1-to-1 junction. The model con-
siders a non-local mean downstream velocity on both road segments and satisfies a maximum
principle on each road segment. We have proven its well-posedness, i.e. existence, uniqueness
and continuous dependence of solutions with respect to the initial data, via an upwind numer-
ical scheme. Numerical examples suggest that the solution tends to the vanishing viscosity
solution of the corresponding local conservation law as the look-ahead distance goes to 0. We
intend to further investigate this question in future work.
In addition, the model can be extended to more than two stretches to model traffic behavior
on a more complex road segment, as shown in Section 6.3. Hence, this model can be seen as
a first step towards non-local traffic flow models on networks. In the future, we aim to extend
this model from the current simple network structure to a more general network formulation.
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