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Abstract:We present a method for deriving the stellar fundamental parameters. It is based on a regularized sliced inverse
regression (RSIR). We first tested it on noisy synthetic spectra of A, F, G, and K-type stars, and inverted simultaneously
their atmospheric fundamental parameters: Te�, log g, [M/H] and v sin i. Different learning databases were calculated
using a range of sampling in Te� , log g, v sin i, and [M/H]. Combined with a principal component analysis (PCA) nearest
neighbors (NN) search, the size of the learning database is reduced. A Tikhonov regularization is applied, given the
ill-conditioning of SIR. For all spectral types, decreasing the size of the learning database allowed us to reach internal
accuracies better than PCA-based NN-search using larger learning databases. For each analyzed parameter, we have
reached internal errors that are smaller than the sampling step of the parameter. We have also applied the technique to a
sample of observed FGK and A stars. For a selection of well-studied stars, the inverted parameters are in agreement with
the ones derived in previous studies. The RSIR inversion technique, complemented with PCA pre-processing proves to be
efficient in estimating stellar parameters of A, F, G, and K-type stars.

Keywords:methods: data analysis, methods: statistical, techniques: spectroscopic, stars: fundamental parameters

1 Introduction
Astronomical surveys, either spaceborne or ground-based,
are gathering an unprecedented amount of data. One can
mention the SDSS DR14 data (Abolfathi et al. 2018) that
contains 154 TB of millions of spectroscopic and photomet-
ric data. The DR5 of the LAMOST survey (Cui et al. 2012)
contains 9 million spectra in total. Gaia DR2 provides infor-
mation about 1.3 billion stars (Katz & Brown 2017). These
space and ground-based surveys quantify the size of the
data the astronomical community will face in the near fu-
ture.
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Spectroscopic analysis is crucial for the derivation of
fundamental stellar atmospheric parameters which are the
effective temperature (Te�), the surface gravity (log g), and
the metallicity ([M/H]). In addition to these fundamentals,
and because itmay strongly affect the shape of the observed
spectra, the projected equatorial rotational velocity, v sin i,
is also retrieved from spectroscopic information. Many au-
thors have for long been using spectroscopic data to esti-
mate the stellar atmospheric parameters (McWilliam 1990;
Latham et al. 2002; Torres et al. 2002; Buchhave et al. 2012;
Schönrich & Bergemann 2014; Dieterich et al. 2017; Fab-
bro et al. 2018). However in order to extract the most rele-
vant and accurate information from high-resolution, and
large bandwidths stellar spectra, still more endeavour is
required.

Most of the traditional approaches and developed
pipelines rely on standard procedures such as compar-
ing an observed spectrum with a set of theoretical spec-
tra (Valenti & Piskunov 1996; Morris et al. 2018). The re-
quirement for advanced computational techniques arises
from the generated large dimensionality of the data due
to the wide wavelength coverage together with the high
spectral resolution. Many new techniques are being devel-
oped. In Ness et al. (2015) and Casey et al. (2016), a data-
driven approach is introduced (CANNON) for determining
stellar labels (fundamental parameters and detailed stel-
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lar abundances) from spectroscopic data. Their learning
databases (LDB) are based on a subset of reference objects
for which the stellar labels are known with high accuracy.
Dimensionality reduction techniques are also developed
and used, such as applying the Principal Component Anal-
ysis (PCA) for data reduction (see e.g. Jolliffe 1986). PCA
has shown its effectiveness in inverting the fundamental
stellar atmospheric parameters in several studies (Bailer-
Jones et al. 1998; Re Fiorentin et al. 2007; Paletou et al.
2015 a,b; Gebran et al. 2016). Xiang et al. (2017) estimated
the stellar atmospheric parameters as well as the absolute
magnitudes and α-elements abundances from the LAMOST
spectra with a multivariate regression method based on
kernel-based PCA. The LAMOST spectroscopic survey data
has also been recently analyzed by Boeche et al. (2018)
to invert stellar parameters and chemical abundances in
which several combined approaches and techniques were
compared. The authors developed a code called SP_Ace
which utilizes nearest neighbor comparison and non-linear
model fitting techniques. In Wilkinson et al. (2017), a spec-
tral fitting code (FIREFLY) was developed to derive the stel-
lar population properties of stellar systems. FIREFLY uses
a χ-squared minimization fitting procedure that fits stel-
lar population models to spectroscopic data, following an
iterative best-fitting process controlled by a Bayesian infor-
mation criterion. Their approach is efficient to overcome
the so-called “ambiguities” in the spectra. More recently,
Gill et al. (2018) used wavelet decomposition to distinguish
between noise, continuum trends, and stellar spectral fea-
tures in the CORALIE FGK-type spectra. By calculating a
subset of wavelet coefficients from the target spectrum and
comparing it to those from a grid of models in a Bayesian
framework, they were able to derive Te� , [M/H], and v sin i
for these stars. Ting et al. (2018) presented The Payne, a
general method for the precise and simultaneous determi-
nation of numerous stellar labels from observed spectra.
Using a simple neural-net-like functional form and a suit-
able choice of training labels, The Payne yields a spectral
flux prediction good to 10−3 rms across a wide range of
Te� and log g. Ting et al. (2018) applied this approach to
the APOGEE DR14 data set and obtained precise elemental
abundances of 15 chemical species. In the same context,
Fabbro et al. (2018) applied a deep neural network archi-
tecture to analyse both SDSS-III APOGEE DR13 and syn-
thetic stellar spectra. Their convolutional neural network
model, StarNet, was able to predict precise stellar parame-
ters when trained on APOGEE spectra or on synthetic data.

In this study, we apply techniques such as, reduction of
dimensionality with PCA, and a PCA-based nearest neigbor
search (Paletou et al. 2015 a,b; Gebran et al. 2016) com-
plemented with a Regularized Sliced Inverse Regression

(Bernard-Michel et al. 2009, 2007) (RSIR) procedure in order
to derive simultaneously Te� , log g, [M/H] and v sin i from
spectra of A, F, G, and K-type stars. Up to now, sliced inverse
regression has been rarely used in astronomy (Bernard-
Michel et al. 2009; Watson et al. 2017). When combined
with PCA-based techniques, the derivations of the funda-
mental atmospheric parameters are achieved with higher
accuracy compared to the sole/mere PCA-based nearest
neighbor inversion (Paletou et al. 2015 a,b; Gebran et al.
2016). The mathematical description of our method is de-
tailed in Sec. 2. Following this, Sec. 3 describes all elements
used for the enhancement of the computational abilities of
SIR. Sec. 4 discusses the application of the technique on
synthetic spectra for A, F, G, and K-type like stars. In Sec. 5,
we show the results of inversions of real stars. Discussion
and conclusion are gathered in Sec. 6.

2 Sliced inverse regression (SIR)
SIR, originally formulated by Li (1991), is a statistical tech-
nique that reducesmultivariate regression to a lower dimen-
sion. It finds an inverse functional relationship between the
response and the predictor which are the fundamental pa-
rameters and the flux respectively. Synthetic spectra flux
values, xsyn, are usually calculated based on the set of stel-
lar atmospheric parameters in the form of:

xsyn = f (Te� , log g , [M/H] , v sin i) . (1)

The inverse functional relation is used to predict the param-
eters of the observed flux values, xobs, in the form of:

f −1(xobs) = (Te� , log g , [M/H] , v sin i) . (2)

In our work, we have derived a functional relationship
for each parameter in the following way:

Yj = f −1j (xobs) , (3)

where j = 1, 2, 3, 4 for Te�, log g, [M/H], and v sin i.

2.1 Global covariance matrix Σ

SIR starts with the computation of the covariance matrix Σ
of all the synthetic spectra xi of the LDB.

First, the spectra are gathered in a matrix of dimension
Nspectra × Nλ, where Nλ is the number of wavelength points
per spectrum and Nspectra is the total number of spectra in
the LDB. Then, the covariance matrix Σ, is defined as:

Σ = 1
Nspectra

Nspectra∑︁
i=1

(xi − x).(xi − x)T , (4)
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where the global mean x is defined as:

x = 1
Nspectra

Nspectra∑︁
i=1

xi , (5)

with xi being a row vector containing the flux values of
spectrum i.

2.2 Intra-slices covariance matrix

In SIR, all spectra are organized based on an increasing or-
der of the considered parameter for inversion. For example,
if we are to invert Te� of each star, the spectra database
should be organized in increasing order of Te� while having
the other parameters ordered randomly. We then build-up
subsets of spectra, also called “slices”, having the same
value of the parameter one wishes to determine first. These
slices should not overlap each other (Li 1991). Then we cal-
culate themeans xh of the slice of the spectra found in each
slice Sh that contains nh synthetic spectra (h being the in-
dex of each slice). For the inversion of each parameter, xh
and x are used to calculate the “intra-slices” covariance
matrix, Γ:

Γ =
H∑︁
h=1

nh
N (xh − x).(xh − x)T , (6)

where
xh =

1
nh

∑︁
xϵSh

xi . (7)

2.3 Dimension reduction and parameter
inversion

SIR aims to build a reducing subspace thatmaximizes the
variance between the slices while minimizing the variance
within the sliceswhich creates a reduced predictor versus re-
sponse regressive relationship to predict the parameters of
the observed stars. This is applied by the process of stacking
the spectra by an increase order of similar or close valued
parameters and averaging them into a single spectra and
projecting them on a new subspace. These new projection
will later be used predictors of the functional relationship.
Since the reduced projections are formed from spectra hav-
ing close parameter values, this insures a higher accuracy
of regressive predictions (Watson et al. 2017). On the other
hand, slicing the spectra based on non-overlapping sim-
ilar parameters insures this inter-slice maximization and
intra-slice minimization.

The matrix Σ−1Γ is then calculated where Σ and Γ are
the two previously defined matrices. One eigenvector of

Σ−1Γ, called βλ and corresponding to an eigenvalue λ, is
used to form the reduction subspace. This will allow us to
do regression in a 2-dimensional space using an inverse
functional relationship. This relationship is constructed
via a linear piecewise interpolation between the projection
coordinates of the slices on the single eigenvector of Σ−1Γ
and the parameters.

The selection of βλ, is based on a metric Cλ that quan-
tifies the relationship between the spectra and the parame-
ters. Cλ, defined as the “sliced inverse regression criteria”
(Bernard-Michel et al. 2007, 2009), is calculated as follows:

Cλ =
βtλ Γ βλ
βtλ Σ βλ

≈ Var(< βλ . xi >)
Var(< βλ . xi >) + Var(Sh)

, (8)

where βtλ is the transpose of βλ and Var is the variance
function

βtλ Γ βλ is the “inter-slice” variance, whereas β
t
λ Σ βλ

represents the total variance. The βλ that gives a Cλ value
closest to 1 is considered as a the best choice for the reduc-
ing basis vector. In the present work, Cλ varies between
0.91 and 0.97 when using the eigenvector of Σ−1Γ with the
largest eigenvalue λ.

To invert the parameters, we apply linear piecewise
interpolation on the coordinates of the projections of the
xh-s on βλ. Finally, the estimation of the parameters ismade
according to:

̂︀y =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
y1, if xpϵ] −∞, xp1],

yh +
(︂
xpobs − x

p
h

)︂(︂
yh+1−yh
xph+1−x

p
h

)︂
if xpϵ]xph , x

p
h+1],

yH , if xpϵ]xpH , +∞[,

(9)

where ̂︀y is the estimated parameter; yh is the mean of the
parameters of the spectra in slice h. The superscript “p”
represents the projected value of a selected set of data on
βλ i.e., xp =< βλ . x >.

3 Enhancement of the
computational abilities of SIR

In the present work, we are dealing with large amounts of
high resolution spectra, so that Σ−1Γ have typical dimen-
sion of∼ 104×104. In addition, using a large LDB for SIR in-
duces an increase in the intra-slice variance. This will lead
to less accurate inverted parameters. Therefore to simulta-
neously address these problems, we applied two additional
steps to SIR: first, using PCA, we reduce the dimension of
every spectra in the LDB (Watson et al. 2017) from ∼ 104

to 12. Second, we apply a PCA-based NN-search in the re-
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duced subspace to select a smaller LDB, more relevant for
the spectra one wishes to analyze.

Σ−1Γmatrix is generally ill-conditioned. And thehigher
the condition number is, the more noise sensitive the sys-
tem becomes (Kreyszig 2010). For the present work, values
as large as 1020 were found. In that case βλ is very noise
sensitive, leading to an unstable functional relationship. As
a result, inaccurate inverted parameters may be derived. To
solve this issue, we have applied Tikhonov regularization
which aims to improve the conditioning of Σ−1Γ and add a
priori information to it based on the analysis of the noise
of each observed spectrum. Several regularization meth-
ods exist, however, Tikhonov is very common and easily
implemented. Other studies may address this issue, such
as the truncated SVD used in Watson et al. (2017). Figure 1
summarizes the successive procedures we implemented,
and that we discuss with more details hereafter.

3.1 LDB reduction via PCA

PCA is a numerical technique that allows for the reduction
of dimension of each spectrum by projecting it on a set
of orthogonal basis vectors called principal components
(PC’s). These components are the eigenvectors of the global
covariancematrix Σ. Paletou et al. (2015 a) and Gebran et al.
(2016) showed that for databases similar to the ones used in
this study, only 12 PC’s associated to the largest eigenvalues
are enough to reduce the LDB, while the reconstruction
error remains less than 1%. Therefore after this first pass,
the new LDB has dimension of Nspectra × 12.

The original LDBmay reach to a dimension of Nspectra ×
Nλ ≃ 106 × 104. This is due to the fine sampling in the pa-
rameters, the high dimension of the spectra, and the large
wavelength range which makes the process of SIR compu-
tationally heavy in terms of memory and time. To reduce
the LDB which will be used for SIR, for each observed star,
a PCA-based nearest neighbor search in the reduced sub-
space is applied (Paletou et al. 2015 a). This is done using
the “PCA distance” d(O)j , defined as:

d(O)j =
√︁
Σ12k=1(ϱk − pjk)2, (10)

where ϱk is the projection coordinate on the kth dimension
for an observed spectrum, and pjk is the projection coeffi-
cient on the kth dimension for the jth synthetic spectrum.
Finally for the SIR, a set of NN will be selected for each
observed star as we will later describe in Sec. 3.3.

3.2 Tikhonov regularization

For the Tikhonov method (Vogel 2002), one usually inserts
a regularization parameter δ > 0 into the ill-conditioned
system, usually based on a priori information gathered by
analyzing the noise of each observed spectrum. Consider-
ing the following matrix:

(Σ2 + δI)−1ΣΓ . (11)

The eigenvector βλ(δ) associated to the largest eigenvalue
of the matrix defined in Eq. 11 is calculated based on an op-
timization approach. For each parameter of each observed
star, an optimum and specific δ is calculated. This proce-
dure is initiated by estimating the signal to noise ratio (S/N)
of the observed spectrum using the procedure of Stoehr et
al. (2008). Then a random set of synthetic spectra are se-
lected from the LDB, and Gaussian white noise having the
same S/N as the one of the observed spectrum is added to
them. SIR is finally applied to this selected random set and
the prediction of their parameters is done via the piecewise
interpolation process described in Eq. 9. This simulated
inversion leads to the selection of an optimum βλ(δ).

δ is estimatedbyminimizing thedifferencebetween the
newly inverted parameter values of the randomly selected
noise added spectra (̂︀yi) and their initial noiseless values
(yi). The comparison is done using a normalized χ2:

χ2N =

√︃∑︀n
i=1(̂︀yi − yi)2∑︀n
i=1( yi − yi)2

. (12)

It was found that log10(χ2N) as a function of log(δ) is a
unimodal function which has a local minimum. This func-
tion is displayed in Figure 3 for a synthetic spectrum hav-
ing Te�, log g, [M/H] , v sin i and S/N of 7 600 K, 2.50 dex,
0.0 dex, and 197 kms−1, and 196, respectively. The origi-
nal LDB used in this example is the one of Gebran et al.
(2016), explained in detail in Sec. 4. To find the minimum
of these curves, we applied a golden-section search algo-
rithm (Kiefer 1953). It is a classical numerical technique
that minimizes unimodal functions which have a global
minimum. The inversion process for each analyzed spec-
trum, and each parameter, has its own χ2N = f (δ) that needs
to be minimized.

3.3 Integrated scheme of the enhancements

Now that we have described the tools that were used to
improve the SIR procedure, in what follows we discuss how
these techniques are integrated to increase the accuracy of
the inversion process. The flowchart in Figure 1 summarizes
our adopted approach.
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Figure 1. The flowchart of the procedure. The numerics in this figure are for the inversions of the test described in Sec. 3.
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In our work, Σ and Σ−1Γ have reached dimensions of
the order of ∼ 104 × 104. For that reason and before ap-
plying the SIR process for each spectrum to be analyzed,
we have reduced the dimension of these matrices by reduc-
ing the size of the original LDB using PCA as described in
sec. 3.1.

During SIR, at least two distinct parameter values for
each slice are required to construct the functional relation-
ship. Therefore to select the optimum reduced LDB, a test
for the construction of this relationship is required. Itera-
tively we tested for the number of distinct parameters by in-
creasing the number of spectra of the nearest nearest neigh-
bors. Whenever the values of the distinct concerned param-
eters become greater or equal to 2, the iteration breaks and
the inversion proceeds to the interpolation. During the tests,
there were situations where [Σ2 + δI]−1 was singular. This
iterative approach solved this problem by adding nearest
neighbors. Generally, using a smaller LDB which contain
only a set of closest spectra to the observed one theoreti-
cally insures the success of SIR compared to using the entire
original LDB. When selecting a set of nearest neighbors, we
insure a lower minimization value of the intra-slice vari-
ance Var(Sh) in Eq. 8. Nowwithin each slice the spectra are
closer to each other and they are closer to the average spec-
trum of the slice. At the same time, choosing these optima
reduced LDB’s overcomes the issue of the degeneracies. In
the PCA basedNN-search (Paletou et al. 2015 a; Gebran et al.
2016), we had cases where the d(O)j where extremely close
to each or even equal, with a variety of parameters. In SIR,
we do not face such issue because the value are regressed
for each parameter and the synthetic spectra with similar
or close parameters are averaged to a single slice.

Now Σ−1Γ has a dimension of12×12 and is constructed
from the optimized reduced LDB. Its high condition num-
ber implies that it is ill-conditioned (see the example of the
left panel of Figure 2). Therefore to improve the inversion
process for each observed spectrum,we apply the Tikhonov
regularization in SIR for our selected optima reduced LDB,
iteratively. By applying this regularization, we are effec-
tively taking advantage of the S/N ratio analysis and insert-
ing the propagated noise information as a priori. In other
words, we are applying an denoising procedure.

In Figure 2, we display the inversion results for Te� of
a noisy synthetic spectrum. This spectrum has a Te� value
of 7600 K with an added Gaussian white noise of S/N =
196. As we iterate over different sizes of optimized reduced
LDB, a convergence is achieved in every case. For all of our
tests, we noticed that the number of spectra in the opti-
mized reduced LDB did not surpass 500. It is shown in this
figure that the condition number of the non-regularized
matrix is ∼ 5 orders of magnitude larger than the ones in

which the Tikhonov regularization was applied. The right
panel displays the effect of the regularization on the in-
verted parameter ( Te� ) of the same spectrum. It is clearly
shown that whatever the number of the nearest neighbors
in the optimized reduced LDB is, inversion is achieved with
higher accuracy than the one without regularization. The
convergence occurs irrespectively of the value of the condi-
tion number, as long as it is smaller than the one without
Tikhonov regularization.

Figure 3 represents the minimization of the log10(χ2N)
as a function of log10(δ) for different sets of optimized re-
duced LDB. This figure shows the unimodal nature of the
curves irrespective of the size of the LDB.

4 Simulations and tests
In this section, we present the implementation and results
of RSIR for two different sets of synthetic spectra. We also
compare these results to the ones of the PCA NN-search
to show the improvement in the accuracies of the derived
parameters. To each of these spectra, white Gaussian noise
was added with a random S/N. The spectra were calculated
in the range of A to K type stars. The reason for selecting
this spectral range is that in Sec. 5, we apply this procedure
to a sample of the observed stars studied in Paletou et al.
(2015 a) and Gebran et al. (2016).

4.1 The learning databases

As done in Paletou et al. (2015 b) and Gebran et al. (2016),
model atmospheres were calculated using ATLAS9 with the
new opacity distribution function (Kurucz 1992; Castelli &
Kurucz 2003). These models assume local thermodynamic
equilibrium (LTE), hydrostatic equilibrium, and a 1D plane–
parallel atmosphere. Convection was treated using a mix-
ing length parameter of 0.5 for 7 000 K ≤ Te� ≤ 8 500 K,
and 1.25 for Te� ≤ 7000K, following the prescriptions of
Smalley (2004). Synthetic spectra were calculated using
SYNSPEC48 (Hubeny & Lanz 1992). The adopted line lists
were from Kurucz gfhyperall.dat¹ and modified with more
recent and accurate atomic data retrieved from the VALD²
and the NIST³ databases (for more details see Gebran et
al. 2016). The calculation time for one spectrum depends
mainly of the selected wavelength range. For instance, cal-

1 http://kurucz.harvard.edu
2 http://www.astro.uu.se/∼vald/php/vald.php
3 http://physics.nist.gov

http://www.astro.uu.se/~vald/php/vald.php
http://physics.nist.gov
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culating one spectrum in the range of 4450-4990 Å at a
resolution of 76 000 requires ~20 seconds on a personal
computer⁴. Around 500 days were necessary for the calcu-
lation of theA stars LDBused in Sec. 4.2. For thewavelength
range between 5000-5400 Å, one spectrum requires ∼22
seconds.

4.2 Inversion of simulated A stars

We used the LDB of Gebran et al. (2016) in which the effec-
tive temperature of the data varies from 6800 up to 11 000

4 Intel core i7-4510U CPU at 2.00GHz × 4 with 16Gb RAM.

Table 1. Ranges of the parameters used for the calculation of the A
and FGK synthetic spectra LDB

Parms A stars F/G/K
Te� (K) [6 800,11 000] [4 000,8 000]

log g (dex) [2.0, 5.0] [3.0, 5.0]
[M/H](dex) [−2.0, 2.0] [−1.0, 1.0]
v sin i (km s−1) [0, 300] [0,100]

λ/∆λ 76000 50000

K. The wavelength region was chosen between 4 450−4 990
Å. This wavelength region harbors lines that are sensitive
to all stellar parameters, and insensitive to microturbulent
velocity which was adopted to be ξt = 2 km/s based on the
work of Gebran et al. (2016, 2014). The adopted resolution
is 76 000 as it corresponds to most of the analyzed stars in
Sec. 5. The ranges of all parameters in the A-star LDB are
summarized in Table 1.

Noise added synthetic spectra were calculated to be
used as simulated observations. Around 1 500 spectra were
calculated for A stars with parameters randomly selected
within the range of the LDB but not necessarily at the grid
points. To analyze the effect of the sampling on the RSIR
technique, we have inverted these spectra using 3 different
LDB. For the same range in all the parameter only the step
was modified in each database. As an example, in the LDB
1, Te� has a step of 100 K, whereas in LDB’s 2 and 3, the
steps are 200 K and 400 K, respectively. The samewas done
for all parameters and the details about the steps are found
in Table 2. The sampling of the v sin i in the LDB is not
constant and depends on the value of v sin i (Gebran et al.
2016).
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Table 2. Result of inversion for A stars using 3 different LDB with different steps on 1 500 noisy synthetic spectra.

Test Parms step ΛRSIR ΛPCA offsetRSIR offsetPCA

1

Te� (K) 100 100.3 132 63.45 61.128
log g (dex) 0.1 0.12 0.133 0.042 0.047
[M/H] (dex) 0.1 0.058 0.066 −0.0102 −0.0057
v sin i (Km/s) 2: [0-20] 5.92 6.47 −0.279 0.144

5: [20-40]
10: [40:300]

2

Te� (K) 200 108 190 67.54 69.33
log g (dex) 0.2 0.109 0.145 0.03 0.04
[M/H] (dex) 0.2 0.072 0.107 −0.0102 −0.01
v sin i (Km/s) 10 9.63 10.25 −3.5 -1.82

3

Te� (K) 400 174 295 40.74 92.39
log g (dex) 0.4 0.17 0.224 0.014 0.061
[M/H] (dex) 0.3 0.081 0.113 −0.016 0.0015
v sin i (Km/s) 20 12.05 11.23 −4.11 −0.9

To compare the results of the inversion of PCA NN-
search and RSIR for 1 500 spectra, we estimate the root
mean square error for both techniques, Λ, defined as:

Λ =

√︃∑︀N
i=0( y

(inv)
i − y(true)i )2
N , (13)

where y(true)i is the known parameter of the ith synthetic
spectrum and y(inv)i its corresponding inverted one.

Columns 4 and 5 of Table 2 display the Λ results us-
ing the PCA NN-search and the RSIR for the 3 LDB. The
offsets, calculated as a signed mean difference, between
the inverted and the true values are presented in the last
two columns of Table 2. Comparing the Λ values of each
approach, an improvement is achieved using RSIR for all
parameters. One exception exists in the case of v sin i for
test 3. The large v sin i step of the original LDB causes the
PCA NN-search pre-processing stage to select inaccurate
NN’s. For most cases RSIR with a coarse sampling in param-
eters is producing more accurate inversions compared to
PCA with a denser sampling. This directly infers a gain in
computational time as a coarse sampling leads to smaller
LDB. The time required to invert the parameters of one syn-
thetic spectrum depends on the computational facilities.
For instance, the gain in time for using the A-stars LDB of
test 2 instead of the one of test 1 is∼25%.

To analyze the effect of the S/N on the inversions, we
display in Figure 4 the inverted Te� as a function of the real
Te� for the 1500 A star spectra, for different S/N and differ-
ent LDB (tests 1, 2 and 3). The results of the PCA NN-search
is affected both by the sampling size and the S/N of the
analyzed stars, whereas for RSIR, with the pre-processing
of PCA and a Tikhonov regularization this effects becomes
less significant on the accuracy of the inversion. In the ap-
pendix, we present the behavior of the inversion of log g,

[M/H], and v sin i. A similar behavior to the one of Te� can
be concluded for these parameters and this can be shown
in Figures A1, A2 and A3.

4.3 Inversion of Simulated FGK type stars

The same procedure was applied to FGK star-like spectra.
Around 2 500 noisy spectra were produced in the ranges
described Table 1. As done for the A stars, the parameters of
the FGK synthetic spectra were also selected randomly. The
chosen resolution of 50 000 is the same used in Paletou et
al. (2015 a). The wavelength range was selected from 5000
to 5 400 Å containing the Mg i b triplet, a good indicator
of log g and sensitive as well to Te� . The microturbulent
velocity was set to ξt ∼ 1 kms−1(Gebran et al. 2014). The
inversion results (Λ and offsets) as a function of the sam-
pling steps are shown in Table 3. These results show similar
behavior to that of the A stars in terms of improvement in
accuracy while comparing RSIR to PCA NN-search. In Fig-
ure 4 we also overplot the Te� for our F/G/K noisy synthetic
spectra. The effect of inversion as a function of S/N and
sampling is very similar to the one of A stars, and for all
the parameters (Figures A1, A2 and A3).

5 Application to observed spectra
The performance of the RSIR has been tested on two sam-
ples of stellar spectra. The first sample is the one of the
Spectroscopic Survey of Stars in the Solar Neighborhood
(S4N, Allende Prieto et al. 2004). These are spectra of bright
FGK stars that are at distance less than 15 pc. We have es-
timated the S/N of these spectra in the wavelength range
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Figure 4. Results of the effective temperature inversion for the synthetic A to K stars. The black line represents the 1-to-1 correspondence.

Table 3. Result of inversion using 3 different LDB with different steps on 2 500 noisy synthetic FGK spectra.

Test parms step ΛRSIR ΛPCA offsetRSIR offsetPCA

1

Te� (K) 100 106 117 5.92 0.04
log g (dex) 0.1 0.121 0.136 0.016 0.002
[M/H] (dex) 0.1 0.061 0.063 −0.45 −0.56
v sin i (Km/s) 2: [0-20] 1.72 2.88 0.005 0.06

5: [20-40]
10: [40-100]

2

Te� (K) 200 109 236 8.17 −7.86
log g (dex) 0.2 0.132 0.289 0.0027 −0.017
[M/H] (dex) 0.2 0.066 0.115 −0.47 −0.62
v sin i (Km/s) 2: [0-20] 1.88 3.17 0.0087 0.0004

10: [20-40]
10: [40-100]

3

Te� (K) 400 127 368 10.43 −27
log g (dex) 0.4 0.147 0.45 −0.01 −0.04
[M/H] (dex) 0.4 0.07 0.17 −0.84 −0.625
v sin i (Km/s) 4: [0-20] 2.25 5.243 0.018 −0.011

10: [20-40]
10: [40-100]
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Figure 5. Comparison between the inverted parameters for our FGK stars sample (filled circles) and A stars (filled triangle).

used for the inversion of the parameters [5 000−5 400Å].
This ratio ranges between 40 and 450. These spectra are
at a resolution of λ/∆λ ∼50000. All the details about the
acquisition and the reduction procedure of the S4N data
can be found in Allende Prieto et al. (2004). These spectra
were inverted using the database of Paletou et al. (2015 a),
made of 905 spectra retrieved from the ELODIE stellar li-
brary (Prugniel & Soubiran 2001; Prugniel et al. 2007). We
have used the Mg i b triplet wavelength range as explained
in Sec. 4.3. We then compared the values of the inverted pa-
rameters with the ones of Allende Prieto et al. (2004) and to
the medians found in the Vizier catalog⁵ for all these stars.
The main reason for using this catalog for our comparison
is the necessity for reliable and objective catalogs which
are constructed based on previous adopted values by the
astronomical community.

Comparing our inverted Te� to the ones of Allende Pri-
eto et al. (2004), we found an average signed difference
of 2.09 K with standard deviation of 102 K. For log g, the
average signed difference and the standard deviation are
both 0.15 dex. For [M/H] and v sin i, we found −0.06±0.08
dex and −0.21±1.89 kms−1, respectively. If we compare our

5 The query was performed using the method described in Paletou &
Zolotukhin (2014)

inverted values to the median of Vizier, we find −85±110 K,
−0.07±0.16 dex, 0.01±0.10 dex and −0.50±2.25 kms−1 as a
signed mean difference and a standard deviation between
the catalogued values and the inverted ones for Te�, log g,
[M/H] and v sin i, respectively. Figure 5 displays in filled cir-
cles, for the four parameters, the comparison between our
inverted values for the FGK observed spectra and the ones
derived from Vizier. We have also assigned the catalogues
values an error bar corresponding to the standard deviation
of the dispersion in the catalogues values for each star.

The second sample of our analysis is constituted of the
well studied A stars of Gebran et al. (2016). These are the
19 stars that have been studied extensively by different au-
thors using different techniques (Vega, Sirius A, HD 22484,
HD 15318, HD 76644, HD 49933, HD 214994, HD 214923,
HD 113139, HD 114330, HD 27819, HD 5448, HD 33256,
HD 29388, HD 91480, HD 30210, HD 32301, HD 28355, and
HD 222603) and have more than 120 references each. The
source of these high resolution spectra is explained in detail
in Gebran et al. (2016). They were observed using ELODIE,
NARVAL, ESPaDOnS and SOPHIE spectrographs. ELODIE
has a resolution of 42 000 whereas NARVAL, ESPaDOnS
and SOPHIE are at a resolution of∼76 000.
We have applied the RSIR on these data using the database
of Test 1 in Sec. 4.2 at both resolutions. The S/N of these
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Figure 6. Synthetic spectra of G stars having [Te�,log g,[M/H],v sin i] of 5200 K,[4.00,4.15,4.30 dex], 0.0 dex, 6 km s−1. Each plot displays
the spectra with different S/N.

spectra is between 180 and 360. The inverted parameters of
each star were compared to the ones retrieved from Vizier
and added to the plots of Figure 5 as filled triangles. We
found an average signed difference and a standard devi-
ation of -0.14±245 K, -0.20±0.30 dex, -0.11±0.09 dex and
-2.07±8.5 kms−1 for Te�, log g, [M/H] and v sin i, respec-
tively between the inverted and the Vizier parameters.

5.1 The case of log g

These results show thatmost of our inverted parameters are
in agreement with previous studies. Considering that the
most accurate parameters of these A and FGK stars are the
Viziermedian, our values are less spreadwith respect to the
median than the ones of Paletou et al. (2015 a) and Gebran
et al. (2016). The standard deviations that we found could
be assigned as an estimation of the errors on the derived
parameters. We can therefore assign precision of 110 K, 0.16
dex, 0.10 dex and 2.25 kms−1, on Te�, log g, [M/H], and
v sin i, respectively for FGK stars. For A stars, we found
precision of 245 K, 0.30 dex, 0.09 dex, and 8.50 kms−1, on
Te� , log g, [M/H], and v sin i, respectively. These errors are
summarized in Table 4.

Surface gravity is systematically the most difficult pa-
rameter to determine, with typical errors of the order of 0.15
to 0.3 dex. This parameter is very important for chemical
analysis as some line profiles could be very sensitive to

Table 4. Estimation of the offset (signed mean difference) and the
errors on the derived parameters for FGK and A stars.

Parameter Offset
(FGK)

σFGK Offset (A) σA

Te� (K) −85 110 −0.14 245
log g (dex) −0.07 0.16 −0.20 0.30
[M/H] (dex) 0.01 0.10 −0.11 0.09
v sin i (km s−1) −0.5 2.25 −2.07 8.50

log g values. Spectroscopic determinations of surface grav-
ity have always been assigned moderately large error bars,
especially for A stars (Smalley 2005). The same applies to
FGK stars but with smaller error bars. Asteroseismic log g
determinations remain the best tools for achieving accu-
racies less than 0.05 dex (Hekker et al. 2013; Creevey et al.
2013; Chaplin et al. 2014). RSIR is mainly based on finding
the best set of spectra in the database that correspond to the
observed one. As it is a spectroscopic method, we should
not expect an accurate recovery for log g. Using our values
for ∆ log g we can, a posteriori figure out what it means
in terms of discernibility between two spectra whose re-
spective log g differ from this quantity. This also gives us
relevant information about (i) which specific bandwidth(s)
are the most sensitive to such differences, and (ii) how sig-
nificant they are for various S/N.

Figures 6 and 7 display the variation in the spectrum
profile as a function of log g, fixing all the remaining pa-
rameters, for G and A stars, respectively. In Figure 6, we
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Figure 7. Same as for Figure 6 but for A stars having having [Te�,log g,[M/H],v sin i] of [8500 K,[3.60,3.90,4.20 dex], 0.0 dex, 40 km s−1.

calculated synthetic spectra for a typical G star with a Te�
of 5 200 K, [M/H] of 0.0 dex, v sin i of 6 kms−1 at a resolu-
tion of 50 000 and in the wavelength range of 5 000−5 400
Å. The only parameter that differs between the 3 spectra is
log g, ranging between 4.00 dex and 4.30 dex with a step of
0.15 dex. The upper panel of Figure 6 displays the normal-
ized flux of the synthetic spectra in the Mg i b triplet region.
The flux level in this region is very sensitive to variation in
log g. The following panels displays the same spectra for
different values of S/N. When no noise is added (panel with
S/N∼∞), the distinction between the 3 spectra is clear but
when S/N starts to decrease, the distinction between the
noisy spectra becomes harder to detect. This shows that
for a S/N in the order of 100, the noisy spectra with log g
of 4.00 and 4.15 dex are very similar and therefore the best
corresponding synthetic spectrum in our LDB could have
a log g varying at least 0.15 dex from the correct value. We
are not trying to quantify the minimum S/N required for
an accurate inversion of log g as the RSIR is not based on
a pixel-to-pixel comparison, but we are showing the effect
of our derived standard deviations in log g on the flux for
noisy spectra. Figure 7 displays a similar behaviour for A
stars having similar Te� of 8 500 K, [M/H] of 0.0 dex, v sin i
of 40 kms−1, at a resolution of 76 000 in the wavelength
range of 4 500-5 000 Å. Surface gravity of these spectra
ranges between 3.60 and 4.20 dex with a step of 0.30 dex.
This figure shows a similar behavior to that of Figure 6. At
a S/N of ∼150, the distinction between spectra having a
difference of 0.30 dex in log g, becomes hardly noticeable.

Figures 6 and 7 also show that the effect of weak metal-
lic lines, on the derivation of log g, becomes negligible as
the S/N decreases. The log g information that these lines
contain is mainly lost in the noise.

6 Discussion and conclusion
RSIR tests for nearly 4 000 synthetic stars of different spec-
tral type and different noise levels showed an improvement
over the PCA-based method of Paletou et al. (2015 a,b) and
Gebran et al. (2016) for the inversion of stellar parameters.
Results of Tables 2 and 3 and Figure 4, for FGK and A stars,
show that for most of the tests, the Λ values of RSIR are
lower than nearest neighbor PCA approach. Having a prior
information about the star using PCA as a pre-process al-
lows us to narrow down the selection of the optimized re-
duced databases. This decreases drastically the size of the
LDB. Achieving lower Λ with bigger steps helps in decreas-
ing the prohibitive computation time for the construction
of databases and the calculations of the PC’s. Simulated
tests revealed that computation time of RSIR is nearly 1%
of that of the process of PCA nearest neighbor approach.

One should be very careful while increasing the size
of steps of the parameters because the PCA pre-processing
step could deviate drastically from the true inverted values
therefore excluding the spectra that actually best describes
the observed ones.
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Application to observed FGK and A stars reveal a good
agreement between the inverted parameters and the ones
derived in previous studies. The comparison with Vizier
catalog values show an improvement in the derived param-
eters as compared to the results of Paletou et al. (2015 a)
and Gebran et al. (2016) for the same stars and LDB. Sur-
face gravity remains the parameter with the least accuracy.
Our derived errors on log g are in the order of 0.15-0.30 dex.
Smarter LDB should be therefore considered, say, “adap-
tive sampling” (in the parameters under study), taking care
with caution of the flux typical variations at the most sensi-
tive wavelength (sub-)domains, together with the S/N of the
observations, instead of the a priori sampling in the param-
eters. Also, a commonly reported issuewith the inversion of
stellar parameters using a LDB of synthetic spectra are the
so-called “ambiguities”. Thismeans that two sets of distinct
parameters may generate spectra which are beyond “dis-
cernibility”. Given a set of observed spectra to characterize,
we could naturally relate that discernibility to their level of
S/N. Using a nearest neighbor search PCA-based method,
for instance, such a level of S/N can easily be translated
into a threshold of distance δPCA. Then, we can anticipate
that, instead of relying on LDB usually made using a priori
sampling in the parameters, a smarter DB should rely on
δPCA instead. This would imply to set up LDB for funda-
mental stellar parameters in a radically different fashion vs.
common practices. In the frame of PCA, it would be more
relevant to sample properly the full range of parameters
with a “constrained-random” process ensuring that there
are no nearest neighbors closer than δPCA. Such a “sieve al-
gorithm” was first proposed by López Ariste & Casini (2002)
in the context of the characterization of magnetic fields
from spectropolarimetric data (see also Casini et al. 2013).
Another line of development relates to the "structure" of
our LDB. Smarter, or optimal LDB, using different methods
of samplings, should be considered. Such a general issue
was already evoked by Bijaoui et al. (2012) for instance.

Available online databases are usually calculated with
large steps in Te� and log g. Our RSIR technique, as it does
not require small steps in the LDB, is a good tool to be used
with online available synthetic spectra such as the POL-
LUX⁶ database (Palacios et al. 2010) that contains models
with temperature ranging between 3 000 and 50000 K or
TLUSTY Non-LTE Line-blanketed Model Atmospheres of
O-Type Stars (Lanz & Hubeny 2003) with Te� ranging be-
tween 27 500 and 55 000 K with 2 500 K steps, and log g
between 3.0 and 4.75 with steps of 0.25 dex. We can also
mention the PHOENIX (Husser et al. 2013) models database

6 pollux.oreme.org

for stars having Te�<12 000K and theAMBRE (de Laverny et
al. 2012) project that contains high-resolution FGKM stellar
synthetic spectra.

As an output of the new Gaia Data Release 2, Cropper
et al. (2018) describe the Gaia RVS specification as well as
the predicted performance at the end of the mission. Gaia
RVS will provide us with a large number of spectra in the
calcium triplet regime (845 − 872 nm). This triplet is very
sensitive to Te� and log g. The medium resolution (11 500)
of the RVS and the small range inwavelengthwould require
LDB smaller than the ones used in our work, leading to a
fast application of the RSIR. As we did for the inversion
of the S4N data in Sec. 5, LDB could be constructed with
real observed stars having well known fundamental pa-
rameters and with the same resolution. Finally, since RSIR
is based on single parameter inversion process, one can
also incorporate other parameters at the cost of computing
and handling more numerous individual spectra, for ex-
ample, microturbulence velocity and individual chemical
abundances.
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Appendix
In this appendix, we display the results of the inversion of log g, [M/H], and v sin i. The black line corresponds to the
1-to-1 associated values. The test number, the root mean square error Λ, and the offset (see Tables 2 and 3 for details) are
presented.

Figure A1. Results of the surface gravity inversion for the synthetic A to K stars.
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Figure A2. Results of the metallicity inversion for the synthetic A to K stars.
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Figure A3. Results of projected equatorial velocity inversion for the synthetic A to K stars.
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