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Abstract

For a smooth vectorial stationary Gaussian random field X : Ω×R
d → R

d, we give
necessary and sufficient conditions to have a finite second moment for the number
of roots of X(t)−u. The results are obtained by using a method of proof inspired
on the one obtained by D. Geman for stationary Gaussian processes long time ago.
Afterwards the same method is applied to the number of critical points of a scalar
random field and also to the level set of a vectorial process X : Ω×R

D → R
d with

D > d.
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1 Introduction

In the 1940s three articles with apparently different orientations appeared in math-
ematical literature. Firstly was Mark Kac’s paper [11] “On the average number
of real roots of a random algebraic equation” and secondly two papers written by
S.O. Rice [17], [18]“Mathematical analysis of random noise I and II”. In the work
of Kac and in the second of Rice the zeros of Gaussian random functions were
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1 Introduction 2

studied. In particular they established with precision a formula, known today as
the Kac-Rice formula, which allows to compute the expectation of the number of
zeros (or crossings by any level) of a Gaussian random function. In spite of the
apparently separated that seem the works, M. Kac in the review of the article
affirms that “All these results (of Rice) can also be derived using the methods
introduced by the reviewer (M. Kac)”.

After these two works an intense research activity has been developed. In
particular, the interest in these subjects had a great impulse after the appearance
of the book written by H. Cramer and M. R. Leadbetter [7]. In this work, there
is not only a general demonstration of the Kac-Rice formula for the number of
crossings of a Gaussian processes, but also formulas for the factorial moments
of this last random variable. An important fact to notice is that in the book a
sufficient condition for the second moment of the number of crossings of zero to
be finite is established. Then a little time later D. Geman in [10] showed that
this condition was also necessary. This condition is now known as “ the Geman
condition”. This result has been extended to any level at [12].

The theme gained a new impulse when appear in the eighties two books, the
first one written by R. Adler [1] “The geometry of random fields” and the second
one a Lecture Notes [19] written by M. Wschebor “Surfaces aléatoires. Mesure
géométrique des ensembles de niveau”. Both books focus their study on crossings
or geometric invariants of the level sets, for random fields having a multidimen-
sional domain and taking scalar or vector values. The problems studied by Cramer
& Leadbetter were extended to this new context. In particular we must point out
the Adler & Hasofer’s article [2] in which conditions are established so that the
number of stationary points for a Gaussian field of X : R2 → R have a second
moment. It is important to observe that studying the stationary points of a scalar
field leads to study the zeros of its gradient, which is a vector field.

The twenty-first century saw two books appear [3] and [5] that gave a new
impetus to the subject. New fields of application of the formulas appeared in the
literature and the area has become a large domain of research. We can point out
for instance the applications to the number of roots of random polynomial systems
(algebraic or trigonometric) and also to the volume of nodal sets when the systems
are rectangular [16]. Also Kac-Rice formulas are a basic tool to study the sets of
zeros of random waves and it has been much effort to prove or disprove Berry’s
conjectures [6], see [16] and the references therein. A field of applications where
the formulas have been very useful is in random sea modeling, the Lund’s School
of probability has been very active in these matters, see for instance the paper [15]
and the references therein. In addition, the processes to which the crossings are
studied can have their domain in a manifold of finite dimension see [14]. A very
interesting case of this last situation is the article [4] where the domain of the
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random filed is the sphere in large dimension.
In the present paper we obtain necessary and sufficient conditions to have a

finite second moment for the number of roots of X(t) − u, for a stationary, mean
zero Gaussian field X : Ω × R

d → R
d. The proofs of the main results are rather

simple using the case d = 1 as inspiration. Our results can be extended to the
number of critical points of a stationary mean zero scalar Gaussian field. We must
note that recently in [8] a sufficient condition for the critical points of a scalar
field has finite second moment was given, however our method is rather different.
Finally let us point us that as a bonus our method of proof allows obtaining a very
simple result for the volume of level sets for Gaussian fields X : Ω×R

D → R
d with

D > d. Under condition of stationarity and diferentiability, the second moment is
always finite.

Suppose that we have a way to check easily that the measure of the level set
of a Gaussian field has finite second moment. Then it is ready to obtain an Itô-
Wiener expansion for this functional. Two consequences of this representation are
important to remark: firstly the asymptotic variance of the level functional can be
computed and also the speed of the divergence of this quantity can be estimated,
secondly the fourth moment theorem can be used to obtain diverse CLT. This has
been done some time ago in [13] and more recently in a lot of papers. We can cite
by instance the article [16] where one can also consult some recent references.

The organisation of the paper is the following: in Section 2 we revisit the
results of [12] in dimension 1. Section 3 studies the number of points of levels sets
for a random field X : Rd → R

d, d > 1. The subsection 3.4 is devoted to the study
of the number of critical points of a random field X : Rd → R. Section 4 studies
the measure of levels sets for a random field X : RD → R

d, D > d. The proof of
the different lemmas are given in the appendix.

2 Real valued process on the line, Geman’s condition

The results of this section are contained in the paper [12]. However, we present a
new proof as an introduction to the next section.
Consider a process X : R → R and assume

• It is Gaussian stationary, normalized this is:

E(X(0)) = 0; Var(X(t)) = 1.

This last point is without loss of generality.

• The second spectral moment λ2 is positive and finite.
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Let Nu([0, T ]) := #{t ∈ [0, T ] : X(t) = u} for a given level u ∈ R. Moreover we
define the covariance

r(τ) = E[X(0)X(τ)].

And let set

σ2(τ) := Var(X ′(0)| X(0) = X(τ) = 0) = λ2 −
(r′(τ))2

1− r2(τ)
.

In what follows (Const) will denote a generic positive constant, its value can change
from one occurence to another.
The relation x ≤ (Const)y, y ≤ (Const)x is denoted x ≍ y.

The object of this section is to prove the next theorem:

Theorem 1. The following statements are equivalent

(a) E(Nu([0, T ])
2) is finite for some u and T .

(b) E(Nu([0, T ])
2) is finite for all u and all finite T .

(c) The intergral
∫ σ2(τ)

τ dτ converges at zero.

Remark: Integrating by parts in (c) we get the classical Geman’s condition
by using the following lemma, whose proof (as well as the proofs of all lemmas) is
referred to the appendix.

Lemma 2. There is equivalence between the convergence at zero of the two fol-
lowing integrals

∫

λ2 + r′′(τ)

τ
dτ and

∫

σ2(τ)

τ
dτ.

Before the proof of the theorem we need some notation and two lemmas.

Lemma 3. For τ sufficiently small we set the following definitions and we have
the following relations.

(a) µ1,τ,u := E(X(τ)|X(0) = X(τ) = u) = r′(τ)u
1+r(τ) .

(b) µ2,τ,u := E(X(0)|X(0) = X(τ) = u) = −µ1,τ,u.

(c) Recall that σ2(τ) = Var(X(0)|X(0), X(τ)) = λ2 − (r′(τ))2

1−r2(τ)
.

(d) det(Var(X(0);X(τ)) = 1− r2(τ) ≍ τ2
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(e) if the fourth spectral moment λ4 satisfies λ2
2 < λ4 ≤ +∞, then

|µ1,τ,u|
σ(τ) ≤ (Const)u .

Lemma 4. Assume that |m1|, |m2| ≤ K for some constant K and that (Y1;Y2)
L
=

N
(

(m1;m2),

(

1 ρ
ρ 1

)

)

. Then E|Y1Y2| ≍ 1. Where the two constants implied in the

symbol ≍ depend on K.

Proof of the Theorem. First we have to consider the particular case λ4 = λ2
2. This

corresponds to the Sine-Cosine process: X(t) = ξ1 sin(wt)+ξ2 cos(wt) where ξ1, ξ2
are independent standard normals. In this case a direct calculation shows that
(a)-(c) hold true.

We consider now the other cases assuming that λ2
2 < λ4. We start from (c):

we assume that

∫ T

0

σ2(τ)

τ
dτ < +∞ with T sufficiently small.

The expectation of the number of crossings is finite because the second spectral
moment is, see [7]. Thus it is enough to work with the second factorial moment.
The Kac-Rice formula for this quantity [7] writes

E(Nu([0, T ])(Nu([0, T ]) − 1)) =

1

π

∫ T

0
(T − τ)E[|X ′(0)||X ′(τ)| |X(0) = X(τ) = u)

e−
u2

1+r

√
1− r2

dτ.

≤ (Const)

∫ T

0
E[|X

′(0)

σ(τ)
||X

′(τ)

σ(τ)
|
∣

∣

∣
X(0) = X(τ) = u)

σ2(τ)

τ2
dτ, (1)

using Lemma 3 (d). By Lemma 3 (e), X′(0)
σ(τ and X′(τ)

σ(τ) have a bounded conditional
mean, then applying now Lemma 4:

E(Nu([0, T ])(Nu([0, T ]) − 1) ≤ (Const)

∫ T

0

σ2(τ)

τ2
dτ. (2)

This give the finiteness of the second moment form T sufficiently small. By the
Minkowsky inequality it is also the case for every T giving (b).

In the other direction we start from (a) with u = 0 and T sufficiently small
(which is weaker than (b)) and we prove (c) .

Again we can consider the second factorial moment and apply the Kac-Rice
formula to get that
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E(Nu([0, T ])(Nu([0, T ]) − 1)

≥ (Const)

∫ T/2

0
E

(

|X
′(0)

σ(τ)
||X

′(τ)

σ(τ)
|
∣

∣

∣
X(0) = X(τ) = u

)σ2(τ)

τ2
dτ.

It suffices to apply Lemma 4 in the other direction.

Remark 5. We can also obtain (2) with an explicit constant by use of the Cauchy-
Schwarz inequality.

3 Random fields R
d → R

d, d > 1

3.1 Position of the problem

Let us consider a random field X : Rd → R
d. We assume (H1):

• The field is Gaussian and stationary and has a continuous derivative.

• The distribution of X(0) (respectively X ′(0)) is non degenerate (N.D.).

By a rescaling in space we can assume without loss of generality that

E[X(t)] = 0 and Var(X(t)) = Id,

where Var denotes for us the variance-covariance matrix. We keep the notation
Cov for the matrix

Cov(X,Y ) := E

(

(

X − E(X)
)(

Y − E(Y )
)⊤

)

.

We also define the following additional hypothesis

The coordinates Xi of X are independent and isotrope (H2)

We define

σ2
i,λ(r) := Var

(

X ′
iλ

∣

∣X(0),X(λr)
)

,

σ2
max(r) := max

i=1,...,d
max

λ∈Sd−1
σ2
i,λ(r),

where X ′
iλ denotes the derivative of Xi in the direction λ ∈ S

d−1.
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3.2 Zero level

We set N(0, S) the number of roots of the field X(·) on some compact set S. The
following result is new as well as all that follows.

Theorem 6. Under (H1), if

∫

σ2
max(r)

r
dr converges at 0,

then for all compact S ⊂ R
d : E

(

(N(0, S))2
)

is finite.

The proof of the Theorem uses the following lemma.

Lemma 7. Let T, (Zn)n be in the same Gaussian space. Assume that Zn → Z
a.s. or in probability or in L

2(Ω) and the random variable Z is (N.D.). Then

∀z,E(T |Zn = z) → E(T |Z = z),

Var(T |Zn) → Var(T |Z).

Proof of Theorem 6. Set

C = {X(0) = X(t) = 0},

and let EC denotes the expectation conditional to C.
We consider the following quantity

A(t, 0) = EC

(

|detX ′(0) detX ′(t)|). (3)

By applying the Cauchy-Schwarz inequality and by symmetry of the roles of 0 and
t:

A(t, 0) ≤ EC

(

det((X ′(0))⊤X ′(0))
)

,

We define the Jacobian the matrix X ′(0) by X ′
ij(0) =

∂Xi

∂tj
.

We perform a change of basis so that t = re1 = |t|e1 where e1 is the first
vector of the new basis. We denote by X̄ the expression of X in this basis. Let
X̄ ′

:j denote the jth column of X̄ ′. Using Gram representation of the semidefinite
positive matrix M = (Mij), we know that

det(M) ≤ M1,1 . . .Md,d. (4)

This gives

A(t, 0) ≤ EC

(

‖X̄ ′
:1‖2 . . . ‖X̄ ′

:d‖2
)

=
∑

1≤i1,...,id≤d

EC((X
′
i1,1)

2 . . . (X ′
id,d

)2). (5)
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Because the conditional expectation is contractive, for j > 1,

EC

(

(X̄ ′
ij ,j)

2
)

≤ E
(

(X̄ ′
ij ,j)

2
)

≤ (Const). (6)

In addition
EC

(

(X̄ ′
i1,1)

2
)

≤ σ2
max(r). (7)

If we consider a term of (5), we can apply Cauchy-Schwarz inequality to get
that it is bounded by

(

EC((X
′
i1,1)

4
)1/2(

EC((X
′
i2,2)

4 . . . (X ′
id,d

)4)
)1/2

.

Using (6) and (7), we get that this term is bounded by

(Const)σ2
max(r).

As a consequence we get the same bound for the whole sum.

We now study the joint density

pX(0),X(t)(0, 0) = (Const)
(

detVar(X(0),X(t))
)− 1

2 .

Using the fact that a determinant is invariant by adding to some row (or column)
a linear combination of the others rows (or columns) we get

det(Var(X(0),X(t))) = det(Var(X(0),X(t) −X(0))).

Using Lemma 7.

pX(0),X(t)(0, 0) ≃ (Const)r−d(detVar(X(0),X ′
λ(0))

)− 1
2 ≍ r−d, (8)

where λ := t/‖t‖.
We are now able to apply the Kac-Rice formula see, for example, [5], Theorem

6.3. As in the case d = 1 we can limit our attention to the second factorial moment.
We have

E(N(0, S)(N(0, S) − 1)

=

∫

S2

A(t− s, 0)PX(s),X(t)(0, 0)dsdt ≤ (Const)|S|
∫

S
σ2
max(t)‖t‖−ddt,

where |S| is the Lebesgue measure of S. Passing in polar coordinates, including S
in a centered ball with radius a, we get that the term above is bounded by

(Const)

∫ a

0
rd−1r−dσ2

max(r)dr = (Const)

∫ a

0

σ2
max(r)

r
dr.
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3.3 General level

In this section we assume (H1) and (H2). Note that σ2
i,λ(r) depends no more on

λ. We denote by σ2
i (r) its value. We have σ2

max(r) = maxi=1,...,d σ
2
i (r).

Our result is the following

Theorem 8. Under the hypotheses above
• If

∫

σ2
max(r)

r
dr converges at 0,

then for all compact S ⊂ R
d an all u ∈ R

d: E
(

(N(u, S))2
)

is finite.
• If E

(

(N(u, S))2
)

is finite for some u and some compact S with non-empty
interior, then

∫

σ2
max(r)

r
dr converges at 0.

Because of stationarity and isotropy we have

Cov(Xi(s),Xi(t)) = ρi(‖s− t‖2),

where ρi is some function of class C2(R).
Before the proof of the Theorem we state the following lemmas.

Lemma 9. Let F be a family of Gaussian distributions for X,Y two d×d Gaussian
matrices. Let Z be the 2d2 vector obtained by the elements of X,Y in any order.

(a) Suppose that for all distribution in F , E(Z) ∈ K1 and Var(Z) ∈ K2 where
K1,K2 are two compacts sets .

Then there exists C such that :

sup
f∈F

Ef (|det(X) det(Y )|) ≤ C.

The constant C depends only on K1, K2 and d.
(b) Suppose in addition that for every f ∈ F ,

P{det(X) = 0} = 0,P{det(Y ) = 0} = 0

then there exists c such that :

E(|det(X) det(Y )|) ≥ c.

The positive constant c depends only on K1, K2 and d.
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For establishing the next lemma let introduce the following definitions

σ2
i (r) = −2ρ′i(0) −

4r2(ρ′i(r
2))2

1− ρ2i (r
2)

,

bi(r)σi(r) =
(

−2ρ′i(r
2)− 4r2ρ′′i (r

2)− 4r2ρi(r
2)(ρ′i(r

2))2

1− ρ2i (r
2)

)

.

Then we have the following, denoting VarC the variance-covariance matrix
conditional to C.

Lemma 10. [see [5] p. 336]

VarC
(

X ′
i(0);X

′
i(re1)

)

=











σi(r) 0 . . . 0 bi(r)σi(r) 0 . . . 0
0 −2ρ′

i
(0) . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . −2ρ′
i
(0) 0 0 . . . 0

bi(r)σi(r) 0 . . . 0 σi(r) 0 . . . 0
0 0 . . . 0 0 −2ρ′

i
(0) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . −2ρ′
i
(0)











.

Proof of the Theorem 8. We begin by considering instead of (9) the quantity

A(t, u) = EC

(

|detX ′(0) detX ′(t)|), (9)

where now
C = {X(0) = X(t) = u}.

Because of isotropy we can assume, without loss of generality, that t = re1.
Because of the independence of each coordinates assumed in (H2)

EC(X
′
i,1(0)) = E(X ′

i,1(0)
∣

∣Xi(0) = Xi(re1) = ui).

So we have to consider a one dimensional problem as in Section 2. In addition
the spectral measure of each Xi is invariant by isometry so its projection on the
first axis cannot be reduced to one point (or two taking into account symmetry).
As a consequence Lemma 3 (e) holds true implying that

|EC(X
′
i,1(0)| ≤ (Const)uiσi(r).

Let us consider now EC(X
′
i,j) = E

(

X ′
i,j

∣

∣Xi(0) = ui,
Xi(t)−Xi(0)

r = 0) for j 6= 1.
From Lemma 7

EC(X
′
i,j) ≃ E

(

X ′
i,j

∣

∣Xi(0) = ui,X
′
i,1(0) = 0

)

.

By independence
EC(X

′
i,j) ≃ E

(

X ′
i,j

∣

∣X ′
i,1(0) = 0) = 0.
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Of course we have the same kind of result for X ′(re1).
So, if we divide the first column of X ′(0) and X ′(re1) by σmax(r) to obtain

X̃ ′(0) and X̃ ′(re1), Lemma 10 implies that all the terms of the variance-covariance
matrix are bounded, the expectation is bounded. Using lemma 9 we get that

A(t, u) ≤ (Const)σ2
max(r). (10)

The end of the proof of the first assertion is similar to the one of Theorem 6.

We turn now to the proof of the second assertion. To get the inequality on the
other direction we must carefully apply (b) of Lemma 9. For this purpose we need
to describe the compact sets K1 and K2.

We know, from the proof of the first assertion, that all the expectations are
bounded soK1 is just [−a, a]2d

2×2d2 for some a. For the domainK2 of the variance-
covariance matrix of X̃ ′(0), X̃ ′(t) :

• First we have an independence between the coordinates Xi. Denoting by
X ′

i,:(t) the i row of X ′ i.e. the gradient of Xi at t, then the variables
(

X ′
i,:(0),X

′
i,:(t)

)

, i = 1, . . . , d are independent.

• If we consider
(

X ′
i,:(0),X

′
i,:(t)

)

for some fixed i, we see from lemma 10 that (i)
only one variance varies : σi(r), (ii) the only non-zero covariance is between
X ′

i,1(0) and X ′
i,1(t).

• After dividing X ′
i,1(0) and X ′

i,1(t) by σmax(r) to obtain X̃ ′
i,1(0), X̃

′
i,1(t) the

variance becomes

σ̃i(r) :=
σi(r)

σmax(r)
.

The domain for these variance, when i varies is

K ′
2 := {σ̃(r) ∈ R

d : 0 ≤ σ̃i(r) ≤ 1, at least one σ̃i(r) = 1}.

That is a compact set.

• The domain for the covariance between X̃ ′
i,1(0) and X̃ ′

i,1(t) is given by
Cauchy-Schwarz inequality :

Cov
(

X̃ ′
i,1(0), X̃

′
i,1(t)

)

≤ σ̃i(r),

that defines another compact set.

• The other variables are independent between them and independent of the
variables above. Their variance are fixed.
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It remains to prove that for every element of K1 and K2 the Gaussian distribution
satisfies

P{det(X) = 0} = 0 and P{det(Y ) = 0} = 0,

where X,Y is a representation of the conditional distribution of X̃ ′(0), X̃ ′(t). It is
sufficient to study the case of det(X). Recall that we have proved above that all
the coordinates of X are independent. The only difficulty is that the variance of
the first column may vanish.

Let us consider the d× (d − 1) matrix X ′
:,−1 that consists of columns 2, . . . , d

of X. Because all the entries of X:,−1 are independent they span a subspace of
dimension d− 1 a.s.

Then the rank of X ′
:,−1 is almost surely (d− 1) or Im(X ′

:,−1) is a (d− 1) space.
The distribution of the random matrix Y := X ′

:,−1 has a density that can be
written

fY [dY ] = (Const)e−
1
2
Trace(Y ⊤Σ−1Y )[dY ],

where as before we have denoted Σ the covariance matrix of each column vector,
which is diagonal. This density function is translated on the Grassmannian giving
a bounded density with respect to the Haar measure.

Recall that we have proved above that all the coordinates ofX are independent.
Let X:,1 be the first column of X. Conditioning on X:,−1, by independence, the
distribution of X:,1 remains unchanged. A representation for this random variable
is

X:,1 = µ+ ξ, with µ = E(X:,1),

where ξ (because some σ̃i can vanish) has an absolute continuous distribution on
the space

SI = (ξi = 0, for i ∈ I), with I = {i : σ̃i = 0}.
But since at least one σ̃i = 1, we have SI 6= {1, . . . , d}.

Because of its absolute continuity, almost surely, ξ can not be included in a
given subspace E that does not contain SI . In conclusion, given its absolutely
continuous distribution over the Grassmannian, with probability one, Im(X:,−1)
cannot contain any fixed affine space.

As a consequence we can apply Lemma 9 (b) for getting the inequality in the
other direction.

It remains to give a lower bound to the density.

pX(0),X(t)(u, u) =

d
∏

i=1

1

2π

1
√

1− ρ2i (r
2)
e
− u2

1−ρi(r
2) .
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Since ρi(r
2) → 1 as r → 0 the term e

− u2

1−ρi(r
2) is lower bounded. Then is suffices

to use (8).

3.4 Critical points

Let Y : Y (t) be a random field from R
d → R. Critical points points of Y are

in fact zeros of X = X ′(t). Strictly speaking this process does not satisfies the
hypotheses of Theorem 11 because X ′(t) is the Hessian of Y (t) so it is symmetric
and its distribution in R

d2 is not N.D. But the result holds true with a very similar
proof mutatis mutandis.

Theorem 11. Suppose that

• Y is Gaussian stationary, centred and has C2 sample paths.

• Y ′(t) is N.D., Y ′′(t) has a non degenerated distribution in the space of sym-
metric matrices of dimension d× d.

Define
S̄2
max(r) := max

i=1,...,d
max

λ∈Sd−1
Var

(

Y ′′
iλ

∣

∣Y ′(0), Y ′′(λr)
)

,

if
∫

S̄2
max(r)

r
dr converges at 0,

then for all compact S ⊂ R
d : the second moment of the number of critical points

of Y included in S is finite.

4 Random fields from R
D to R

d, d < D

In this section we study the level sets of a random field R
D to R

d. Of course the
case d > D has no interest because almost surely the level set is empty. The case
d = D has been considered in the preceding sections so we assume d < D. The
result presented here is, in some sense, a by-product of Theorem 8, but by its
simplicity it is the most surprising result and one of the main results of this paper.

Theorem 12. Let X : X(t) a stationary random field R
D to R

d, d < D with
C1 paths. By the implicit function theorem, a.s. for every u the level set Cu is a
manifold and its D− d dimensional measure σD−d is well defined. Let C(u,K) be
the restriction of Cu to a compact set K ⊂ R

D. Assume that the distributions of



4 Random fields from R
D to R

d, d < D 14

X(t) and X ′(t) are N.D.
Then for every u and K

E
(

σ2
D−dC(u,K)) < +∞. (11)

Proof. The Kac-Rice formula reads

E
(

σ2
D−dC(u,K))

=

∫

K2

EC

((

det(X ′(s)X ′(s)⊤) det(X ′(t)X ′(t)⊤)
)

1
2 | |

)

pX(s),X(t)(u, u)dsdt,

where again EC denotes the expectation conditional to C = {X(0) = X(t) = u}.
Using the arguments in the proof of Theorem 8, we have

pX(0),X(t)(u, u) ≤ (Const)‖t‖−d.

By Cauchy-Schwarz inequality and symmetry

A(t, u) := EC

(

(

det(X ′(0)X ′(0)⊤) det(X ′(t)X ′(t)⊤)
)

1
2 |
)

≤ EC

(

(

det(X ′(0)X ′(0)⊤)|
)

)

.

Using (4) we have to bound

EC

d
∏

i=1

‖∇Xi(0)‖2.

Now we borrow results from the proof of Theorem 8, to get that for every i:

EC(X
′
i,1(0)) → 0

EC(X
′
i,j(0)) is bounded j 6= 1,

Because of the contracting property of the conditional expectation VarC(X
′
i,j(0)) is

bounded. So, it follows directly that A(t, u) is upper-bounded. The integrability
of t−d in R

D gives the result.
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[19] M. Wschebor. Mésure géométrique des ensembles de niveau. LNM 1147 Springer-
Verlag (1985).



5 Appendix 16

5 Appendix

Proof of lemma 2. Let us consider the integral

∫ δ

0

σ2(τ)

τ
dτ.

For τ small enough

σ2(τ)

τ
∼ (

1

λ2
)
3
2
λ2(1− r2(τ)) − (r′(τ))2

τ3
.

Then integrating by parts

∫ δ

0

λ2(1− r2(τ))− (r′(τ))2

τ3
dτ

=
λ2(1− r2(δ)) − (r′(δ))2

2δ2
+

∫ δ

0

r′(τ)

τ
(
−λ2r(τ)− r′′(τ)

τ
)dτ.

Hence we need to consider the second term that is equal to

−λ2

∫ δ

0

r′(τ)

τ
(
r(τ)− 1

τ
)dτ −

∫ δ

0

r′(τ)

τ
(
r′′(τ) + λ2

τ
)dτ,

as the first term is evidently convergent, the above sum is convergent if and only
if

∫ δ

0

r′′(τ) + λ2

τ
dτ < ∞.

Proof of lemma 3. For short we will write r, r′, r′′ instead of r(τ), r′(τ), r′′(τ).
Items (a) − (d) are easy consequences of regression formulas (see [5] page 100
for example).

To prove (e) we study first the behavior of r′

σ(τ) near to zero. We need consider
two cases.

The first one is when the fourth spectral moment λ4 is finite: we have r(t) =
1−λ2t

2/2+λ4t
4/(4!)+ o(t4) . By using a Taylor expansion of fourth order on the

numerator and the denominator of the fraction ( r′u
(1+r)σ(τ) )

2, we obtain

(
r′u

(1 + r)σ(τ)
)2 → λ2

2u
2

λ4 − λ2
2

≤ (Const)u2, giving (e).
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Consider now the second case : λ4 = +∞.
Given that r′′(τ)− r′′(0) =

∫∞
0

1−cos(τλ)
τ2λ2/2

dµ(λ), we have by Fatou’s lemma

lim inf
τ→0

r′′(τ)− r′′(0))

τ2
≥

∫ +∞

0
lim inf
τ→0

1− cos(τλ)

τ2λ2/2
λ4dµ(λ)

=

∫ ∞

0
λ4dµ(λ) = +∞. (12)

Since 1 + r tends to 2, it suffices to study the behaviour of

r′2

σ2(τ)
≃ λ3

2
λ2(1−r2)−r′2

τ4

,

Note that λ2(1− r2(τ))− r′2(τ) = 2λ2(1− r(τ))− r′2(τ)+O(τ4). Furthermore by
using the l’Hospital rule

lim
τ→0

2λ2(1− r(τ))− r′2(τ)

τ4
= lim

τ→0

(−r′(τ)

2τ

)(

r”(τ)− r”(0))

τ2

)

= +∞,

because of (12) and since we know that −r′(τ)
2τ → λ2

2 . Thus r′(τ)
σ(τ) → 0. These two

results imply that (e) holds.

Proof of the lemma 4. We can write

Y2 −m2 = ρ(Y1 −m1) +
√

1− ρ2Z1,

where Z1 is a standard Gaussian independent of Y1. Thus

Y1Y2 = (m1m2 + ρ) + (m2 + ρm1)(Y1 −m1)

+m1

√

1− ρ2Z1 + ρ((Y1 −m1)
2 − 1) +

√

1− ρ2(Y1 −m1)Z1.

This formula yields that E|Y1Y2| is a continuous function of (m1,m2, ρ) and by
compactness is upper bounded.

In the other direction, setting Yi = mi + Ȳi, i = 1, 2 we have

Y1Y2 = [m1m2] + [m1Ȳ2 +m2Ȳ1] + [Ȳ1Ȳ2],

Where the three brackets are in different Itô-Wiener chaos and thus the joint
variance is the sum of the variance of each term. This implies that

Var(Y1Y2) ≥ Var(Ȳ1Ȳ2) = E(Ȳ 2
1 Ȳ

2
2 ) = E

(

(

H2(Ȳ1) + 1
)(

H2(Ȳ2) + 1
)

)

= 1 + 2ρ2,
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the function H2(y) = y2 − 1 is the second Hermite polynomial and also we have
used the Mehler formula: E(Hi(Ȳ1)Hj(Ȳ2) = δijρ

ii!. Note that H0(y) = 1.
As a consequence

Var(Y1Y2) ≥ 1.

and Y1Y2 is never a.s. constant. Thus E|Y1Y2| > 0 and by compactness is lower
bounded.

Proof of lemma 7. Note that for n large enough, the distribution of Zn is N.D. As
a consequence

E(T |Zn = z) = Cov(T,Zn)(Var(Zn))
−1z

Var(T |Zn) = Var(T )− Cov(T,Zn)(Var(Zn))
−1Cov(Zn, T )

but
Var(Zn) → Var(Z), N.D.

This implies (Var(Zn))
−1 → (Var(Z))−1). The rest is plain.

Proof of lemma 9. Let Σ be the variance-covariance matrix of Z and let µ be its
expectation. Both vary in a compact sets K1,K2. Let Σ

1
2 be the square root of

Σ defined in the spectral way. Using operator norm [9], it is easy to prove that

Σ
1
2 is a (uniformly) continuous function of Σ. The random vector Z admits the

following représentation

Z = µ+Σ
1
2 ξ ξ ∼ N(0, I2d2).

The function det(X) det(Y ), as a polynomial, is a continuous function of Z and
by consequence E

(

|det(X) det(Y )|
)

is a continuous function of µ,Σ. The first
assertion follows by compactness.

In the other direction we have by additivity

P{det(X) = 0} = 0, P{det(Y ) = 0} = 0.

This implies that
E(|det(X) det(Y )|) > 0.

Again the second inequality is obtained by compactness.


