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MULTIPLICATIVE PERSISTENT DISTANCES

GRÉGORY GINOT AND JOHAN LERAY

"Bats-toi, signe et persiste" – France Gall

Abstract. We define and study several new interleaving distances for persistent cohomology which take into account

the algebraic structures of the cohomology of a space, for instance the cup product or the action of the Steenrod

algebra. In particular, we prove that there exists a persistent A∞-structure associated to data sets and and we define

the associated distance. We prove the stability of these new distances for Čech or Vietoris Rips complexes with respect

to the Gromov-Hausdor� distance, and we compare these new distances with each other and the classical one, building

some examples which prove that they are not equal in general and refine e�ectively the classical bottleneck distance.

Introduction

Persistent homology arised as a successful attempt to make invariants of algebraic topology computable in

practice in various contexts. A prominent example being to study data sets and their topology, which have

become increasingly important in many area of sciences. In particular, to be able to discriminate and compare

large data sets, it is natural to associate invariants to each of them in order to be able to say if they are similar

and describe similar phenomenon or not. The latter operation is obtained by considering a metric on the

invariants associated to the data which, classically, is the interleaving or bottleneck distance on the persistent

homology of the data. The interested reader may consult [Oud15a, EH08] for an extended discussion of the

theory and of its many applications. Our goal is to study and compare several refinements of those distances

obtained by considering more structure, inspired by homotopical algebra, on the persistent cohomology which

discriminate more data sets.

Topological data analysis. Associating algebraic invariants to shapes is a main apparatus of algebraic topology.

Topological data analysis (TDA for short) associates and studies the topology of data sets through the help of

algebraic topology invariants characterizing as finely as possible the data. Roughly, a main idea of TDA is to

associate to, a potentially large, set X of N points a family of spaces Xε given by the union of balls centered on

each point with radius given by the parameter ε. Now we can consider the invariants of each space but, even

better, we can study the set {Xε} as a continuous family of spaces, called a persistent space, and considering the

evolution of these invariants when ε grows. The more accessible topological invariant is the homology of these

spaces also known as persistent homology.

Persistent homology. The homology of a persistent space gives us a parametrized family of graded vector

space. To such object, one associates a barcode, which represents the evolution of the dimension of each ho-

mology group when the parameter varies. For instance, a ith-homology class can be born at the time ε1 in the

i-th group and dies at time ε2. This class is associated to a bar of length ε2 − ε1 and the collection of those is

the barcode of the persistent homology groups. This barcode defines a invariant of the persistent space {Xε}.
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To compare two barcodes BX and BY associated to datasets X and Y , Cohen et al. defined in [CSEH07] the

bottleneck distance which is a (pseudo-)distance. A more intrinsic notion of distance, directly defined on the

persistent (co)homology, is given by the interleaving distance introduced by Chazal et al. in [CDSO14].

Applications. These techniques of TDA have been applied in many areas: for example in reconstruction of

shapes (see [CO08, CZCG05]), gene expression analysis (see for example [JCR+17]), or in neurosciences (see

[KDS+18]). It should be noted that the bottleneck distance is only slightly or not sensitive to data noise.

Content of the paper. Algebraic topologists have constructed several other invariants finer than homology of

the space: for instance the cohomology has a natural graded algebra structure induced by the cup product. This

structure is itself a shadow of the di�erential graded algebra structure carried by the cochains which is a better

invariant, see Example 29. These refined invariants thus encode in a much more e�ective way the homotopy

type of a space compared to mere homology and in fact, the homotopy of a (nilpotent finite type) space is

completely encoded by this dg-algebra structure together with higher homotopies for its commutativity, i.e., its

E∞-algebra structure [Man06].

In this paper, we give the theoretical framework to construct and compare new interleaving distances (on

data sets) which take into account these extra algebraic structures in the persistence setting, in a systematic

way. They refine the classical interleaving distance dgr-Vect but are of di�erent computational di�culties. In

fact, we have the following commutative diagrams of functors:

– for p a prime, we have
Topop

Ap -Alg AlgAs gr-Vect

H∗(−,Fp )

forget forget

where Ap -Alg is the category of algebras over the Steenrod algebra Ap see Section 4.2;

– for k, a field of characteristic zero, we have

Topop

AlgAs AlgAs gr-Vect

C∗(−,k)

H∗(−) forget

Each of the categories in the lines of the diagram gives rise to an interleaving distance.

Several of the more refined interleaving distances introduced above are computed in the homotopy categories

of cochains with some extra structure and not a cohomological level for which we have the barcode decompo-

sition. The homotopy category of such cochain algebra is hard to study and cochain algebras are too big to be

easily used on a computer at the moment.

We bypass this problem in characteristic zero by using the homotopy transfer theorem for A∞-algebras which

allows to encode the cochain algebra on the cohomology groups without losing information. Indeed, an A∞-

algebra is an associative algebra up to homotopy (see Definition 22) and, for all topological spaces X, the

singular cochain complex of X is equivalent of the cohomology of X as A∞-algebras (see Theorem 27). Further,

unlike quasi-isomorphisms of dg-algebras, A∞-quasi-isomorphisms have inverses which simplifies greatly the

study of interleaving in these category. However transfer theorems are not very functorial and therefore it is

unlikely that they can be applied to abstract persistence spaces in general (Remark 35).

Nevertheless, for persistent simplicial sets X : IR→ sSet satisfying some mild finiteness assumption (that we

call �nite �ltered data), we prove the following theorem.
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Theorem A (A∞ interleaving distance (see Theorem 37)). There exists a persistent A∞-structure on the persistent

cohomology of �nite �ltered data and an interleaving distance dA∞ , which re�ne the cohomology algebra and takes into

account higher Massey products of singular cohomology.

Some approaches to use A∞-structures for persistence have already been considered in the literature, notably

in the work of F. Belchí et al. (see [GM14, BM15, Bel17, BS19]) and Herscovich (cf. [Her18]). In both cases, they

consider transferred structures but do not consider the full either A∞ or persistent structure and in particular

do not define an associated interleaving distance.

The homology of a space is sensitive to the characteristic of its coe�cient and this reflects on the additional

algebraic structure of the cochains. Therefore, we define (see Section 4.2) two new distances: the first dp,∞

given by the maximum between the A∞-distance and the one defined by the structure of Steenrod algebra of

the cohomology with coe�cient in Fp (Section 4.2) where p is a fixed prime; the second dP,∞ is given by the

supremum of dp,∞ over the set P of primes. Our second main contribution is the comparison of these distances.

Theorem B (see Section 5). All distances de�ned for �nite �ltered data in this paper satisfy the following inequalities:

dA∞ dAs,Q dgr-Vect,Q

dP,∞ dp,∞

dAp dAs,Fp dgr-Vect,Fp

> >

>
>

>

> >

which are not equalities in general.

We believe that these refined distances are reasonable approximation of the most refined of all, that is the

interleaving distance associated to the E∞-structure of cochains, see Section 4.1. Unlike this latter one, they are

defined on the underlying persistent cohomology groups and therefore they seem much more “computerizable”.

Further, we prove refined stability theorems for those distances. Indeed all these distances satisfy a property of

stability for Čech or Vietoris Rips complexes (see Section 1.1.2) with respect to the Gromov-Hausdor� distance.

Theorem C (Stability results (see Theorem 53, Theorem 65)). Let X and Y be two �nite set of points of Rn. We

have the following inequality:

d†(R(X),R(Y )) 6 2dGH (X,Y ) ;

d†( Č(X), Č(Y )) 6 2dGH (X,Y ) ,

where d† is one of the distances of Theorem B.

Such a theorem is very important for applications since, for set of points X and Y representing the same

data up to some noise, this theorem implies that if the noise if small then the distance d†(R(X),R(Y )) is also

small.
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Notations. We introduce some notations used throughout the paper:

– k is a field unless otherwise specified;

– If C, D are categories, DC stands for the category of functors C→ D ;

– (IR,6) is the poset of real numbers (R,6), viewed as a category. For all r < s in R, the unique

corresponding morphism in the category IR is denoted by (r 6 s) ; IRop corresponds to the poset (R,>)

viewed as a category: we denote by (r > s) its morphisms. Functors X : IR → C and Y : IRop → C are

denoted by X• and Y• respectively;

– gr-Vect stands for the category of graded vector space; Chk the category of Z-graded chain complexes

and coChk the category of Z-graded cochain complexes. We when needed, we will denote the degree

of objects in Chk (resp. coChk) by a lower index C∗ (resp. an upper index C∗).

– AlgO is the category of O-algebras in the category of cochain complex over k, with O an operad (see

[LV12, Chapter 5]) (and strict morphisms);

– when we define an interleaving distance d† by using a functor of cohomology H∗(−) : Topop → C, we
denote it by dC(−1,−2) B dC(H

∗(−1),H
∗(−2)).

– we denote by For, "the" forgetfull functor (which occurs in several contexts).

1. Multiplicative distances

1.1. Persistent objects and interleaving. In this section, we recall the notion of persistent objects and inter-

leaving distances in generic categories.

1.1.1. De�nitions.

De�nition 1 (Persistent object – Shifting). Consider a category C. A persistent object in C is a functor F• : IR→ C.
The image Fr6s of the morphism (r 6 s) by the functor F is called a structural morphism of F. Let ε be an object

of IR, we have the natural shifting operation (−)[ε] which sends a persistent object F• to F[ε]• which is defined,

for all r in IR, by F[ε]r B Fr+ε . For each ε in IR, we have the natural transformation ηε : F → F[ε], given, for

all r in IR, by the structural morphism (r 6 r + ε).

De�nition 2 (Copersistent object – Shifting). A copersistent object in C is a functor F• : IRop → C. Let ε be

an object of IR, we have the natural shifting (−)[ε] defined, for all copersistent object F• and all r in IR, by
F[ε]r = Fr−ε . We also have the natural transformation ηε : F → F[ε], given, for all r in IR, by the structural

morphism (r > r − ε).

De�nition 3 (ε-morphism). Let F and G be two (co)persistent object in the category C, and ε inR. A morphism

F → G is a natural transformation and a ε-morphism from F to G is a natural transformation F → G[ε].

De�nition 4 (Interleaving pseudo-distance). Let F and G be two functor in CIR and let ε be in IR. The persistent
objects F and G are ε-interleaved if there exists two ε-morphisms

µ : F −→ G[ε] and ν : G −→ F[ε]
4



such that, the following diagram commutes

F F[2ε]

G[ε] G[3ε]

η2ε

µ
µ[2ε]

ν[ε]

η2ε [ε]

We define the interleaving (pseudo-)distance by:

dC(F,G) B inf {ε > 0 | F and G are ε-interleaved} .

Remark 5. The definitions of ε-interleaving and distance of interleaving between copersistent objects are com-

pletely similar.

Remark 6. Given an interleaving distance dD for persistent objects in the category D and a functor H : C→ D,
then we obtain a (pseudo-)distance defined by

dD(H(−1),H(−2))

for persistent objects in C.

Remark 7 (About our notations for the distances). In this paper, we introduce several distances between

persistent spaces. We make the following choice of notations: when such a distance is defined by using a

functor of cohomology H∗(−) : Topop → C, we decide to denote it as follows

d†(−1,−2) B dC(H
∗(−1),H

∗(−2))

with a suitable choice of notation to replace the symbol †. Furthermore, whenever we use (co)chain complexes

of (co)homology functors to compute the distance, the result depends on the base ground field of coe�cients.

But we will usually not include it in the notation. However, when there might be some confusion or we want to

put emphasis on the correct coe�cient we will write

d†,k(−1,−2)

for the distance computed with coe�cients being k.

We will often use tacitly the following easy lemma.

Lemma 8. Let F and G be two (co)persistent objects in C and let H : C→ D be a functor. We have

dD(HF,HG) 6 dC(F,G).

Proof. Let ε > 0 such that dC(F,G) 6 ε, then there exists an ε-interleaving between F and G. As H is a functor,

it preserves the diagram of ε-interleaving, so dD(HF,HG) 6 ε. �

This lemma implies readily stability for persistent spaces constructed out of a Morse-type function stability

thanks to the following initial stability result:

Theorem 9 (Stability). Let X be a topological space and let f , g : X → R be two continuous maps. Denote

X f
• : IR −→ Top

r 7−→ f −1 ((−∞, r]))
and

Xg
• : IR −→ Top

r 7−→ g−1 ((−∞, r]))

the two �ltered spaces associated to f and g. We have

dTop(X
f
• , Xg

• ) 6 ‖ f − g‖∞.
5



Proof. Let ε > 0 such that ‖ f − g‖∞ 6 ε and fix r in IR. Let x be a point in X f
r : there exists s 6 r such that

f (x) = s. By assumption, we have |g(x) − f (x)| 6 ε, then g(x) 6 s + ε so x is in Xg
r+ε . So we have X f

r ⊆ Xg
r+ε .

By the argument, we have, for all r in IR, the following inclusions

X f
r ⊆ Xg

r+ε ⊆ X f
r+2ε and Xg

r ⊆ X f
r+ε ⊆ Xg

r+2ε ,

which define an ε-interleaving between X f
• and Xg

• . �

1.1.2. Two canonical examples of persistent spaces. Many interesting persistent objects arise from simplicial com-

plexes/sets constructions. We denote by sSet, the category of simplicial sets. A simplicial set has a canonical

associated topological space, called its geometric realization. We denote

| − | : sSet −→ Top

the associated functor. It is the left adjoint of the singular simplicial complex functor Sing : Top→ sSet which is

defined, for X a topological space, by Singn(X) B HomTop(∆
n
Top, X), where ∆nTop is the n-th topological standard

simplex. An important property is that they have the same homotopy theories (and the functors actually form

a Quillen equivalence). In the rest of the paper, we often identify simplicial sets and topological spaces when

defining (co)chains and (co)homology type functors/constructions.

De�nition 10 (Vietoris-Rips complex). Let X be a metric space. For a in IR, we define a simplicial setRa(X, dX )

on the vertex set X by the following condition:

σ ∈ Ra(X, dX ) ⇐⇒ dX (x, y) 6 a for all x, y in σ.

The collection of these simplices is the Vietoris-Rips �ltered complex of X denoted

R(X, dX ) : IR −→ sSet.

De�nition 11 (Intrinsic Čech complex). Let X be a metric space. For a in IR, we define a simplicial set

Ča(X, dX ) on the vertex set X by the following condition:

[x0, x1, . . . , xk] ∈ Ča(X, dX ) ⇐⇒

k⋂
i=0

B(xi, a) , ∅.

We denote the intrinsic Čech �ltered complex of X by

Č(X, dX ) : IR −→ sSet.

For a, a real number, and σ = [x0, . . . , xn], a simplex of Ča(X, dX ), an element x̄ of ∩iB(xi, a) is called a a-center

of σ.

1.2. Distances for persistent algebras. We start by reviewing of some classical objects in algebraic topology.

De�nition/Proposition 12 (Singular (co)chain functor). The singular chain functor, denoted by CSing
∗ : Top→

Chk , is defined by CSing
∗ (X) B k[Sing(X)], where the di�erential is given by the signed sum of the maps induced

by the face maps. The singular cochain functor C∗
As

: Topop → AlgAs is defined, for all topological space X, by

the cochain complex C∗
As
(X) B Homk(C

Sing
∗ (X), k). Equipped with the cup product defined as the composite

− ∪ − : C∗
As
(X) ⊗ C∗

As
(X) C∗

As
(X × X) C∗

As
(X)∆∗

where the first map is the Künneth map and the second is the map induced by the diagonal, the singular cochain

complex is a di�erential graded associative algebra (dg-algebra for short).
6



•
x4

•
x5

•
x1

•
x2

•
x3

Figure 1. The Vietoris Rips com-
plex of a set X

•
x4

•
x5

•
x1

•
x2

•
x3

Figure 2. The Čech complex of
the same set X

Therefore we have in particular a notion of persistent cochain complex and a notion of persistent dg-algebra

which are naturally induced by persistent spaces X : IR→ Top. The natural notion of equivalences for these are

given by persistent quasi-isomorphisms, that is natural transformations A∗ → B∗ which induced isomorphisms

in cohomology; here A∗, B∗ are either persistent dg-algebras IR → AlgAs or persistent (co)chain complexes

IR → gr-Vect. Both chain complexes and dg-algebras have natural notions of homotopies and we can pass

to their homotopy categories. The cohomology functors from dg-algebras (resp. cochain complexes) factors

through the respective homotopy categories.

De�nition 13. Let

– ho(AlgAs) B AlgAs[qiso−1] be the homotopy category of dg-associative algebras where the quasi-isomorphisms

are formally inverted;

– ho(gr-Vect) B Ch[qiso−1] be the homotopy category of cochain complexes where the quasi-isomorphisms

are formally inverted.

We denote Cho(As) : Topop → ho(AlgAs), the composition of CAs with the canonical quotient functor AlgAs →

ho(AlgAs).

Notation 14. We consider the following functors associated to spaces (and simplicial sets):

(1) C∗ho(Ch) : Topop → ho(Chk) with C∗ho(Ch) = For ◦ C∗ho((As)
;

(2) C∗Ch : Topop → Chk with C∗Ch = For ◦ C∗
As
;

(3) H∗
Com

: Topop → AlgCom;

(4) H∗
As

: Topop → AlgAs with H∗
As
= For ◦H∗

Com
or H∗

As
= H ◦ C∗

As
;

(5) H∗gr-Vect : Topop → gr-Vect with H∗gr-Vect = For ◦H∗
As

.

We can summarize all these functors in the following commutative diagram:

Topop

ho(AlgAs) ho(Chk)

AlgCom AlgAs gr-Vect

HCom

Cho(As)

H

Cho(Ch)

HAs

For

H H

For For

.

Associated to each of these functors, we can define their interleaving distances according to Definition 4.
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Notation 15. Let X : IR→ Top and Y : IR→ Top be two persistent topological spaces. According to Remark 7,

some of these distance are denoted as follows:

dgr-Vect(X,Y ) B dgr-Vect(H
∗(X),H∗(Y )) , dAs(X,Y ) B dAlgAs

(H∗(X),H∗(Y )) .

Remark that the distance dgr-Vect is the classical interleaving distance (see [Oud15b]).

Remark 16. Considering the homotopy category of persistent cochain complexes, that is objects of the type

C∗ho(Ch)(X), is an analogue of considering the derived category of sheaves over R which is a recent and promising

nice approach to persistent homology, see [KS18]. Indeed, the associated interleaving distance dho(Chk ) has been

considered in [BP19] and seen to agree with the convolution distance of [KS18] for sheaves.

Remark 17. We can of course also consider the interleaving distance on the persistent cochain complexes C∗(−)

of persistent spaces X,Y : IR→ Top both taken in dg-algebras. This is however not a very pertinent notion to look

at. Indeed, if T is a triangulation of simplicial complex X, there is no natural dg-algebra map C∗(X) → C∗(T)

though they are homotopy equivalent simplicial complexes and, in fact, have the same underlying space.

In particular, given a persistent space and a persistent triangulation of it, C∗(X) and C∗(T) are not ε-

interleaved in AlgAs for small ε and therefore dAlgAs
(C∗(X),C∗(T)) � 0 in general event though they represent

the same topological space. In particular this distance will not satisfy stability (as in Theorem 53). This problem

of course disappear precisely in the homotopy category of algebras.

Note that, unlike for dg-algebras, over a field, one can always find a highly non-natural inverse for a cochain

complex map C∗(X) → C∗(T) for fixed spaces so that the situation looks better. But however, in general, one

can not find such an inverse in a persistent way. The problem is similar to Remark 35.

These distances satisfy the following inequalities.

Proposition 18. Let X : IR → Top and Y : IR → Top be two persistent topological spaces. We have the following
inequalities:

dgr-Vect(X,Y ) 6 dAs(X,Y ) = dAlgCom
(H∗(X),H∗(Y )) ,

dgr-Vect(X,Y ) 6 dho(Ch)(C
∗(X),C∗(Y )) 6 dho(AlgAs)

(C∗(X),C∗(Y )) ,

dgr-Vect(X,Y ) 6 dAs(X,Y ) 6 dho(AlgAs)
(C∗(X),C∗(Y )) .

Proof. It follows from Lemma 8. �

Example 19. We exhibit two data sets DX and DY in R3 such that the interleaving distance between the

cohomology of their Čech complex as graded vector space is strictly smaller than their interleaving distance as

copersistent graded algebras. Consider the following two topological spaces X and Y living in R3:

X = {(x, y, 0) | x2 + (y − 2)2 = 1} ∪ {x2 + y2 + z2 = 1} ∪ {(x, y, 0) | x2 + (y + 2)2 = 1} ;

Y = {(x, y, z) | (x2 + y2 + z2 + 3)2 = 16(x2 + y2)} ,

which are represented in Figure 3 and Figure 4 respectively. For ε > 0, we denote

Xε B
⋃
x∈X

B(x, ε) and Yε B
⋃
y∈Y

B(y, ε) .

Note that we have

H∗(X) �
gr−vect

H∗(Y ) but H∗(X) �
AlgAs

H∗(Y )

8



Figure 3. The space X Figure 4. The space Y

since the cup product of any non-zero cohomology classes of X is trivial. Now remark that, for ε < 1, we have

homotopy equivalences Xε ' X and Yε ' Y and, for ε > 1, Xε and Yε are contractile. We fix 0 < α � 1
2 and we

choose a finite cover by open balls of radius α of Xα and Yα:

Xα ⊂
⋃
i∈I

B(xi, α) and Yα ⊂
⋃
j∈J

B(yj, α)

where I and J are finite. We can then define the discrete spaces

Dα
X =

⋃
i∈I

{xi} and Dα
Y =

⋃
j∈J

{yj}.

We can think these spaces as noisy discretisations of our spaces X and Y . Remark that, for α 6 ε′ < 1 − α, we

have

Č(Dα
X )ε′ ' Xα ' X and Č(Dα

Y )ε′ ' Yα ' Y .

For all ε > α, we have H∗( Č(Dα
X )) �

gr-Vect
H∗( Č(Dα

Y )), therefore

|
α

|
1−2α

H1

H2

H0

Figure 5. A part of the barcode of H∗( Č(Dα
X )•) and H∗( Č(Dα

Y )•)

dgr-Vect

(
Č(Dα

X ), Č(D
α
Y )

)
6 α .

Suppose that there is ε < 1−2α
2 such that there exists a ε-interleaving in the category AlgAs between H∗( Č(DX

α ))

and H∗( Č(DX
α )): then we will have the following diagram

H∗( Č(Dα
Y ))α+ε

H∗( Č(Dα
X ))α H∗( Č(Dα

X ))α+2ε

ν

�

µ ,

that implies that µ and ν are isomorphims: this is a contradiction because H∗( Č(Dα
X ))α and H∗( Č(Dα

Y ))α+ε have

not the same product. So, we have the following inequality:

dAs

(
Č(Dα

X ), Č(D
α
Y )

)
>

1 − 2α

2
.

9



Then, as soon as α < 1
4 , we have

dgr-Vect

(
Č(Dα

X ), Č(D
α
Y )

)
< dAs

(
Č(Dα

X ), Č(D
α
Y )

)
.

and the smaller is α, the bigger is the di�erence between the two distances.

Remark 20. The previous example can be done for the Rips complex of the same data sets Dα
X , Dα

Y by

considering similar balls but for the euclidean norm replaced by the ‖ − ‖∞ norm.

Remark 21. It is easily to construct several examples along the line of Example 19.

2. The A∞-interleaving distance

One big drawback of working with the homotopy category ho(AlgAs) of dg-associative algebras is that it is

hard to study, namely because we cannot, in general, invert a quasi-isomorphisms of dg-algebras (that is find a

morphism in the opposite direction inducing the inverse in cohomology). One is forced to work with zigzags

of morphisms (in other words to consider maps from X to Y , one has to consider to pass through any other

object Z) and to put a complicated equivalence relation on zigzags. One classical way to avoid that in algebraic

topology, which will also relate the structure to the barcode of a persistence space, is to replace dg-algebras by

A∞-algebras. We investigate the associated distance in this section.

2.1. Review on associative algebras up to homotopy. This part is a rapid overview of the theory of A∞-

algebras: the interested reader can consult [LV12, Chapter 9].

De�nition 22 (A∞-algebra). An A∞-algebra is a graded vector space A = {Ak}k∈Z, equipped with an n-ary

operation

mn : A⊗n −→ A of degree n − 2 for all n > 1,

which satisfy, for all n > 1, the following relation

(reln)
∑

p+q+r=n

(−1)p+qrmp+r+1 ◦ (id
⊗p
A
⊗ mq ⊗ id⊗rA ) = 0 .

Remark 23. (1) By the relation (rel1), the map m1 is a di�erential, and the relation (rel2) implies that the

binary product m2 is a chain complex map.

(2) A di�erential graded associative algebra (A, µ, dA) is an A∞-algebra where m1 = dA, m2 = µ and, for

n > 3, mn = 0.

The notion of morphisms of A∞-algebras is too rigid to encode the homotopy theory of A∞-algebras in a

practical way, so we use a more flexible notion of morphisms, called ∞-morphisms. This notion of ∞-morphism

allows to define the category ∞-AlgA∞ (see Definition/Proposition 26): this category has a notion of ∞-quasi-

isomorphism which we use to define its homotopy category. The point is that each ∞-quasi-isomorphism has

an inverse in homology in the strict category ∞-AlgA∞ . So, we do not need to consider zigzags of morphisms to

understand what is a morphism in the homotopy category of A∞-algebras. This makes the notion of interleaving

completely straightforward.

De�nition 24 (∞-morphisms between A∞-algebras). Let (A,mA
∗ ) and (B,m

B
∗ ) be two A∞-algebras. An ∞-

morphism f : A  B of A∞-algebras is a family of maps { fn : A⊗n → B}n>1 of degree n − 1 such that f1 is a
10



morphism of chain complexes and, for n > 2, fn satisfies the relation

∂( fn) =
∑

p+q+r=n

(−1)p+qr fp+r+1 ◦ (idA, . . . , idA,mA
q , idA, . . . , idA)

−
∑
k>2

i1+...+ik=n

(−1)
∑k−1

j=i (k−j)(i j−1)mB
k ◦ ( fi1, . . . , fik ) .

The set of ∞-morphism from A to B is denoted by Hom∞−A∞ (A, B).

Remark 25. A (strict) morphism f : A→ B of A∞-algebras, i.e. which satisfies

f ◦ mA
n = mB

n ◦ f ⊗n

for all n > 1, is canonically a ∞-morphism given by the family of maps ( f , 0, 0 . . .).

De�nition/Proposition 26 (The category∞-AlgA∞). There exists an associative composition of∞-morphisms:

Hom∞−A∞ (B,C) ×Hom∞−A∞ (A, B) −→ Hom∞−A∞ (A,C)

such that, for all A∞-algebra A, the identity A A is given by the strict classical one. The A∞-algebras and the

∞-morphisms form a category denoted by ∞-AlgA∞ .

An important tool we will use is the fact that a chain complex which is quasi-isomorphic to an A∞-algebra

automatically inherits a transferred quasi-isomorphic A∞-structure. In particular, we have the following theorem,

which gives us a canonical A∞-structure on the homology of an A∞-algebra.

Theorem 27 (Homotopy Transfer Theorem [LV12, Theorem 10.3.7 and 10.3.10]). Let k be a �eld of characteristic

0. Let A be an A∞-algebra, i, p two morphisms of chain complexes and h a map of degree 1:

(A, dA) (H(A), 0)
p

h
i

,

such that ip − idA = dAh + hdA.

(1) There is a A∞-structure on the homology H(A) of the underlying chain complex of A, which extends its associative

algebra structure.

(2) The embedding i and the projection p, associated to the choice of sections for the homology, extend to ∞-quasi-

isomorphisms of A∞-algebras.

(3) The A∞-structure on the homology H(A) is independent of the choice of sections of H(A) into A in the following

sense: any two such transferred structures are related by an ∞-isomorphism, whose �rst map is the identity on

H(A).

Remark 28. The characteristic 0 assumption in the previous theorem is used to guarantee the existence of the

∞-morphism p∞.

Example 29 (Higher Massey products). Let X be a connected topological space, p, i, h be a choice of contrac-

tion between C∗(X) and H∗(X) as follows:

(C∗(X),∪, ∂) (H∗(X), 0)
p

h
i

,

where ∪ is the associative cup product on C∗(X). Then, the transferred A∞-structure on H∗(X) gives us the

higher Massey products. These products allow to make the di�erence between some spaces which have the

same cohomology as graded algebra. For instance, we can consider the complement in the 3-sphere of the
11



Borromean rings (see Figure 6) and the trivial entanglement of three rings (see Figure 7). These two spaces

have the same cohomology as graded algebra but they have di�erent m3 Massey product (see [LV12, Section

9.4.5]).

Figure 6. Borromean rings Figure 7. Trivial entanglement

Other standard examples of non-trivial Massey products are obtained by Kodaira-Thurton manifolds (see

[RT00] for example).

The notion of A∞-algebra and A∞-morphisms gives a nice and practical model for the homotopy category

of dg-algebras.

Theorem 30 (Equivalence of homotopy category (see [LH02] or [LV12, Theorem 11.4.8])). The homotopy category

of di�erential graded associative algebras and the homotopy category of A∞-algebras with the∞-morphisms are equivalent:

ho (AlgAs) � ho (∞-AlgAs) � ho
(
∞-AlgA∞

)
.

2.2. The problem of persistent transfer datum. For a persistent topological space X : IR→ Top and a > b,

we want to associate canonically contractions datum:

C∗(Xa) H∗(Xa)

C∗(Xb) H∗(Xb)

pa

ha

C∗(ϕab )

ia

pb

hb
ib

;

This is not possible in general, because we have to make choices, which have no reason to be compatible with

the persistence structure maps (see Remark 35). Therefore we restrict our category of persistent topological

spaces to a subcategory of objects satisfying some finiteness conditions. These conditions are automatically

satisfied for a set of data such as those arising in applications.

Let us denote by ∆Cpx, the category of delta complexes as in [Hat02]. Note that for Čech and Rips complexes

arising from a data set, it is su�cient to consider simplicial complexes and not general delta complexes.

De�nition 31 (Finite filtered data). We consider the full subcategory of the category of persistent delta-complex

Func(IR,∆Cpx) with objects X : IR→ ∆Cpx satisfying:

(1) for all r in IR, the delta complex Xr is finite;

(2) for all a < b in IR, the morphism Xa ↪→ Xb is an injection;

(3) the set {Xr | r ∈ IR} /∼, where Xa ∼ Xb if the structural morphism Xa<b is an isomorphism, is finite ;

(4) for each a in IR, we have a total order 6a on Xa such that

– for α and β in Xa such that α ⊂ β then α 6a β ;

– for all a < b in IR, for all β in Xb\Xa, and all α in Xa, then α 6a β.

We call this category the category of �nite �ltered data and we denote it by fDataIR.

Our motivating example for this definition is the following.
12



Example 32. Let X be a finite set of points in a metric space. Then, Č(X)• and R(X)• are objects in fDataIR

(see Definition 10 and Definition 11).

The conditions of a finite filtered data ensures that the interleaving distances are closed on this subcategory:

Lemma 33. Let X and Y be two �nite �ltered data and F : Top→ C be a functor. We have that dC(F(X), F(Y )) = 0

if, and only if, the persistent objects F(X) and F(Y ) are isomorphic in CIR.

Proof. We denote by r1, . . . , rn, the objects of the category IR such that, for all 1 6 i 6 n and for all ε > 0 in IR,
F(X)ri−ε � F(X)ri or F(Y )ri−ε � F(Y )ri .

Suppose that dC(F(X), F(Y )) = 0. Let t < rn be in IR: there exists 1 6 i 6 n such that ri 6 t < ri+1. We

consider ε = ri+1−t
3 . By assumption, there exists an ε-interleaving between F(X) and F(Y ):

F(X)t F(Y )t+ε F(X)t+2ε;

as t + 2ε < ri+1, then F(X)t � F(X)t+2ε , so F(X)t � F(Y )t+ε � F(Y )t . By the same argument, for t > rn,

F(X)t � F(Y )t . �

2.3. Contractions in family. In order to apply the homotopy transfer theorem for a persistent space given by

a finite filtered data, we need to encode some part of the data allowing to obtain the transferred structure in an

explicit way. This is the role of the following of definition.

De�nition 34 (Category of transfer data). The category TransCh (resp, TranscoCh) is defined as follows: its

objects are (A,H, i, p, h) such that

(A, dA) (H, 0)
p

h
i

,

where A is a chain complex (resp. cochain complex), H is a graded vector space, i and p are morphisms of

chain complexes, h is a linear map of homological degree 1 (resp. homological degree −1) such that:

ip − idA = dAh + hdA, pi = idH, hi = 0, ph = 0 and h2 = 0.

The morphisms (A,H, i, p, h) → (A′,H ′, i′, p′, h′) in the category TransCh are defined as the morphisms A→ A′

of chain complexes.

We also define the category TransCh,As to be the subcategory of TransCh whose objects are (A,H, i, p, h) such

that A is a di�erential graded associative algebra, and the morphisms are morphisms of di�erential graded

associative algebras.

Remark 35. Let ϕ : (A,H, i, p, h) → (A′,H ′, i′, p′, h′) be a morphism in TransCh. We do not suppose any com-

patibility between the morphism ϕ and the structural morphisms i, p, h and i′, p′, h′, contrarily to the classical

notion of [MS17]. The reason is that we do not have a persistent inclusion of the homology of a chain complex

in it, even in the simplest cases, as the following example shows. Let X be the union of two points (0, 0) and

(1, 0) in R2, and consider the associate Vietoris-Rips complex R(X)•. We have the table of Figure 8.

Suppose that we have a persistent inclusion i• : H∗(R(X))• → C∗(R(X))•. Then, we obtain, for all ε < 1
2 ,

the following diagram

k x1 ⊕ k x2 k x1 ⊕ k x2

k x1 k x1 ⊕ k x2

iε
�

(ε6ε+ 1
2
) (ε6ε+ 1

2
)�

i
ε+ 1

2
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Radius ε Picture C∗(R(X))ε H0(R(X))ε

ε < 1
2

•
x1

•
x2 k x1 ⊕ k x2

d
←− 0 k x1 ⊕ k x2

ε > 1
2

•
x1

•
x2

x12
k x1 ⊕ k x2

d
←− k x12 k x1

Figure 8. Simplicial chain complex and simplicial homology of the Vietoris-Rips complex
associated to {(0, 0), (1, 0)}

which is not commutative. Therefore, it cannot exist such a persistent inclusion. By the same argument,

it cannot exist a persistent projection p• : H∗(R(X))• → C∗(R(X))• from the persistent cohomology to the

persistent cochain complex.

Notation 36. We denote by TransIRCh the category of functors IR → TransCh, that is the category of persistent

transfer data. We also denote by fTransIRCh, the full subcategory of TransIRCh of objects A• such that the set

{Ar | r ∈ IR} /∼, where Aα ∼ Aβ if the structural morphism Aα<β is an isomorphism, is finite.

The functor of simplicial complex C∗ : ∆Cpx→ Chk induces a functor

TC∗ : fDataIR −→ fTransIRCh

where the contraction are given by [RMA09, Algorithm 1]: consider a IR-filtered data X : IR → ∆Cpx. For

all r in IR, Xr is totally ordered, and, as Xa ↪→ Xb for all a < b in IR, we denote X0 =
{
c0, . . . , ci0

}
, X1 ={

c0, . . . , ci0, ci0+1 . . . ci1
}
and for all r in IR,

Xr =
{
c0, c1, . . . ci0, ci0+1, . . . , ci1, . . . , cir

}
.

Fix r in IR, denote by m, the cardinal of Xr , we construct algorithmically a linear map hm of homological degree

one on (
⊕m

i=1 kci, ∂m) as follows:

C0 B {c0}, ∂0, h0(c0) B 0

For i = 1 to m do

Ci B {Ci−1 ∪ {ci}, ∂i}

If (∂i − ∂i−1hi−1∂i)(ci) = 0, then

hi(ci) B 0

For j = 0 to i − 1 do

hi(cj) = hi−1(cj)

If (∂i − ∂i−1hi−1∂i)(ci) =
∑n

k=1 λkuk , 0 with u1 < . . . < uk < . . . < un ∈ Ci−1, then

ϕ̄(u1) B −λ
−1
1 ci and ϕ̄(uk) B 0 otherwise

For j = 0 to i do

hi(cj) = (hi−1 + ϕ̄ − ϕ̄hi−1∂i−1ϕ̄∂i−1hi−1)(cj)

Output:h B hm

Then, for each r in IR, the functor C∗ sends Xr on the contraction ((C∗(Xr ), ∂), Im(π), ι, π, h) where π B id −

∂h − h∂, ι is the inclusion of Im(π) in C∗(Xr ), and h given by the previous algorithm. Finally, we have define a

functor

TC∗ : fDataIR −→ fTransIRCh.
14



Composition with the functor Homk(−, k) gives us a functor

(1) TC∗ : fDataIR −→ fTransIR
op

coCh,As

which we call the persistent transfer data dg-algebra functor.

2.4. A∞-interleaving distance.

Theorem 37. There is a functor

H∗ : fTransIR
op

coCh,As −→ ho
(
∞-AlgA∞

) IRop

(A,H, i, p, h)• 7−→ (H, {µi}i∈N)•

whose composition with the forgetful functor ho
(
∞-AlgA∞

) IRop

→ (gr-Vect)IR
op

is the underlying persistent cohomology.

We call H∗ the transferred A∞-structure functor.

Proof. Let (A,H, i, p, h)• be an object in fTransIR
op

coCh,As, and consider t0, . . . , tn in IR such that, for all 1 6 j 6 n, for

all ε > 0, Atj−ε � Atj as di�erential graded algebras. By the Homotopy Transfer Theorem (see Theorem 27),

for each tj , Htj has an A∞-structure, and for all ti 6 t < tj+1, as Htj and Ht are isomorphic as graded vector

spaces. We can thus put on Ht the same A∞-structure as on Htj and take the identity as the structural morphism

between them:

(tj 6 t) : Htj

id
−→ Ht .

We need to construct the structural morphism ηHi B (tj 6 tj+1)H : Htj → Htj+1 . If we denote by ηAi , the

structural morphism Aji → Atj+1 , we define η
H
i by the following composition:

Htj Htj+1

Atj Atj+1 .

i j

ηH
i

ηA
i

p j+1

Then, by Theorem 27, ij+1 is a ∞-quasi-isomorphism and pj+1 is its inverse, so the following diagram is homo-

topy commutative

Htj Htj+1

Atj Atj+1

i j

ηH
i

i j+1

ηi

.

So we have proved that the datum of H• with transferred structure and morphisms defined previously is a

persistent object in the category ho
(
∞-AlgA∞

)
. �

Combining the persistent transfer data dg-algebra functor (1) and the transferring A∞-structure functor of

Theorem 37, we obtain the following definition.

De�nition 38. We define the A∞-algebra homology functor as the composition

H∗ ◦ TC∗ : fDataIR
−→ ho

(
∞-AlgA∞

) IRop

.

It is therefore a functor from finite filtered data to the (homotopy) category fo A∞-algebras. This functor is

the A∞ analogue of the cochain algebra functor from persistent spaces to (homotopy classes of) dg-algebras

(see Definition/Proposition 12 and Notation 14).
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De�nition 39 (A∞-interleaving distance). Let X and Y be two filtered data. We define the A∞-interleaving

distance by

dA∞ (X,Y ) B dho(∞-AlgA∞ )
(H∗(TC∗(X)),H∗(TC∗(Y ))).

where the functor H∗ ◦ TC∗ is given by Definition 38.

The A∞-interleaving distance realizes the interleaving distance in the homotopy category of dg-associative

algebras (in characteristic 0), see Proposition 41 below. The point of the A∞-distance is that we only need

to consider actual A∞-morphisms (instead of zigzags passing to arbitrary intermediate dg-algebras) to study

interleavings.

Remark 40. F. Belchí et al. give a definition ofA∞-barcode, and consider the associated bottleneck distance (see

[GM14, BM15, Bel17, BS19]). They work with the transferred A∞-coalgebra structure {∆n} of the homology of

space and construct the A∞-barcode using the kernel of the coproducts ∆n. However, this definition of barcode

has a drawback: they only consider the kernel of the first coproduct ∆n which is not trivial because the kernel

of the higher coproducts depend highly on the transfer data (see [Bel17, Section 3]). Therefore this definition

lose a large part of the A∞-structure in general and thus some reachable topological information.

Proposition 41. Let X and Y be two �ltered data.

(1) We have the inequality dA∞ (X,Y ) 6 dAlgAs
(C∗(X),C∗(Y )) .

(2) There is the equality dA∞ (X,Y ) = dho(AlgAs)
(C∗(X),C∗(Y )) .

What we are really interested about is point (2) of the proposition.

Proof. (1) It is an immediate consequence of Lemma 8 and Theorem 37.

(2) By the Homotopy Transfer Theorem (see Theorem 27), for each r in IR, we have the following two

∞-quasi-isomorphisms

C∗(X)r H∗(X)r
pr
∞

ir∞

which are quasi-inverse of each others. Therefore, for each r in IR, H∗(X)r and C∗(X)r are isomorphic

in the homotopy category of A∞-algebras so that we have

dA∞ (X,Y ) = dho(∞-AlgA∞ )
(C∗(X),C∗(Y )) .

By the Theorem 30, we have ho(∞-AlgA∞ ) � ho(AlgAs), so we deduce the result.

�

Remark 42. Recall that to define the distance dho(AlgAs)
(C∗(X),C∗(Y )), we do not need any finiteness assumption

on the functors X,Y : IR→ Top.

Example 43. We now gives a finite filtered data version of Example 29. Consider the space X (respectively

the space Y) defined as the complementary of an (open) β-thickening of the borromean ring (resp. trivial

entanglement of three circles) in S3, both embedded in R4. As in Example 19, X and Y are compact, so for

α � β/2, we can construct finite discretisations of X andY , denoted X̃ and Ỹ respectively such that
⋃

x∈X̃ B(x, α),⋃
y∈Ỹ B(y, α) are covers of X and Y respectively. Similarly to Example 19, we have, for α < ε < β − α, that

R(X̃)ε '
⋃
x∈X̃

B(x, α) ' X
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and similarly forR(Ỹ )ε . Therefore, since X andY have the same cohomology algebras, but di�erentA∞-algebras

structures, we have that

dAs(R(X̃),R(Ỹ )) 6 α and dA∞ (R(X̃),R(Ỹ )) >
β − 2α

2
.

Recall that dAs(R(X̃),R(Ỹ )) is the distance associated to the cohomology algebras H∗(R(−̃)). It follows that,

as soon as α < β
4 , we have

dAs(R(X̃),R(Ỹ )) < dA∞ (R(X̃),R(Ỹ )) .

Note further that the smaller the parameter α used in the discretisation is, the larger the di�erence between the

two metrics is.

3. A stability theorem for multiplicative distances

Consider X and Y , two compact topological spaces. Assume X and Y are almost the same, i.e. the Gromov-

Hausdor� distance between X and Y is small (for example, if Y is a small perturbation of X), then, we want the

interleaving distances between C∗(X) and C∗(Y ) or H∗(X) and H∗(Y ) (defined in Section 1.2 and Section 2.4)

to be small as well. We obtain this result (see Theorem 53) by adapting the proof of its classical version (cf.

[CDSO14]).

3.1. Gromov-Hausdor� distance. We first review the basic definitions of Gromov-Hausdor� distance.

De�nition 44 (Multivalued map – Correspondence). Let X and Y be two sets. A multivalued map from X to Y

is a subset C of X × Y such that the canonical projection restrict to C πX |C : C → X is surjective. We denote a

multivalued map C from X to Y by C : X ⇒ Y . The image C(σ) of a subset σ of X is the canonical projection

onto Y of the preimage of σ through πX . A map f : X → Y is surbordinate to C if, for all x in X, the pair

(x, f (x)) is in C. In that case, we write f : X
C
→ Y . The composition of two multivalued maps C : X ⇒ Y and

D : Y ⇒ Z is the multivalued map D ◦ C : X ⇒ Z , defined by:

(x, y) ∈ D ◦ C ⇐⇒ there exists y ∈ Y such that (x, y) ∈ C and (y, z) ∈ D.

A multivalued map C : X ⇒ Y such that the canonical projection C πY |C : C → Y is surjective, is called a

correspondence. The transpose of a correspondence C, denoted CT , is the correspondence defined by the image

of C through the symmetry (x, y) 7→ (y, x).

Remark 45. Consider a correspondence C : X ⇒ Y . Then we have

idX : X XCT ◦C and idY : Y YC◦CT

.

To a correspondence C : X ⇒ Y , we associate a quantity called the distortion metric, and we define the

Gromov Hausdor� distance.

De�nition 46 (Distortion of a correspondence – Gromov-Hausdor� distance). Let (X, dX ) and (Y, dY ) be two

metric spaces. The distortion of a correspondence C : X ⇒ Y is defined as follows:

distm(C) B sup
(x,y),(x′,y′)∈C

|dX (x, x ′) − dY (y, y
′)|.

The Gromov-Hausdor� distance between the metric spaces X and Y is defined as follows:

dGH(X,Y ) B
1

2
inf

C:X⇒Y
distm(C).

17



Remark 47. Let X and Y be two metric spaces. The Gromov-Hausdor� distance between X and Y is equal to

the following one:

dGH(X,Y ) = inf (γ,η)∈Γmin{ε > 0 | γ(X) ⊂ η(Y )ε and η(X) ⊂ γ(X)ε}

where Γ = {X
γ
→ Z

η
← Y | (Z, dZ ) metric space and γ and η are isometrical embeddings}, and

(γ(X))ε B
⋃

x∈γ(X)

BZ (x, ε).

3.2. Simplicial multivalued map.

De�nition 48 (ε-simplicial multivalued map). Let S and T be two persistent delta complexes such that, for

all r in IR, the vertex sets of Sr and T are X and Y respectively. A multivalued map C : X ⇒ Y is ε-simplicial

for S and T if, for any r in IR and any simplex σ in Sr , every finite subset of C(σ) is a simplex of Tr+ε .

De�nition 49 (Contiguous maps). Let K and L be two simplicial complexes. Two simplicial maps f , g : K → L

are contiguous if, for each simplex v0, . . . , vn of K, the points

f (v0), . . . , f (vn), g(v0), . . . , g(vn)

span a simplex τ of L.

Lemma 50 ([CDSO14, Proposition 3.3]). Let S,T : IR → ∆Cpx with vertex sets X and Y respectively and let

C : X ⇒ Y be a ε-simplicial multivalued map from S to T. Then, any two subordinate maps f1, f2 : X
C
→ Y induce

simplicial maps Sa → Ta+ε which are contiguous. Also, the maps | f1 | and | f2 | are homotopic.

Proof. Let S,T : IR → ∆Cpx with vertex sets X and Y respectively and let C : X ⇒ Y be a ε-simplicial

multivalued map from S to T. Any subordinate map f : X
C
→ Y induces a simplicial map Sr → Tr+ε for each

r in IR by definition of an ε-simplicial multivalued map.

Consider two subordinate maps f1, f2 : X
C
→ Y , and let σ = [v0, . . . , vn] be a simplex in Sr . As C is a

ε-simplicial multivalued map, then, by definition, every subset of C(σ) is a simplicial set of Tr+ε . Therefore,

since every fi(vj) is in C(σ), the set f1(v0), . . . , f1(vn), f2(v0), . . . , f2(vn) is a simplex of Tr+ε . Consequently, the

simplical maps induced by f1 and f2 are contiguous. By [McC06, Proposition 10.20], contiguous simplicial

maps have homotopic realisations; hence, the realisations of f1 and f2 are homotopic. �

Proposition 51 ([Jam95, Chapter 16, Theorem 3.8.]). The functor C∗ : Topop → AlgAs converts weak homotopy

equivalences to quasi-isomorphisms and homotopy classes of maps to homotopy classes of morphisms of dg-associative algebras.

3.3. Case of Čech and Vietoris-Rips complexes. In this section, we prove the stability of the distances that

we introduced before for the Čech and Vietoris-Rips complexes.

Lemma 52 ([CDSO14, Lemmas 4.3 and 4.4]). Let (X, dX ) and (Y, dY ) be two metric spaces, and let C : X ⇒ Y be

a correspondence with distortion at most ε. Then

(1) the correspondence C is ε-simplicial from R(X, dX ) to R(Y, dY ) ;

(2) the correspondence C is ε-simplicial from Č(X, dX ) to Č(Y, dY ) .

Proof. Let C : X ⇒ Y be a correspondence with distortion at most ε.

(1) If σ is a simplex of R(X, dX )r , then dX (x, x ′) 6 r for all x, x ′ in σ. Let τ be any subset of C(σ): for any

y, y′ in τ, there exist x and x ′ in σ such that y ∈ C(x) and y′ ∈ C(x ′), and therefore:

dY (y, y
′) 6 dX (x, x ′) + ε 6 r + ε .
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Therefore τ is a simplex of R(Y, dY )r+ε . We have thus shown that C is ε-simplicial from R(X, dX ) to

R(Y, dY ).

(2) Let σ be a simplex of Č(X, dX )r , and let x̄ be an r -center of σ, so, for all x in σ, we have dX (x, x̄) 6 r .

Take an element ȳ in C(x̄). For any y in C(σ), we have y in C(x) for some x in σ, and therefore

dY (ȳ, y) 6 dX (x̄, x) + ε 6 r + ε ,

Let τ be a subset of C(σ); ȳ is an (r + ε)-center for τ and hence τ is a simplex of C(Y, dY )r+ε . We have

thus shown that C is ε-simplicial from Č(X, dX ) to Č(Y, dY ).

�

Theorem 53 (Stability theorem - Associative version). Let (X, dX ) and (Y, dY ) be two metric spaces. We have the

following inequalities:

(1) in the homotopy category ho(AlgAs):

dho(AlgAs)
(C∗(R(X, dX )),C

∗(R(Y, dY ))) 6 2dGH ((X, dX ), (Y, dY )) ;

dho(AlgAs)
(C∗( Č(X, dX )),C

∗( Č(Y, dY ))) 6 2dGH ((X, dX ), (Y, dY )) ;

(2) in the strict category AlgAs :

dAs(R(X, dX ),R(Y, dY )) 6 2dGH ((X, dX ), (Y, dY )) ;

dAs( Č(X, dX ), Č(Y, dY )) 6 2dGH ((X, dX ), (Y, dY )) .

Recall (Remark 7) that in the inequalities (2), we are considering the associative algebra structures given

by the cup product on the cohomology algebras H∗(R(X, dX )), H∗(R(Y, dY )) (and not algebra structures at the

cochain level).

Proof. Let X and Y be two metric spaces and let C : X ⇒ Y be a correspondence with distortion at most ε. By

Lemma 52, C is ε-simplicial from R(X, dX ) to R(Y, dY ). Thus, by Lemma 50, any two subordinate maps f , g :

X
C
→ Y induce ε-morphisms of copersistent di�erential graded algebras C∗(R(X, dX )) → C∗(R(Y, dY )) which are

homotopic in the category AlgAs. Therefor, the correspondence C induces a ε-morphism ϕ : C∗(R(X, dX )) →

C∗(R(Y, dY )) in the homotopy category ho(AlgAs) thanks to Proposition 51.

By the same argument, the correspondence CT : Y ⇒ X gives us an ε-morphism ψ : C∗(R(Y, dY )) →

C∗(R(X, dX )). The correspondenceCT◦C (respectivelyC◦CT ) gives us the 2ε-morphism ψ◦ϕ (resp. ϕ◦ψ), which

is the canonical 2ε-endomorphism of C∗(R(X, dX )) (resp. C∗(R(X, dX ))) given by the structural morphisms

of C∗(R(X, dX )) (resp. C∗(R(X, dX ))). Therefore the ε-morphisms ϕ and ψ define a ε-interleaving between

C∗(R(X, dX )) and C∗(R(Y, dY )) .

The same argument applies verbatim for all other cases. �

Corollary 54 (Stability theorem - A∞ version). Let X and Y be two �nite set of points of Rn. We have the following

inequalities:

dA∞ (R(X),R(Y )) 6 2dGH (X,Y ) ;

dA∞ ( Č(X), Č(Y )) 6 2dGH (X,Y ) .

Proof. It follows from Proposition 41 (2) and Theorem 53. �
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4. Homotopy commutativity preserving distances

In this section we also consider the homotopy commutativity of the cup-product in cohomology. The cochain

algebra is not commutative on the nose though the cohomology is commutative (in the graded sense). Indeed,

there are structures (encoded in higher homotopies) yielding the commutativity of the cup-product after passing

to cohomology. Thus commutativity is additional structures on the cochains (or their cohomology) which can

be used to distinguish homotopy types. We start by studying distance associated to the most homotopical

additional structure in Section 4.1 before moving to more tractable but useful ones in Section 4.2.

In this section, whenever needed, we adopt the operadic language (see [LV12, Section 5.2] for the definition

of an (algebraic symmetric) operad and the definition of an algebra over an operad). However, we try to make

the statement and constructions understandable without knowledge of operadic methods as much as we can.

4.1. A theorical construction: E∞-structures and E∞-distances. In this section, we introduce a new dis-

tance, based on the E∞-algebra structure of cochain complexes, which dominate all the other ones one can

build on persistence cohomology associated to a space (or data set); see Remark 59. The E∞-algebra struc-

tures are (di�erential graded) homotopy commutative and associative structures which are functorially carried

by cochain complexes associated to spaces or more generally simplicial sets or complexes. We first need the

following standard construction.

De�nition 55 (Normalized (co)chain complex). Let X be a simplicial set. The normalized chain complex N∗(X)

is the quotient of the dg-module C∗(X) by the degeneracies:

Nd(X) =
Cd(X)

s0Cd−1(X) + . . . sd−1Cd−1(X)
.

We consider also the dual cochain complex N∗(X) = Homk(N∗(X), k). If Y is a topological space, we define

N∗(Y ) B N∗(Sing•(Y )) to be the normalized complex of the singular simplicial set associated to Y (see Sec-

tion 1.1.2).

Remark 56. The normalized (co)chain complexes N∗(−) and standard simplicial (co)chain complexes C∗(−)

functors are canonically quasi-isomorphic [Wei94]. In particular, for any topological space the canonical map

N∗(Y ) → C∗(Y ) to the singular cochains of Y is a natural quasi-isomorphism, i.e., induces an isomorphism

in cohomology. Further, if X is a simplicial complex, then the natural cochain complex associated to X is

isomorphic to N∗(X), the normalized complex of the simplicial sets associated to X viewed as a simplicial sets,

that is where we have added all degeneracies freely. Said in simpler terms, the normalized cochain complex

precisely computes the cochains of a simplicial complex.

The data of an E∞-algebra involves infinitely many homotopies and there are several equivalent models

(meaning models which yields the same homotopy categories of E∞-algebras) for them. We refer to [Man02,

Man06] for details on their homotopy theories. A nice explicit and combinatorial model1 for E∞-algebras was

given in [BF04]. It is an explicit operad, called the surjection operad, which we denote by E∞ in this paper, which

is a cofibrant resolution of the commutative operad Com. The important point is that this operad encodes the

structure of associative commutative product up to homotopy and in particular the category of algebras over

the surjection operads models E∞-algebras.

1Other popular models are given by the algebras over the Barrat-Eccles operad or the linear isometry operad
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Theorem 57 (see [BF04, Theorem 2.1.1.]). For any simplicial set X , we have evaluation products E∞(r)⊗N∗(X)⊗r →

N∗(X), functorial in X , which give the normalized cochain complex N∗(X) the structure of an E∞-algebra. In particular,

the classical cup-product of cochains is an operation µ0 : N∗(X)⊗2 → N∗(X) associated to an element µ0 in E∞(2)0.

Remark 58. The above theorem (and Definition 55) are valid with any coe�cient ring; in particular over Z,

Q or Fp.

Remark 59. By [Man06, Main Theorem], we know that the E∞-structure on the cochain complex of a topolog-

ical space X (under some finiteness and nilpotence assumptions) is a faithfull invariant of the homotopy type

of X and essentially encodes it.

Remark 60 (see [BF04, Section 1.1.1.]). As we have a factorisation of operad morphisms

As E∞ Com ,

we have a forgetful functor AlgE∞
AlgAs .

forget
Applied to the normalized cochain complex, this functor

recover the cup-product structure, that is, the usual di�erential graded algebra structure on cochain.

De�nition 61. We denote N∗
E∞

: Topop → AlgE∞
the functor induced by Theorem 57 and call it the cochain

E∞-algebra functor. We denote in the same way its composition with the canonical functor AlgE∞
→ ho(AlgE∞

).

As for dg-associative algebras in Section 1, we will only consider the homotopy category of E∞-algebras.

Remark 62. The Remark 60 implies that the composition of functors

Topop AlgE∞
AlgAs

N∗
E∞ forget

is equal to N∗
As
.

The functoriality of the E∞-structure on the normalized cochain complex given by Theorem 57 justifies the

following refined interleaving distance.

De�nition 63 (E∞-interleaving distance). Let X•,Y• : IR → Top be two persistent spaces. The E∞ interleaving

distance is defined by

dE∞ (X,Y ) B dho(AlgE∞ )
(N∗E∞ (X),N

∗
E∞
(Y ))

where the right hand side is the interleaving distance in the homotopy category of E∞-algebras.

Remark 64. The E-interleaving distance depends on the choice of the ground field k. In particular, as we will

see, it behaves very di�erently in characteristic 0 than in characteristic p. When we need to be explicit on the

ground ring, we will use the notation

dE∞,k(X,Y ) B dho(AlgE∞ )
(N∗E∞ (X, k),N∗E∞ (Y, k))

for the E-interleaving distance computed with coe�cient in k.

The E∞-interleaving distance is the more refined distance we can put on the persistence cochain complex of

a space (or simplicial set). Indeed every other ones we consider are smaller, see Theorem 83.

Theorem 65 (Stability theorem - E∞ version). Let (X, dX ) and (Y, dY ) be two metric spaces. We have the following

inequalities:
dE∞ (R(X, dX ),R(Y, dY )) 6 2dGH ((X, dX ), (Y, dY )) ;

dE∞ ( Č(X, dX ), Č(Y, dY )) 6 2dGH ((X, dX ), (Y, dY )) .
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Proof. It is the same proof that for Theorem 53 using the analogue (see Proposition 66) of Proposition 51. In

positive characteristic the proposition follows from [Man02, Proposition 4.2 and 4.3] and this result is extended

over Z (and therefore any coe�cient ring) in [Man06, Section 1]; the case of N∗ follows from that and the main

construction of [BF04]. Here notions of homotopy of algebras are with respect to the standard model structures,

see [Man06] for instance. �

Proposition 66. The functor C∗ : Topop → AlgE∞
(respectively N∗

E∞
: sSetop → AlgE∞

) converts weak homotopy

equivalences of spaces (resp. simplicial sets) to quasi-isomorphisms and homotopy classes of maps (resp. simplicial sets

morphisms) to homotopy classes of morphisms of E∞-algebras.

Despite being the most interesting distance from a purely theoretical point of view, the E∞-interleaving

distance is not really easily computable for the moment, therefore we now introduce coarsest ones, which are

more computer friendly.

4.2. Positive characteristic and the Steenrod interleaving distance. In this subsection, we fix k = Fp, where

p is a prime.

De�nition 67 (Steenrod algebra Ap (see [Bau06, Section 1.1])). Let p be a prime number. The mod p-Steenrod

algebra, denoted by Ap, is the graded commutative algebra over Fp which is

– for p = 2, generated by elements denoted Sqn and called the Steenrod squares, for n > 1, with cohomo-

logical degree n;

– for p > 2, generated by elements denoted β, called the Bockstein, of degree 1, and Pn for n > 1 of

degree 2n(p − 1);

whose product satisfy the following relations, called the Ádem relations:

– for p = 2 and for 0 < h < 2k, then

SqhSqk =

[ h
2
]∑

i=0

(
k − i − 1

h − 2i

)
Sqh+k−iSqi ,

– for p > 2 and for 0 < h < pk, then

PhPk =

[ hp ]∑
i=0

(−1)h+i
(
(p − 1)(k − i) − 1

h − pi

)
Ph+k−iPi ,

and

PhβPk =

[ hp ]∑
i=0

(−1)h+i
(
(p − 1)(k − i)

h − pi

)
βPh+k−iPi +

[ h−1p ]∑
i=0

(−1)h+i−1
(
(p − 1)(k − i) − 1

h − pi − 1

)
Ph+k−iβPi

We denote by Ap -Alg, the category of commutative algebras over Ap.

Remark 68. The Steenrod algebra also have a structure of Hopf algebra. Further, an important formula is

given, for x in H∗(x), by

Sq |x |(x) = x ∪ x .

The Steenrod algebra is the algebra of cohomological operations, i.e. all the natural transformations of

degree d for all d in N :

H∗(−, Fp) −→ H∗+d(−, Fp) ,

as illustrated by the following theorem.
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Theorem 69 (Steenrod, Ádem). Let X be a topological space. The singular cohomology with coe�cient in Fp is a

commutative algebra over the Ap Steenrod algebra, so we have the functor

H∗Ap
(−, Fp) : Topop −→ Ap -Alg.

Remark 70. The Steenrod algebra operations are the trace on the cohomology of the non-commutativity of

the cup-product. In particular, they are determined by the E∞-structure on the cochains.

Let us now define a new interleaving distance in positive characteristic.

De�nition 71. Let X and Y be two persistent spaces and let p be a prime. The Ap -interleaving distance is

defined by

dAp (X,Y ) B dAp -Alg(H
∗(X, Fp),H∗(Y, Fp))

that it is the interleaving distance (see Definition 4) computed in the category of Ap -algebras. Then we do not

wish to specify a particular p, we will simply refer tot hsi distance as Steenrod interleaving distance.

We have the following commutative diagram of functors

(2)

Topop

AlgE∞
AlgAs Chk

Ap -Alg AlgCom AlgAs gr-Vect

N∗
E∞

H∗
Com

N∗
As

H∗
H∗

Ap

For

H H

For For For

Using Lemma 8 in characteristic p, we will deduce the following inequalities between the distances.

Proposition 72. Let X•,Y• : IR→ Top be two persistent spaces. We have

dAlgCom
(H∗(X, Fp),H∗(Y, Fp)) 6 dAp (X,Y ) 6 dE∞,Fp (X,Y )

and for a commutative ring k in any characteristic

dAlgCom
(H∗(X, k),H∗(Y, k)) 6 dho(AlgAs)

(C∗(X, k),C∗(Y, k)) 6 dE∞,k(X,Y ) .

Proof. Propositions 51 and 66 implies that the functors N∗
E∞

and N∗
As

passes to the homotopy category and thus

diagram (2) induces a commutative diagram:

(3)

Topop

ho(AlgE∞
) ho(AlgAs) ho(Chk)

Ap -Alg AlgCom AlgAs gr-Vect ;

N∗
E∞

H∗
Com

N∗
As

H∗
H∗

Ap

For

H H

For For For

The two claimed string of inequalities then follows from Lemma 8 applied to diagram (3). �

Remark 73 (E�ective computability of Steenrod distance). An important practical fact that makes the Steenrod

distance appealing is that there exists algorithms to compute the persistent Steenrod squares with coe�cient in

F2 (see [Aub11, MM18]).

We also have the following theorem of stability:
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Theorem 74 (Stability theorem - Commutative mod p version). Let (X, dX ) and (Y, dY ) be two metric spaces. We

have the following inequality:

dAp (R(X, dX ),R(Y, dY )) 6 2dGH ((X, dX ), (Y, dY )) ;

dAp ( Č(X, dX ), Č(Y, dY )) 6 2dGH ((X, dX ), (Y, dY )) .

Proof. It follows from Theorem 65 and the first inequality in Proposition 72. �

Example 75. Consider the compact spaces X = S3 ∨ S5 and Y = ΣCP2, the suspension of CP2. The spaces X

and Y have the same cohomology as a graded vector space. As H∗(X) is a sub-algebra of H∗(S3) ×H∗(S5), and

Y is a suspension, both spaces have trivial cup products in cohomology. In particular, their cohomology are

the same as associative algebras.

But, if we consider their cohomology with coe�cient in F2 as module under the Steenrod algebra, then H∗(X)

has only trivial Steenrod square while H∗(Y ) has non-trivial ones. Note also that this di�erence is also detected

by the E∞-structure on the cochain level. Therefore, we can proceed as in Example 19. We can embed X and

Y in R7 and take discretisations of X and Y , depending of a small parameter α � 1. We denote by X̃ and Ỹ

respectively those discretisation, which are thus finite sets. We then get

dAlgCom
(H∗(R(X̃)),H∗(R(Ỹ ))) < dAp (R(X̃),R(Ỹ )).

Similarly, Proposition 72 also implies

dhoAlgAs
(N∗(R(X̃)),N∗(R(Ỹ ))) < dE∞ (R(X̃),R(Ỹ )) .

Example 76. Let us return again to Example 43, that is the complements of β-thickenings of the borromean

links and trivial entanglements of three circles in S3. Since the cohomology of these spaces is concentrated

in degree less than 2, we obtain that the only non-zero Steenrod squares are given by Sq1 : H1(X) → H2(X).

The latter is given by the self cup-product Sq1(x) = x ∪ x, see Definition 67 and Remark 68. In other words,

the Steenrod squares of X and Y are the same. Similarly, the other Steenrod powers coincide for X and Y . In

particular, for the discretisation X̃ and Ỹ we obtain

dAp (R(X̃),R(Ỹ )) < dA∞ (R(X̃),R(Ỹ )).

4.3. Distances in characteristic zero. In this section, we fix k a field of characteristic 0. In this case, the

homotopy theory of E∞-algebras is equivalent to that of algebras over another operad which encodes the struc-

ture of commutative associative algebra up to homotopy, called Com∞, given by given by Koszul duality (see

[LV12]). This operad is smaller than the operad of surjection (Theorem 57). One of the advantage of Com∞

is that we have a homotopy transfer theorem as for A∞ in Section 2. Therefore, as in Section 2.3, we have the

functor
H∗ : fTransIR

op

coCh,Com −→ ho
(
∞-AlgCom∞

) IRop

(A,H, i, p, h)• 7−→ (H, {µi}i∈N)•
.

In particular, given X•,Y• : IR→ ∆Cpx two finite filtered data, we can define their Com∞-interleaving distance:

dho(∞-AlgCom∞ )
(H∗(X),H∗(Y )) .

The structure of Com∞-algebra encodes more homotopy structure than that of A∞-algebra. However, by

Lemma 77, this new distance does not necessarily permit to di�erentiate more persistent spaces than the

A∞ one.
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Lemma 77. Let X•,Y• : IR→ ∆Cpx be two �nite �ltered data. We have

dho(∞-AlgCom∞ )
(H∗(X),H∗(Y )) = 0⇐⇒ dA∞ (X,Y ) = 0 .

Proof. Let X•,Y• : IR → ∆Cpx be two finite filtered data such that dho(∞-AlgCom∞ )
(H∗(X),H∗(Y )) = 0. As in The-

orem 30, by [LV12, Theorem 11.4.8], the homotopy category of di�erential graded commutative associative

algebras and the homotopy category of Com∞-algebras with the ∞-morphisms are equivalent. Therefore, by

Lemma 33, H∗(X) and H∗(Y ) are quasi-isomorphic as homotopy commutative algebras. By [CPRNW19, Theo-

rem A], this is equivalent to the fact that H∗(X) and H∗(Y ) are quasi-isomorphic in the homotopy category of

dg-associative algebras. Then by Theorem 30 and Lemma 33

dho(∞-AlgCom∞ )
(H∗(X),H∗(Y )) = 0⇐⇒ dA∞ (X,Y ) = 0 .

�

Remark 78. Since a Com∞-algebra structure has a canonical underlyingA∞-algebra structure, we automatically

have an inequality

dho(∞-AlgCom∞ )
(H∗(X),H∗(Y )) > dA∞ (X,Y )

where the left hand side is the interleaving distance in the category of Com∞-algebras. The Lemma 77 suggests

that the inequality might actually be an inequality in many practical cases.

Remark 79 (The functor APL). In characteristic zero, there is a functor

APL : Top −→ AlgCom ,

(see [FHT12] for the definition) such that, for any topological space X, there exists two natural quasi-isomorphisms

of di�erential graded associative algebras

C∗(X)
∼
−→ •

∼
←− APL(X)

(see [FHT12, Corollary 10.10]). As the functor APL (or the equivalent combinatorial model given by Felix et al.

in [FJP09]) is more computable, we expect that these constructions can be used to compute the A∞-interleaving

distance for finite filtered data (see Proposition 41).

4.4. The best of both worlds. We have seen in Proposition 72 that the E∞-interleaving distance is one of the

finer distances that we can define, but this distance seems di�cult to calculate because of the intricate structure

of an algebra of the operad of surjection and its homotopy category. As the operad E∞ encodes in particular

the cup-product and the Steenrod operations we can restrict to the following distances.

De�nition/Proposition 80. Let X•,Y• : IR → ∆Cpx be two finite filtered data and let p be a prime number.

We define two distances given by

dp,∞(X,Y ) B max
(
dA∞ (X,Y ), dAp (X,Y )

)
,

dP,∞(X,Y ) B max
(
dA∞ (X,Y ), sup

p∈P
dAp (X,Y )

)
,

where P is the set of prime numbers. By definition we have

dp,∞(X,Y ) 6 dP,∞(X,Y ) .

Example 81. Fix p an odd prime and consider the real projective plane RP2: it has the following cohomology

H0(RP2,Z) = Z , H1(RP2,Z) = 0 , H2(RP2,Z) = Z/2Z ,
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and

H0(RP2,Z/2Z) = Z/2Z , H1(RP2,Z/2Z) = Z/2Z , H2(RP2,Z/2Z) = Z/2Z .

Let X = ΣRP2 be the suspension of RP2 and Y be a closed ball in R3. The spaces X and Y have trivial cup

product, but the real projective space has non trivial Steenrod square, and its suspension too. As in Example 19,

we can construct two discretisations X̃ and Ỹ of X and Y respectively, depending of a parameter α such that

dp,∞

(
Č(X̃), Č(Ỹ )

)
< dP,∞

(
Č(X̃), Č(Ỹ )

)
;

dp,∞

(
R(X̃),R(Ỹ )

)
< dP,∞

(
R(X̃),R(Ỹ )

)
.

Similar examples can be obtained in other characteristic using lens spaces in place of projective spaces.

Remark 82. For many practical applications, it seems that the A∞, the A2 and the A3 interleaving distances

will be useful: in fact, the spaces which are not di�erentiated by these distances but which are di�erentiated by

other refined ones will be complicated to compute algorithmically, at least for the moment.

5. Résumé and proof of Theorem B

In this paper we have defined several distances between finite filtered data, using the cohomology of their

associated persistent spaces. In this section we finish to compare them all and in particular prove Theorem B.

We fix p a prime and we recall that the A∞ interleaving distance is defined for the cohomology of persistent data

with coe�cient in a field of characteristic zero. Further we consider the E∞-interleaving distance of Section 4.1

with value in Z for coe�cient. We can summarize all the interleaving distances constructed in this paper in the

following diagram of distances.

Theorem 83. Consider the various interleaving distances introduced in the paper.

(1) There is a string of inequalities

dA∞ dAs,Q dgr-Vect,Q

dP,∞ dp,∞

dAp dAs,Fp dgr-Vect,Fp

>
(2)

>
(1)

>
(6)

>
(4)

>
(5) >

(3)

>
(1)

for finite filtered data (De�nition 31). None of these inequalities are equalities in general.

(2) More generally, for arbitrary persistent spaces, there is a string of inequalities

dhoAlgAs
dAs,Q dgr-Vect,Q

dE∞ dP,∞ dp,∞

dAp dAs,Fp dgr-Vect,Fp

>
(2)

>
(1)

> >
(6)

>
(4)

>
(5) >

(3)

>
(1)

.

Further, these inequalities are not equalities in general.

In particular, those distances are not equal for Rips or Čech complex associated to discretisations of spaces.

Remark 84. Note that the Main Theorem B is nothing but a special case of Theorem 83.

Proof of Theorem 83. The first string of inequalities as well as the fact that they are strict in general for finite data

sets follows from
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(1) Proposition 18 and Example 19

(2) Proposition 41 and Example 43

(3) Proposition 72 and Example 75

(4) forgetting the Steenrod power operations and Example 75

(5) forgetting the A∞-structure and Example 76

(6) Definition/Proposition 80 and Example 81.

The same argument and part (2) of Proposition 41 yields the inequalities of the second part as well as the

fact that they are strict in general. By the universal coe�cient theorem [Wei94], any ε-interleaving between

normalized chain complex N∗(X,Z) and N∗(Y,Z) induces a ε-interleaving between N∗(X, k) and N∗(Y, k) for

any field k. This proves the inequality dE∞ > dP,∞.

Note that for general persistent spaces the counter-examples are easier to produce than for those arising

from Rips or Čech complexes. Indeed, it su�ces to take X and Y two topological spaces such that N∗(X) and

N∗(Y ) are equivalent in the category C but distinct in the category D (here the categories are any of the one

we consider for interleavings) to obtain two persistent spaces such that dC < dD. Indeed one can consider the

constant functions f : X → R and g : Y → R that sends the spaces to the point 0 ∈ R. Then the persistent

spaces associated to the function satisfy the strict inequalities. �

Remark 85. This work is a first theoretical step towards new distances taking into account more topological

information in Topological Data Analysis. For the moment, many of these distances are hard to compute. In

future work we will study how to define bottleneck distances taking the multiplicative structure into account in

the same way, in order to get more computer friendly distances. The existence of a bottleneck distance in the

derived category of sheaves [BG18] is an evidence for those.
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