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9 Norwegian Institute for Nature Research, Trondheim, Norway, 10 CARMEN, INSERM U1060, University of Lyon, INRA
U1235, Oullins, France

Prior to winter, heterotherms retain polyunsaturated fatty acids (“PUFA”), resulting in
enhanced energy savings during hibernation, through deeper and longer torpor bouts.
Hibernating bears exhibit a less dramatic reduction (2–5◦C) in body temperature, but
lower their metabolism to a degree close to that of small hibernators. We determined
the lipid composition, via lipidomics, in skeletal muscle and white adipose tissues
(“WAT”), to assess lipid retention, and in blood plasma, to reflect lipid trafficking, of
winter hibernating and summer active wild Scandinavian brown bears (Ursus arctos).
We found that the proportion of monounsaturated fatty acids in muscle of bears was
significantly higher during winter. During hibernation, omega-3 PUFAs were retained
in WAT and short-length fatty acids were released into the plasma. The analysis of
individual lipid moieties indicated significant changes of specific fatty acids, which are in
line with the observed seasonal shift in the major lipid categories and can be involved in
specific regulations of metabolisms. These results strongly suggest that the shift in lipid
composition is well conserved among hibernators, independent of body mass and of
the animals’ body temperature.

Keywords: hibernation, body temperature, metabolism, fatty acids, glycerophospholipids, sphingomyelin,
ceramide

INTRODUCTION

Lipids are found under many different forms in the organism and have pleiotropic actions in the
regulation of metabolisms. In particular, dietary lipids strongly influence patterns of daily torpor
and hibernation. The state of torpor corresponds to an active and drastic reduction of metabolic
rate (“MR”), followed by a decrease, more or less marked, in body temperature (“Tb”) of the animal.

Heterothermic mammals specifically select diets rich in polyunsaturated fatty acids (“PUFAs”)
prior to winter. When fed diets containing plant oils that are rich in PUFAs, heterotherms exhibit a
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higher propensity to use torpor, they lengthen their torpor bout
duration, lower their minimum Tb, and hence increase their
energy savings (Geiser and Kenagy, 1987; Frank, 1992; Florant
et al., 1993; Geiser and Kenagy, 1993; Thorp et al., 1994; Bruns
et al., 2000). Linoleic acid (C18:2ω6), which belongs to the
omega-6 family, was often the major dietary PUFA provided.
There is also evidence indicating that high amounts of dietary
oleic acid (C18:1ω9) can partly (Geiser et al., 1994) or even fully
(Frank and Storey, 1996) compensate for low omega-6 fatty acid
intake and that this monounsaturated fatty acid (“MUFA”) also
leads to increased torpor bout duration and decreased Tb during
hibernation. However, feeding omega-6 PUFA-enriched diets did
not enhance torpor in all species (Munro and Thomas, 2004)
and, interestingly, diets enriched with omega-3 fatty acids appear
to reduce the propensity of individuals to enter torpor and to
hibernate (Hill and Florant, 2000; Giroud et al., 2018b).

Enhanced torpor expression mediated by dietary PUFAs was
linked to a rise in omega-6 fatty acid content and a concomitant
reduction of saturated fatty acids (“SFAs”) in lipid reserves, as
well as in phospholipid (“PL”) membranes, of almost all body
tissues (Ruf and Arnold, 2008). Such a remodeling of fatty
acid composition in PL membranes and body tissues associated
with changes in expression of torpor or hibernation was also
observed independently of dietary manipulation or selection, as
for instance in the deer mouse (Peromyscus maniculatus) (Geiser
et al., 2007), in the gray mouse lemur (Microcebus murinus)
(Giroud et al., 2009), and in free-living alpine marmots (Marmota
marmota) (Arnold et al., 2011). In particular, for hibernators,
the several months of winter hibernation correspond to long
periods of fasting, relying mainly on their body fat stores.
In laboratory rats, fasting resulted in a selective depletion of
white adipose tissue (“WAT”) triacylglycerols in certain long-
chain PUFAs, namely linolenic acid (C18:3ω3), arachidonic acid
(C20:4ω6), and eicosapentaenoic acid (C20:5ω3), and relative
tissue enrichment in all very long-chain SFAs and MUFAs
(Raclot et al., 1995). In fasted hibernating rodents, selective
fatty acids mobilization stored from triacylglycerols also occurs
(Price et al., 2013). However, in contrast to non-hibernators
(rats), certain unsaturated fatty acids (“USFA”), notably oleic acid
(C18:1ω9) and linoleic acid (C18:2ω6), were selectively retained
in the WAT of hibernating thirteen-lined ground squirrels
(Ictidomys tridecemlineatus), while proportions of some SFAs,
namely stearic acid (C18:0) and palmitic acid (16:0), were highly
mobilized. MUFAs were reported to also play an important
role during hibernation in some heterothermic species living
in tropical and subtropical areas and that usually hibernate at
higher temperatures (Falkenstein et al., 2001; Fietz et al., 2003).
Echidnas and fat-tailed dwarf lemurs metabolize MUFAs during
hibernation in preference over SFAs (Falkenstein et al., 2001; Fietz
et al., 2003). In both species, MUFAs correspond, however, to the
main proportions of total fatty acids in WAT before and after
hibernation. This suggests that MUFAs can possibly compensate
the low availability of essential fatty acids prior and during
hibernation in tropical and sub-tropical heterothermic species.
In hibernators, such changes in lipid composition are expected
to ensure proper body functions at low Tb during torpor, possibly
through the maintenance of lipid fluidity (Sinensky, 1974; Aloia

and Raison, 1989; Tiku et al., 1996) and/or the regulation of
membrane proteins by specific lipids (Ruf and Arnold, 2008;
Giroud et al., 2013; Arnold et al., 2015).

Although the roles of fatty acids in torpor regulation have been
extensively studied in small hibernators and daily heterotherms,
there is, to date and to our knowledge, no systematic study on
seasonal changes of lipid composition existing on large species,
such as bears, which hibernate only at moderate hypothermia.
Yet, owing to their low surface-to-volume ratios, bears experience
particular energetic challenges, specifically lower cooling rates
and an inability to rely on dropping Tb for MR reduction, as
do small heterotherms. Also, hibernating bears do not show
periodic phases of rewarming, as small hibernators typically do at
regular intervals during hibernation. Therefore, their torpor bout
corresponds to the entire winter hibernation period. However,
bears can still reduce their metabolism to 25% of basal rates,
despite regulating their Tb between 30◦ and 36◦C during winter
(Tøien et al., 2011). Therefore, one can expect bears to display
similar, if not the same, physiological adaptations to hibernation
as small hibernators. In this study, we aimed to investigate
the seasonal changes in retention and mobilization of lipids
from various categories, which are expected to significantly
impact on metabolisms, in wild Scandinavian brown bears (Ursus
arctos). For this purpose and because lipids are found under
many different forms and have pleiotropic actions, we used a
lipidomic approach to determine the lipid composition in skeletal
muscle and white adipose tissues (to assess lipid retention), and
in blood plasma (reflecting lipid trafficking) of bears during
winter hibernation and the summer active period. Specifically, we
hypothesized that bears conserve USFAs in their body tissues, and
mobilize SFAs to fuel winter hibernation vs. the summer active
period. Similar to tropical and subtropical heterothermic species,
we expected bears to retain more specifically MUFAs to ensure
their body functions during hibernation compared to when active
in the summer. Further, we predicted that some specific lipid
molecules are particularly mobilized or retained during winter,
according to their implications in modulating the hibernation
phenotype of bears.

Here we present a unique dataset assessing, for the first
time, the seasonal changes of lipid composition of free-ranging
brown bears (U. arctos) studied in their natural environment. The
data are unique because the Scandinavian Brown Bear Research
Project (“SBBRP”), we are part of, is the only team which has
the experience of capturing free-living hibernating brown bears.
The design of this study (read below for details) allowed us
to determine the lipid retention/utilization in bears during the
winter hibernation period, i.e., February to April (see section
“Limitations of the Study” for details).

MATERIALS AND METHODS

Study Area
The study area encompassed about 21,000 km2 in south-central
Sweden (61◦N, 15◦E). The topography in this region is rolling
hills, with <10% above 750 m above sea level. The area is forested
and dominated by Scots pine (Pinus sylvestris L.) and Norway
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spruce (Picea abies H. Karst). The area is heavily used by the
forestry industry, with 8% of the land clear-cut and 40% trees
under 35 years of age (Moe et al., 2007). The human population
is low, but there is an extensive network of forestry roads and
some paved roads. The area is heavily used by hunters with
dogs, not only during the moose (Alces alces) hunting season
in September and October, but also during the bear hunting
season, which begins on 21 August and ends when the area-
specific quota has been filled, usually mid- to- late September
(Swenson et al., 2017). The total population estimate for Sweden
was 2,968–3,667 brown bears in 2008 (Kindberg et al., 2011).
This hunting period can overlap with the pre-denning period
(Evans et al., 2016). Most den abandonments occurred early in
the denning season; a recent study documented that 22% of bears
changed dens during winter, but only 4% after mid-December
(Sahlén et al., 2015).

Animals and Sample Collection
All personnel in the SBBRP has advanced experience and
training in capturing and handling free-living brown
bears during all seasons. Brown bears have been captured
annually by the SBBRP and fitted with neck collars, which
included a global positioning system (GPS), dual-axis motion
sensors (to monitor activity), very-high-frequency (“VHF”)
transmitters, and a global system for mobile mobilization
(“GSM”) modem (Vectronic Aerospace GmbH, Berlin,
Germany). As a backup to relocate bears if the collar
malfunctioned, VHF transmitters were implanted into the
abdomen (Telonics, Inc., Mesa, AZ, United States) (Arnemo
et al., 2012). GPS positions were recorded every 30 min
to 1 h. Bears that were the offspring of marked females
were followed from birth; otherwise, age was determined
by counting the annuli of a cross-section of the premolar
roots (Harshyne et al., 1998). All captures and subsequent
interventions carried out on the animals by trained personnel
were approved by the Ethical Committee on Animal
Experiments, Uppsala, Sweden (application #C47/9) and
the Swedish Environmental Protection Agency. Furthermore,
all experiments were performed in accordance with relevant
guidelines and regulations.

Ten bears (see Table 1 for details) were used for this study.
They were captured during winter hibernation in February
2011 and 2012 by darting them in their den, as previously
described (Evans et al., 2012). Once anesthetized, we took
each of the bears out of the winter den (during winter) and
placed them on an insulated blanket. During winter, brown
bears hibernate at Tb of ∼33◦C from November to April
(Evans et al., 2016). The same individuals were re-captured,
when active (Tb ∼38◦C) in June 2011 and 2012, by darting
from a helicopter (Fahlman et al., 2011). The same samples
were taken from these bears during both seasons. Subcutaneous
WAT biopsies were obtained from only 6 individuals during
the active period in summer and 5 in winter. WAT biopsies
were sampled superficially to the muscle biopsies at the same
surgical site. Sufficient quantities from the muscle tissue (Vastus
lateralis) biopsies were available from 7 bears in summer and
8 bears in winter. Blood samples were kept in heparinized

tubes at 5◦C before being centrifuged within 1 h at 3,500 rpm
at 5◦C. Plasma and all other samples of WAT and muscle
tissue were snap-frozen and stored at -80◦C for subsequent
lipidomic analyses.

To assess the pleiotropic actions of various lipid molecules, we
performed lipidomic analyses to identify and quantify (relative
quantification) five main lipid categories: total fatty acids (“FA”),
sterol [i.e., free cholesterol (“C”) and esterified cholesterol
(“EC”)], triacylglycerides (“TG”), glycerophospholipids
(“GPL”), sphingolipids (“SL”) and cholesterol. GPL included
phosphatidyl-choline (“PC”), phosphatidyl-ethanolamine
(“PE”), phosphatidyl-inositol (“PI”) and phosphatidyl-serine
(“PS”). SL mainly corresponded to sphingomyelin (“SM”)
and ceramides (“Cer”). For each sub-category of GPL,
we distinguished very long-chain (more than 20 carbons)
fatty acids from medium- and long-chain fatty acids (less
than 20 carbons).

Ethics Statement
All captures and subsequent interventions carried out on the
animals were approved by the Ethical Committee on Animal
Experiments, Uppsala, Sweden (application #C47/9) and the
Swedish Environmental Protection Agency.

Glycerophospholipid and
Ceramide-Sphingomyelin
Relative Quantification
Lipids were extracted from 1 mg of WAT, 1 mg of muscle,
or 10 µl of plasma by using a procedure modified from
Bligh and Dyer (1959) in dichloromethane/methanol (2% acetic
acid)/water (2.5:2.5:2 v/v/v) in the presence of internal standards
(Cer d18:1/15:0 16 ng; PE 12:0/12:0 180 ng; PC 13:0/13:0
16 ng; SM d18:1/12:0 16 ng; PI 17:0/14:1 30 ng; PS 12:0/12:0
156.25 ng). The solution was centrifuged at 1500 rpm for
3 min. The organic phase was collected and dried under
azote, then dissolved in 50 L of methanol. The extract was
then stored at −20◦C until subsequent analysis. Standards and
sample solutions were analyzed using an Agilent 1290 Ultra
Performance Liquid Chromatography (UPLC) system coupled to
a G6460 triple quadrupole spectrometer (Agilent Technologies)
and using “MassHunter” software for data acquisition and
analysis. A Kinetex Hydrophilic Interaction Chromatography
(HILIC) column (Phenomenex, 50 × 4.6 mm, 2.6 µm) was
used for Liquid Chromatography (LC) separations. The column
temperature was controlled at 40◦C. The mobile phase A
was Acetonitrile; and B was 10 mM ammonium formate
in water at pH 3.2. The gradient was as follows: from
10 to 30% of B in 10 min; then 100% of B for 2 min,
and then back to 10% of B at 13 min for 1-min of re-
equilibration prior to the next injection. The flow rate of
mobile phase was 0.3 mL/min, and the injection volume
was 5µL. An electrospray source was employed in positive
(for Cer, PE, PC and SM analysis) and negative ion mode
(for PI and PS analysis). Azote was used as collision gas.
Needle voltage was set to +4000 V. Several scan modes
were used. To obtain the naturally different species’ mass,
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we first analyzed cells lipid extracts with a precursor ion
scan of 184, 241, and 264 m/z to PC/SM, PI and Cer,
respectively; and a neutral loss scan of 141 and 87 for PE
and PS, respectively. The collision energy optimums for Cer,
PE, PC, SM, PI, and PS were 25, 20, 30, 25, 45 and 22 eV,
respectively. Then the corresponding SRM transitions were used
to quantify different PL species for each class. Two class-
specific positive and negative Selective Reaction Monitoring
(SRM) acquisitions are necessary to account for large differences
between PL classes. Data were treated using QqQ Quantitative
(vB.05.00) and Qualitative analysis software (vB.04.00). For
each lipid species, the relative quantification was obtained
by comparing the signal derived as area under the peak
for the lipid of interest with the signal resulting from its
internal standard.

Neutral Lipid Relative Quantification
We extracted lipids from 1 mg of WAT, 1 mg of muscle,
10 ml of plasma by using a procedure described by Bligh and
Dyer (1959) in dichloromethane/methanol/water (2.5/2.5/2.1,
v/v/v), in the presence of the internal standards : 4 µg
of stigmasterol, 4 µg of cholesteryl heptadecanoate, 8 µg
of glyceryl trinonadecanoate. Dichloromethane phases were
evaporated to dryness and dissolved in 20 ml of ethyl
acetate. 1 µl of the lipid extract was analyzed by gas-
liquid chromatography on a FOCUS Thermo Electron system
using Zebron-1 Phenomenex fused silica capillary columns
(5 m × 0.32 mm i.d, 0.50 µm film thickness) (Barrans et al.,
1994). Oven temperature was programmed from 200◦ to 350◦C
at a rate of 5◦C per min and the carrier gas was hydrogen
(0.5 bar). The injector and the detector temperatures were set
to 315◦ and 345◦C, respectively. For each lipid species, the
relative quantification was obtained by comparing the signal
derived as area under the peak for the lipid of interest with
the signal resulting from its internal standard. This method
allows the separation of TGs based on their total number
of carbons, but does not allow structural characterization

of TGs, i.e., with number and position of double bonds
(Barrans et al., 1994).

Total Fatty Acid Methyl Ester
(“FAME”) Analysis
We extracted lipids from 1 mg of WAT, 1 mg of muscle,
and 10 rml of plasma by using a procedure described by
Bligh and Dyer (1959) in dichloromethane/methanol/water
(2.5:2.5:2.1, v/v/v), in the presence of the internal standards
glyceryl triheptadecanoate (2 µg). Lipid extracts were hydrolyzed
in hydroxide Potassium (0.5 M in methanol) at 50◦C for 30 min,
and transmethylated in boron trifluoride methanol solution 14%
(SIGMA, 1 ml) and heptane (1 ml) at 80◦C for 1 h. After
adding water (1 ml) to the crude, total FAME were extracted
with heptane (3 ml), evaporated to dryness, and dissolved in ethyl
acetate (20 µl). Total FAME (1 µl) were analyzed by gas-liquid
chromatography (Lillington et al., 1981) on a Clarus 600 Perkin
Elmer system using a Famewax RESTEK fused silica capillary
columns (30 m × 0.32 mm i.d, 0.25 µm film thickness). Oven
temperature was programmed from 110◦to 220◦C at a rate of 2◦C
per min and the carrier gas was hydrogen (0.5 bar). The injector
and the detector temperatures were set to 225◦ and 245◦C,
respectively. For each lipid species, the relative quantification
was obtained by comparing the signal derived as area under the
peak for the lipid of interest with the signal resulting from its
internal standard.

Statistical Analyses
Data analyses were carried out using SAS 9.4 (SAS Institute, Inc.,
Cary, NC, United States). Standardized residuals from statistical
models were tested for normality using Kolmogorov-Smirnov
tests. We used linear mixed-effects models (“LMM”) to test for
the effect of season (fixed variable) on the different lipid groups
or specific lipid molecules (predicted variable), taking repeated
measurements among animals into account with bear’s ID as
random effect. Initial inspection of the data gave no evidence for
an effect of sex or sampling year on any of predicted variables.

TABLE 1 | Physiological parameters of individual brown bears.

ID Sex Age (year) Body Mass (kg) Body Temperature (◦C) Tissues

Summer Winter Summer Winter Summer Winter

0825 F 4 47.0 58.0 40.5 34.7 P M P

0904 F 3 72.0 57.0 37.3 34.1 P M P M

0908 M 3 51.0 58.0 39.9 33.4 P W M P W M

1004 M 2 22.0 21.0 39.2 32.0 P P M

1011 F 3 59.0 56.0 40.8 34.2 P W M P W M

1015 M 2 27.0 25.0 38.6 33.1 P W M P

1017 F 2 28.0 35.0 39.2 36.2 P W M P W M

1104 F 2 29.0 30.2 39.4 32.1 P P M

1105 F 2 – 31.5 39.4 32.0 P W P W M

1110 F 2 29 27.3 40.0 35.1 P W M P W M

Animals were used in the linear mixed models (LMM) to test for the effect of season (fixed variable) on the different lipid groups or specific lipid molecules (predicted
variable) in each tissue, i.e., white adipose tissue (“W”), muscle tissue (“M”), and blood plasma (“P”). Bear’s ID was included as random effect for taking repeated
measurements among animals into account. Sample sizes in LMM were of 10(P), 6(W), 7(M) in summer, and of 10(P), 5(W), 8(M) in winter.
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FIGURE 1 | Significant (p < 0.015) winter-summer differences in proportion of
fatty acid carbon chain length and groups of glycerophospholipids. The
different glycerophospholipids include phosphatidyl-choline (“PC”),
phosphatidyl-ethanolamine (“PE”), phosphatidyl-inositol (“PI”), and
phosphatidyl-serine (“PS”), and sphingolipids, i.e., ceramide (“Cer”) and
sphingomyelin (“SM”), in white adipose tissue (“WAT”), skeletal muscle
(“Muscle”), and blood plasma (“Plasma”) from winter hibernating and summer
active brown bears. For a better readability, the use of a gray or a dark bar
was alternated for each lipid group. Fatty acids with less than 20 carbons
(“CC < 20”) include medium- and long-chain fatty acids. Different groups are
monounsaturated fatty acids (“MUFA”), polyunsaturated fatty acids (“PUFA”),
and saturated fatty acids (“SFA”). Error bars represent standard errors.

Differences of least square means (“Lsmeans”) between seasons
were assessed. To limit non-relevant results, we applied a two
step-procedure: we excluded lipid species that represent very
small fractions (<1%) of total lipids, because of less physiological
relevance; and then corrected for multiple comparisons by
considering the 5% false discovering rate (“FDR”) with the
corresponding p-value of 0.015. Values are Lsmeans ± SE or
Means ± SE and differences of Lsmeans ± SE, and p < 0.015
was considered significant. Analyses were performed using (1) all
available samples and (2) only paired samples (10 for plasma, 5
for adipose tissue and 5 for muscle). As the results were similar,
only those of the first analyses, including all available samples,
are presented. Bear individuals used in the LMM are presented
in Table 1.

RESULTS

Lipids Levels
The level of each lipid group corresponded to the relative
quantification of major lipid class, calculated as the ratio between

the signal of lipids of interest and the signal of the internal
standard of the lipid family to which the lipids of interest belong.
Some levels of lipid groups were significantly higher in bears
during winter compared to the summer active state in all three
tissues (WAT, muscle, plasma). This was indeed the case for the
level of total FA in WAT and plasma (Table 2 and Supplementary
Table S1). However, levels of total TG in all three tissues, total
FA in muscle tissue, and total PL in WAT and muscle tissue
did not differ between seasons, although plasma PL levels were
significantly higher during winter compared to the summer active
period (Table 2 and Supplementary Table S1).

Total Fatty Acids
During hibernation, USFAs, i.e., MUFAs and to a lower
extent PUFAs, are retained in tissues, whereas SFAs seemed to
be mobilized for distribution and oxidation (Supplementary
Table S2). We found significantly lower MUFA-SFA, PUFA-SFA,
and USFA-SFA plasma ratios in bears during winter hibernation
compared to active summer (Supplementary Figure S1 and
Table 3). Conversely, MUFA-SFA ratio was higher in muscle
tissue in winter than in summer (Supplementary Figure S1 and
Table 3). Although not significant, proportions of ω3 PUFA
tended to be higher in WAT and lower in plasma in bears
during winter compared to animals in summer (Table 3 and
Supplementary Table S2). Specifically, plasma proportions of
C18:3ω3 and C20:5ω3 were significantly reduced during winter
hibernation vs. active summer (Figure 2 and Supplementary
Table S2). Conversely, the proportion of C20:4ω6 in WAT
was significantly increased in bears during winter compared to
animals in summer (Figure 2 and Supplementary Table S2). This
suggests that some specific ω3 fatty acids, namely C18:3ω3 and

TABLE 2 | Seasonal changes of concentrations of main lipid
categories in brown bears.

Tissues Variables Means ± SE p-values

Summer Winter

WAT

Total FA 1.83 ± 0.84 138.89 ± 29.47 <0.01

Total TG 1.00 ± 0.72 81.29 ± 43.22 0.106

Total PL 0.10 ± 0.04 0.07 ± 0.01 0.458

Muscle

Total FA 0.10 ± 0.02 1.47 ± 1.27 0.396

Total TG 0.01 ± 0.02 0.04 ± 0.01 0.022

Total PL 22.87 ± 4.05 24.48 ± 2.21 0.654

Plasma

Total FA 15.10 ± 1.69 27.34 ± 1.60 <0.01

Total TG 1.19 ± 0.23 6.69 ± 2.66 0.08

Total PL 3.65 ± 0.22 5.50 ± 0.17 <0.001

Arithmetic means (“Means”) and standard errors (“SE”) of concentrations
(in mmol l−1) of total fatty acids (“FA”), total triacylglycerides (“TG”), and total
phospholipids (“PL”) in white adipose tissue (“WAT”), muscle tissue (“Muscle”) and
blood plasma (“Plasma”) of bears during the summer active period (“Summer”)
and in winter hibernation (“Winter”). Sample sizes used in the linear mixed-effects
models are presented in Table 1. Significant p-values are highlighted in bold.
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C20:5ω3, tend to be retained in tissue during winter hibernation,
and some specific ω6 PUFA being mobilized.

Triacylglycerides
During hibernation, TGs with the shortest fatty acids appeared
to be released into the plasma, whereas those with longer
chains are retained in muscle tissue. We found statistically
significant 3.4- and 1.6-fold higher plasmatic proportions of
TGs with chain length of either 49 carbons (“C49”) or 51
carbons (“C51”), respectively, in bears in winter than during
summer (Supplementary Figure S2 and Table 4). Conversely,
plasma proportions of long-chain TGs with chain length of either
55 carbons (“C55”) or 57 carbons (“C57”) were 37 and 72%
lower, respectively, during winter vs. summer (Supplementary
Figure S2 and Table 4). The bears showed a 1.2-fold higher
proportion of TGs with chain length of 55 carbons (“C55”) in
their muscle tissue during winter than when active in summer
(Supplementary Figure S2 and Table 4). The WAT of bears did
not show any significant seasonal changes in the proportions
of different TGs.

Glycerophospholipids and Sphingolipids
Seasonal changes of GPL and SL in the three tissues were minor
overall. In WAT, we found no significant differences in any of
GPL and SL classes from bears between summer and winter
states (Supplementary Figure S3 and Table 5). Although not
significant, proportions of PC and PS tended to be slightly higher
(5%) and lower, respectively, in muscle tissue of bears during
winter vs. summer (Supplementary Figure S3 and Table 5). In
plasma, the proportion of PI showed a significant decrease of
29%, whereas the proportion of SM tended to increase by 21%
in bears during winter hibernation compared to when active in
summer (Supplementary Figure S3 and Table 5).

Despite these minor changes, the composition of bioactive
GPL showed a global trend of releasing the shortest fatty
acids into the plasma. Indeed, proportions of fatty acids with
less than 20 carbons (i.e., medium- and long-chain) were
mainly increased in the plasma during winter hibernation
compared to summer (Figure 1). Further, USFA seemed to
be retained in tissues, as proportions of MUFA increased
significantly in muscle-SM and muscle-Cer during winter vs.
summer (Figure 1).

TABLE 3 | Seasonal changes of ratios and proportions of fatty acid groups in brown bears.

Tissues Variables Means ± SE Winter – summer differences (%FA)

Summer Winter Lsmeans ± SE p-values

WAT

MUFA/PUFA 6.11 ± 1.30 13.75 ± 3.47 7.86 ± 2.62 0.044

MUFA/SFA 1.09 ± 0.13 1.55 ± 0.13 0.52 ± 0.14 0.044

PUFA/SFA 0.20 ± 0.04 0.14 ± 0.04 −0.06 ± 0.05 0.295

USFA/SFA 1.29 ± 0.12 1.69 ± 0.13 0.39 ± 0.20 0.182

SFA 44.08 ± 0.02 37.49 ± 0.02 −6.51 ± 3.31 0.208

Omega-3
[%PUFA]

18.38 ± 5.31 29.63 ± 4.42 11.76 ± 3.29 0.033

Muscle

MUFA/PUFA 4.66 ± 1.22 14.76 ± 3.76 10.75 ± 4.50 0.045

MUFA/SFA 0.67 ± 0.10 1.39 ± 0.13 0.63 ± 0.19 0.009

PUFA/SFA 0.22 ± 0.06 0.20 ± 0.08 −0.02 ± 0.10 0.815

USFA/SFA 0.88 ± 0.06 1.59 ± 0.19 0.66 ± 0.24 0.022

SFA 53.39 ± 0.02 39.71 ± 0.02 −13.67 ± 2.95 <0.001

Omega-3
[%PUFA]

15.37 ± 2.39 11.09 ± 7.21 −3.39 ± 8.49 0.699

Plasma

MUFA/PUFA 0.97 ± 0.08 1.13 ± 0.12 0.16 ± 0.11 0.201

MUFA/SFA 1.06 ± 0.08 0.72 ± 0.05 −0.33 ± 0.08 0.002

PUFA/SFA 1.12 ± 0.07 0.69 ± 0.07 −0.44 ± 0.12 0.006

USFA/SFA 2.18 ± 0.11 1.41 ± 0.09 −0.77 ± 0.18 0.002

SFA 31.80 ± 0.01 41.82 ± 0.01 10.02 ± 2.34 0.002

Omega-3
[%PUFA]

19.08 ± 1.85 12.90 ± 1.31 −6.18 ± 2.63 0.043

Arithmetic means (“Means”) and standard errors (“SE”) of response variables from white adipose tissue (“WAT”), muscle tissue (“Muscle”), and blood plasma (“Plasma”) of
bears during the summer active period (“Summer”) and in winter hibernation (“Winter”). Response variables are ratios between different fatty acid (“FA”) groups: between
monounsaturated fatty acid (“MUFA”) and polyunsaturated fatty acid (“PUFA”), between MUFA and saturated fatty acid (“SFA”), between PUFA and SFA, between
unsaturated fatty acid (“USFA”) and SFA (among total fatty acids), as well as proportions of SFA and omega-3 FA (among total PUFA). Differences of least square means
(“Lsmeans”) between seasons and p-values result from linear-mixed effects models (LMM). Sample sizes used in the LMM are presented in Table 1. Significant p-values
are highlighted in bold.
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FIGURE 2 | Significant (p < 0.015) winter-summer differences (more than 4%
changes) in proportions of lipid moieties from different lipid groups. The
different lipid groups include phosphatidyl-choline (“PC”),
phosphatidyl-ethanolamine (“PE”), phosphatidyl-inositol (“PI”),
phosphatidyl-serine (“PS”), fatty acids (“FA”) and sphingolipids, i.e., ceramide
(“Cer”) and sphingomyelin (“SM”), in white adipose tissue (“WAT”), skeletal
muscle (“Muscle”), and blood plasma (“Plasma”) from winter hibernating and
summer active brown bears. For a better readability, the use of a gray or a
dark bar was alternated for each lipid group. Error bars represent standard
errors.

Specific Lipid Moieties
The different lipid moieties indicated that the proportions of
specific lipid molecules varied significantly between seasons in
all three tissues (Figure 2). In addition, the concentrations and
relative proportions of specific fatty acids, among total FA, are
presented in Supplementary Tables S1 and S2, respectively.

In Cer, proportions of the C42:1 molecule showed a
significant decrease in muscle tissue and plasma during winter
hibernation compared to summer. Conversely, bears showed
higher proportions of C42:2 molecule in Cer both in plasma
and in muscle tissue during winter. Further, the proportion
of plasma cholesterol C16:0 increased in bear plasma during
winter vs. summer.

Among FA, C16:0 proportion was significantly higher in
bear plasma and muscle tissue during hibernation compared
to summer, whereas plasma level of C18:0 was significantly
lower in hibernating bears compared to animals in summer.
The proportion of C18:1ω9 and C18:3ω3 in plasma were
decreased in bears during winter compared to summer levels.
Level of C18:1ω7 significantly increased in bear plasma during
winter vs. summer, but was significantly lower in bear muscle
during hibernation compared to summer. Lastly, proportion of
20:4ω6 in WAT was significantly reduced by 24% during winter,
which was the largest change overall observed among FA in
all three tissues.

The lipid composition of GPL and SL also showed substantial
seasonal changes. In PC, plasmatic and muscular proportions of
the low saturation C34:1 molecule, were significantly increased
during winter, whereas the proportion of more unsaturated C34:2
molecule was lower in muscle from hibernating bears. In PE,
lipid molecules of longer carbon chain, such as C38:3 in muscle
and C34:0 in WAT, were retained during winter. Conversely,
proportions of the high saturation C36:2 and C36:1 molecule
in PE and PI were reduced in plasma during winter. In PI,
proportions of highly unsaturated molecules, such as C38:4 and
C38:3 in plasma and C38:3 in muscle were increased by 9.9-, 6.2-,
and 5.8-fold, respectively, during winter compared to summer.
In PS, proportions of low saturation molecules, such as 36:0 and
36:1, were reduced in WAT during winter. In SM, proportions
of the monounsaturated molecules C36:1 in muscle and C34:1 in
plasma were both lowered during winter compared to summer.

DISCUSSION

Selective Retention of Unsaturated Fatty
Acids in Bears During Winter
Our results showed that, during hibernation, bears specifically
conserved USFAs, both MUFAs and PUFAs, in WAT and
muscle tissue. These findings are in line with studies on small
heterothermic mammals that tend to enrich their tissues and
membrane PL with USFAs prior to hibernation. For instance,
alpine marmots increase proportions of omega-6 PUFAs in their
membrane PL just prior to hibernation, showing high amounts
of these fatty acids in PL during winter (Arnold et al., 2011).
Similarly, gray mouse lemurs (M. murinus) retain mainly PUFAs
(i.e., C18:2ω6) in their body tissues and membranes during
the winter dry season, as an increasing torpor expression in
response to calorie restriction (Giroud et al., 2009). It has to
be noted that the diet preferences of bears in autumn, i.e.,
mostly consisting of berries and low plant materials (Dahle et al.,
1998; Persson et al., 2001; Stenset et al., 2016), suggest that
they rely mainly, if not exclusively, on selective lipid remodeling
independently of the diet to conserve USFAs during hibernation.
Also, bears of our study were relatively young (2–4 years)
and small in body size (Table 1). One could expect that the
observed seasonal changes in lipid composition would have
been partly related to postnatal development and not caused
specifically by hibernation. However, in seasonal environments,
young individuals, even more than adults, are subjected to strong
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pressures to survive their first winters in hibernation. Indeed,
they have to reach an optimal fattening, both in terms of amount
and quality of lipid stores, along with ensuring their development
and structural growth (Arendt, 1997; Giroud et al., 2012, 2014).
For instance, juveniles that were born early or late in the
reproductive season, as well as sub-adult garden dormice are able,
along with ensuring structural growth, to accumulate fat reserves
of sufficient quantity and quality (in terms of lipid composition)
already during their first winter in hibernation (Giroud et al.,
2014, 2018b; Mahlert et al., 2018).

The bears from our study also tended to conserve MUFAs
over PUFAs during hibernation. A similar finding was reported
in deer mice, which exhibit daily torpor, mainly in the winter
phenotype (Geiser et al., 2007). Indeed, deer mice under winter-
like conditions had a significant 2-fold lower ratio of SFAs
and MUFAs in muscle PL, compared to individuals in summer
phenotype. Our results also agree with studies on hibernating
species living in tropical or subtropical areas, which are usually
hibernating at higher temperatures. MUFAs accounted for the
vast majority (∼97%) of USFAs in WAT of free-ranging fat-
tailed dwarf lemurs (Cheirogaleus medius) prior to hibernation
(Fietz et al., 2003). Similarly, in gray mouse lemurs, MUFAs also
appear to be influential for the expression of torpor at moderate
(28–30◦C) hypothermia, in association with the contribution of
PUFAs (Vuarin et al., 2014). Hence, it seems more beneficial for
heterothermic species, exhibiting only moderate hypothermia,
to enrich their membranes and tissues with molecules of
lower unsaturation (e.g., MUFAs) than with more unsaturated

molecules (e.g., PUFAs). Further, sparing preferentially MUFAs
over PUFAs in winter would be even more beneficial for bears
that hibernate without rewarming periodically from hibernation
over the entire winter. Indeed, periodic arousals from torpor
are associated with drastic increases of MR and cause enormous
production of free radicals, triggering important oxidative
damages to macromolecules, cells and tissues of the organism
(Carey et al., 2000; Hoelzl et al., 2016). To that respect, PUFAs
and, to a less extent, MUFAs are more susceptible to oxidative
stress than SFAs, and can act upon peroxidation as free radicals
triggering further damages to the organism (Hulbert, 2005).
Hence, heterotherms tend to balance the retention of USFAs,
notably PUFAs, with the generation of oxidative stress associated
with periodic arousals when increasing torpor expression [(Frank
and Storey, 1995; Frank et al., 1998; Giroud et al., 2009), for
review see Munro and Thomas (2004)]. Yet hibernating at high
Tb, while exposed to very low ambient temperatures, would be
associated with greater energetic costs, hence oxidative stress,
than hibernating at low Tb in a cold environment. Therefore,
retaining MUFAs, over PUFAs, in membranes and tissues seems
to be optimal for limiting the generation of oxidative stress while
still maintaining the vital functions during torpor at moderate
hypothermia, such as in hibernating bears in winter.

In the present study, we also found that, during hibernation,
bears retained certain omega-3 PUFAs in WAT, while some
omega-6 PUFAs appear to be mobilized. Since omega-3 PUFAs
are precursors of numerous pathways delivering ATP (Weber,
2009), they have to be diverted from organs of high metabolism,

TABLE 4 | Seasonal changes of proportions of triacylglycerides in brown bears.

Tissues Variables Means ± SE Winter – summer differences (%TG)

Summer Winter Lsmeans ± SE p-values

WAT

C49 4.12 ± 1.19 0.43 ± 0.04 −3.69 ± 1.41 0.078

C51 4.43 ± 0.76 5.18 ± 0.62 0.71 ± 0.75 0.405

C53 21.17 ± 1.70 22.25 ± 0.57 1.08 ± 1.76 0.572

C55 50.98 ± 3.09 51.85 ± 2.01 1.76 ± 2.10 0.461

C57 18.80 ± 1.26 18.18 ± 0.82 −0.96 ± 1.21 0.482

Muscle

C49 2.80 ± 1.15 0.41 ± 0.10 −2.42 ± 1.01 0.039

C51 5.24 ± 1.82 4.30 ± 0.46 −1.00 ± 1.66 0.563

C53 22.62 ± 4.12 21.63 ± 0.43 −0.97 ± 3.69 0.799

C55 42.91 ± 1.77 52.03 ± 1.17 8.70 ± 2.28 0.006

C57 24.43 ± 5.63 19.44 ± 0.41 −4.98 ± 5.02 0.345

Plasma

C49 8.08 ± 2.59 27.20 ± 2.15 19.12 ± 2.82 <0.001

C51 15.10 ± 1.60 23.91 ± 1.05 8.82 ± 1.46 <0.001

C53 13.33 ± 2.04 19.53 ± 0.89 6.20 ± 2.57 0.039

C55 32.15 ± 1.83 20.30 ± 1.43 −11.85 ± 1.79 <0.001

C57 26.74 ± 2.17 7.65 ± 0.59 −19.09 ± 2.16 <0.001

Arithmetic means (“Means”) and standard errors (“SE”) of response variables from white adipose tissue (“WAT”), muscle tissue (“Muscle”), and blood plasma (“Plasma”) of
brown bears during the summer active period (“Summer”) and in winter hibernation (“Winter”). Response variables are proportions of triacylglycerides (“TG”) with different
carbon chain lengths from C49 to C57. Differences of least square means (“Lsmeans”) between seasons and p-values result from linear-mixed effects models (LMM).
Sample sizes used in the LMM are presented in Table 1. Significant p-values are highlighted in bold.
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such as muscles, and to be retained in non-metabolic tissues,
such as WAT. This result is in line with studies on small
hibernators, which drastically lower their level of omega-3 fatty
acids in membrane PL of key organs, such as the heart or muscle
[(Geiser et al., 2007; Arnold et al., 2011; Giroud et al., 2013),
see also Arnold et al. (2015) for a review]. Notably, hibernation
was incompatible with high amounts of docosahexanoic acid
(C22:6ω3) in the cardiac sarcoplasmic reticulum (SR) PL of
Syrian hamsters (Mesocricetus auratus) (Giroud et al., 2013).
Further, garden dormice (Eliomys quercinus) fed diets rich
in C22:6ω3 delayed hibernation onset and entered deep
hibernation only when levels of C22:6ω3 in WAT and SR-PL
had been reduced to their lowest values (Giroud et al., 2018b).
Interestingly, the supplementation of diet with C22:6ω3 during
winter led to a reduced use of torpor in gray mouse lemurs, which
instead displayed shallow (∼33◦C) hypothermia (Vuarin et al.,
2016); this temperature is similar to that of hibernating bears.

Selective Mobilization of Saturated Fatty
Acids and Shortest Fatty Acids
Our results indicate that, while sparing USFAs in their tissues,
bears specifically mobilized the SFAs and TGs with the shortest
fatty acids, which are prone to oxidation at a lower ATP cost (for
review, see Schönfeld and Wojtczak, 2016), during hibernation.
Conversely, medium- and long-chain fatty acids (notably USFAs)

were conserved in tissues. These results agree with findings
on gray mouse lemurs that selectively mobilize palmitic acid
(C16:0) for oxidation during winter, sparing C18:2ω6, along with
increasing torpor use in response to food restriction (Giroud
et al., 2009). Also, Geiser et al. (2007) observed that medium-
and long-chain USFAs (including PUFAs) increased in the muscle
of deer mice during short days, in comparison with the equinox
and long days. In laboratory rats, fasting resulted in a selective
depletion of adipose tissue in PUFAs and MUFAs and in a
relative enrichment in all very long-chain fatty acids (Raclot
et al., 1995). Also, proportions of some SFAs, i.e., stearic acid
(C18:0) and palmitic acid (16:0), were highly mobilized from
the WAT of hibernating thirteen-lined ground squirrels, while
certain USFAs, including oleic acid (C18:1ω9) and linoleic acid
(C18:2ω6), were selectively retained (Price et al., 2013). Alpine
marmots selectively conserve long-chain PUFA derivatives of
C18:2ω6 and C18:3ω3 in body tissues, such as heart and liver,
during hibernation. Long-chain fatty acids were described to
occupy the middle position ∼70% of the time, i.e., sn-2, which
is less susceptible to be hydrolyzed for fatty acid mobilization,
of triacylglycerol isolated from marmot WAT (Florant, 1998).
It has been demonstrated that the enzyme monoacylglycerol
acyltransferase (MGAT), driving the re-acetylation of sn-2-
monacylglycerols, was responsible for the selective incorporation
of long-chain PUFAs, such as C18:2ω6, C18:3ω3, and C22:6ω3,
in the hepatic PL of neonatal rats (Xia et al., 1993). In

TABLE 5 | Seasonal changes of different phospholipids in brown bears.

Tissues Variables Means ± SE Winter – summer differences (%PL)

Summer Winter Lsmeans ± SE p-values

WAT

Cer 4.90 ± 2.61 1.75 ± 1.19 −3.31 ± 3.07 0.350

PC 68.48 ± 6.06 68.87 ± 2.06 1.48 ± 7.43 0.854

PE 2.70 ± 0.26 6.87 ± 2.06 4.19 ± 1.75 0.074

PI 12.19 ± 1.45 11.96 ± 4.43 −0.40 ± 4.10 0.928

PS 1.90 ± 0.37 2.07 ± 0.33 0.12 ± 0.44 0.658

SM 9.83 ± 2.41 8.48 ± 1.97 −1.73 ± 2.19 0.479

Muscle

Cer 0.29 ± 0.05 0.26 ± 0.02 −0.03 ± 0.06 0.618

PC 64.06 ± 1.51 66.53 ± 1.33 3.25 ± 1.17 0.045

PE 9.27 ± 1.03 6.67 ± 0.65 −2.64 ± 1.20 0.055

PI 17.69 ± 1.82 17.99 ± 1.21 0.10 ± 1.86 0.958

PS 1.26 ± 0.08 1.02 ± 0.05 −0.23 ± 0.10 0.049

SM 7.44 ± 0.67 7.53 ± 0.56 0.12 ± 0.83 0.892

Plasma

Cer 0.30 ± 0.02 0.26 ± 0.01 −0.03 ± 0.03 0.240

PC 69.85 ± 0.67 68.08 ± 1.45 −1.75 ± 1.74 0.339

PE 1.04 ± 0.15 1.02 ± 0.11 −0.03 ± 0.17 0.973

PI 8.08 ± 0.40 5.65 ± 0.32 −2.35 ± 0.34 <0.001

PS 0.28 ± 0.04 0.33 ± 0.11 0.05 ± 0.13 0.702

SM 20.46 ± 0.91 24.66 ± 1.37 4.20 ±1.72 0.036

Arithmetic means (“Means”) and standard errors (“SE”) of response variables from white adipose tissue (“WAT”), muscle tissue (“Muscle”), and blood plasma (“Plasma”)
of bears during the summer active period (“Summer”) and in winter hibernation (“Winter”). Response variables are proportion of ceramide (“Cer”), phosphatidyl-choline
(“PC”), phosphatidyl-ethanolamine (“PE”), phosphatidyl-inositol (“PI”), phosphatidyl-serine (“PS”), and Sphingomyelin (“SM”) among phospholipids (“PL”). Differences of
least square means (“Lsmeans”) between seasons and p-values result from linear-mixed effects models (LMM). Sample sizes used in the LMM are presented in Table 1.
Significant p-values are highlighted in bold.
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parallel to this, the enrichment of PL with specific PUFAs
and mobilizations of SFA and medium-chain fatty acids from
hepatic PL were occurring (Xia et al., 1993). Such a mechanism,
through the modulation of MGAT activity, could likely explain
the selective retention and mobilization of specific fatty acids
during hibernation, and notably the seasonal changes observed
in hibernating brown bears.

In our study, more variations of lipids interestingly
occurred in plasma compared to WAT and muscle tissue.
This further suggests that other tissues or organs might
also be involved in the retention and mobilization of lipids
in hibernating bears during winter. Potential organs for
retention of specific lipids include the heart, of which
proper function for the maintenance of homeostasis has
to be continued during hibernation, and the liver for its
implication in membrane PL remodeling (as outlined above).
Future investigations would need to determine the underlying
molecular mechanisms of seasonal changes in lipid metabolism,
including retention and mobilization among different key
tissues and organs, in bears and other hibernators during
winter hibernation.

Implications and Roles of Specific
Lipid Molecules
From the results of detailed lipid moieties, we found significant
seasonal changes among all lipid classes. The composition
of Cer showed higher proportions of 42:2 molecules at the
expense of 42:1 molecules and cholesterol proportions in
plasma of bears during hibernation. Plasma Cer level has
been reported to be elevated in type-2 diabetic subjects
and may contribute to insulin resistance through activation
of inflammatory mediators, such as TNF-α (Haus et al.,
2009; Chavez and Summers, 2012). Insulin sensitivity was
inversely correlated with C18:0, C20:0, C24:1, and total Cer.
Also, plasma TNF-α concentration was increased in type-
2 diabetic subjects and correlated with increased C18:1 and
C18:0 Cer subspecies (Haus et al., 2009). Recently, it has
been reported that grizzly bears (U. arctos horribilis) showed
insulin resistance during hibernation in winter, but not during
the active periods in spring and fall (Rigano et al., 2017).
Further, highest insulin concentrations were found to occur
during hibernation in captive and wild American black bears
(McCain et al., 2013). In our study, specific regulations of
the Cer level and composition could have been involved
in the phenomenon of insulin insensitivity of hibernating
bears in winter. Cer was also shown to modify intracellular
signaling pathways to slow anabolism and suppress catabolism,
notably of skeletal muscles, by acting on cholesterol raft
(Guenther and Edinger, 2009; Bikman and Summers, 2011;
Chavez and Summers, 2012). Also, PI is known to regulate
PI3-kinase activity, which is involved in numerous metabolic
pathways. In particular, PI enriched with PUFA activates
PKC-α, ε, and δ.

Among FA, we found a significant increase in plasma and
muscle proportions of C16:0, the precursor of MUFAs, as well
as changes in the major MUFAs and PUFAs, involved in the

functioning of PL membranes and the regulation of membrane
fluidity. For instance, C18:2ω6 is a crucial omega-6 PUFA
involved in the maintenance of the cardiac function during
hibernation, through the maintenance of calcium homeostasis
in cardiomyocytes, involving a specific mechanism of regulation
of the cardiac SR calcium ATPase (Giroud et al., 2013; Arnold
et al., 2015; Jastroch et al., 2016). Further, fatty acid specific
trafficking between organs, such as the heart and WAT, was
shown to occur in hibernating alpine marmots, concerning
notably C18:2ω6, C18:3ω3, and C20:4ω6 (Arnold et al., 2011). In
particular, C20:4ω6 is the preferred substrate of cyclooxygenase
and therefore the most important precursor of prostaglandins
(PG), which are known for their function in reproduction
and thermoregulation (Ueno et al., 1982; Prendergast et al.,
2002; Saito et al., 2002; Ruan et al., 2008). For instance, PGE2
infusion has been shown to cause arousal from hibernation
concomitant with fever in golden-mantled ground squirrels
(Callospermophilus lateralis) (Prendergast et al., 2002). Arnold
et al. (2012) reported that PGD2 and PGE2 concentrations
in the alpine marmot brain changed periodically with season
and age. The availability of sufficient omega-6 PUFA, i.e.,
C20:4ω6, precursors for PG synthesis was apparently important
in spring, when the animals become reproductively active
(Arnold et al., 2012). In brown bears, levels of major eicosanoids,
irrespective of their anti- and pro-inflammatory properties, are
significantly reduced during winter hibernation compared to
the summer active state (Giroud et al., 2018a). In particular,
plasma and muscle concentrations of specific epoxyeicosatrienoic
acids (EET), namely 5,6-EET and 8,9-EET, were lower in
hibernating bears than in summer active individuals. EETs
are known to have regulatory properties on cardiac function
and cellular energy metabolism (Lee et al., 1999; Xiao et al.,
2004), potentially contributing to the metabolic suppression of
bears at entrance and during hibernation (Evans et al., 2016;
Giroud et al., 2018a).

We also found significant seasonal changes of specific
lipid moieties in GPL and SL, primary constituents of lipid
membranes. Both the chain length and the number of double
bonds in these acyl-chains have a major influence on the
physical properties of the lipids that contain them. For instance,
if C18:1ω9 is substituted for C18:0 in the sn-2 position in
PC, the melting point decreases to ∼1◦C and then would
be liquid crystalline at or even slightly below mammalian Tb
(Hulbert et al., 2005). As outlined above, the regulation of
the cardiac SR calcium ATPase is an important mechanism
for the hibernator to survive low Tb and metabolism during
hibernation. It has been shown that the SR calcium ATPase
activity was regulated, via changes in protein conformation,
by the contents of both cholesterol and PE in the membrane
(Yeagle, 1989). PE is essential to the correct folding of membrane
protein tertiary structures (Post et al., 1995). Also, PE has
been described as an important regulator and stabilizer of
membranes in response to ischemia. It has been shown that
incorporating N,N-dimethyl-ethanolamine in lipid membranes
of neonatal rat heart myocytes resulted in a stronger attenuation
of cell damage upon ischemia or metabolic inhibition (Post
et al., 1995). PS can act as a co-factor to numerous signaling
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proteins in the cell membrane and promotes clearance of
lipoproteins. Indeed, PS, as well as PE, are preferred substrates
of the phospholipase A2 (PLA2) (Jaross et al., 2002). By
degrading membrane PL, PLA2 allows the release of C20:4ω6,
i.e., the reaction products of PLA2-mediated phospho-lipolysis.
C20:4ω6 itself is the precursor of a variety of eicosanoids (as
already discussed above) and is important for the promotion of
phagocytosis. It was reported that an enhanced uptake of PL-
modified lipoproteins by macrophages, together with a decreased
serum lipoprotein in conditions with increased PLA2 in serum,
led to an increased clearance of lipoproteins in serum and tissues
(Jaross et al., 2002).

LIMITATIONS OF THE STUDY

One possible limitation of the study can be linked to the stress
and physical activity induced by capture of the bears in summer
via darting them from a helicopter. Because bears in summer
had to run away to try to escape, the occurrence of stress
and physical activity would have possibly impacted the lipid
profile (notably FFAs and possibly TGs) in plasma and, to a
lesser extent, in muscle tissue. In contrast, lipids in the WAT
could not have been affected by the occurrence of stress. In
the SBBRP, all protocols for captures and anesthesia of bears,
as performed by experienced veterinarians and field workers,
are designed and optimized in order to have the less impact of
stress on the physiological parameters of the animals, both in
winter hibernation and during the summer active period (Evans
et al., 2012; Græsli et al., 2015). In particular, pursuit and drug
induction times are reduced to a minimum in order to minimize
increase in Tb, alteration of acid-base balance, and impacts on
other physiological parameters in bears immobilized by remote
injection, such as darting from a helicopter in summer (Cattet
et al., 2003; Evans et al., 2012).

Another limitation of the study would be associated to the
descriptive aspect of this work. Because of limited tissue amount
that is possible to collect on bears in the field, we could not
assess, in this study, more than a thorough analysis of lipid
composition from specific tissues relevant for hibernation, which
already constitutes a significant step. Although not mechanistic,
this collaborative work constitutes, however, a unique study,
because it assessed for the first time the seasonal changes of
lipid composition of bears under free-living conditions. This
is of major importance because laboratory diets fail to reflect
natural diet selection of free-living animals that, as reported
above, constrain hibernation physiology and phenology. Diet is
seasonally variable in bears in Scandinavia (Persson et al., 2001;
Stenset et al., 2016). In autumn, when brown bears have to build
up fat reserves, berries, such as from the Vaccinum family, are
the main food items, contributing most (49–81%) of the dietary
energy content of the bears (Dahle et al., 1998; Persson et al.,
2001; Stenset et al., 2016). A recent study using a ten-year time
series demonstrated that greater access to bilberries improves
both autumn weights of female brown bears and spring weights
of yearling bears in central Sweden (Hertel et al., 2017). The
intake of vegetation, a source for essential fatty acids, is of low

importance in all seasons, notably prior to winter (Dahle et al.,
1998; Persson et al., 2001; Stenset et al., 2016).

CONCLUSION

Our study showed the interesting result that, even if the brown
bear hibernates at shallow hypothermia (30–36◦C), selective
mobilizations and utilizations of lipids also occur, as they do in
small hibernators with more pronounced Tb reduction during
hibernation. Indeed, tissues appeared to preferentially retain
MUFAs over PUFAs, and to mobilize SFAs for distribution
and oxidation. Omega-3 fatty acids, precursors of numerous
metabolic pathways, were sequestered in WAT. TGs with short-
length fatty acids, prone to oxidation at a lower ATP cost, were
released into the plasma, whereas those with longest chains
were conserved in muscle tissues. The analysis of individual
lipid moieties, showing the largest changes during hibernation,
revealed that membrane fluidity, lipoprotein metabolism, protein
conformation, i.e., 3-dimensional structure of proteins, and
kinase activations were the main pathways targeted by the lipid
composition of hibernating bears in winter. Clearly, further
studies are needed to link lipid composition to specific functions
during hibernation in bears. However, these functions might
include specific regulations of, among others, the cardiovascular
system (such as stabilization of heart rate), the induction
and maintenance of active metabolic suppression, and the
preservation of muscle mass from inactive hibernating bears
in winter. Further, our results strongly suggest that, despite
few differences with regard to other species, the shift in lipid
composition is a conserved phenomenon of the hibernation
phenotype, which seems to be independent of body mass and
temperature of the animals.
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FIGURE S1 | Degree of unsaturation represented by ratios of different fatty acids
groups (“FA ratios”). Fatty acids compositions were determined in white adipose
tissue (“WAT”), skeletal muscle (“Muscle”), and blood plasma (“Plasma”) from
active (“summer”) and hibernating (“winter”) brown bears. Fatty acids groups are
monounsaturated fatty acids (“MUFA”), polyunsaturated fatty acids (“PUFA”),
unsaturated fatty acids (“USFA”), and saturated fatty acids (“SFA”). Error bars
represent standard errors. Winter levels differing significantly (p < 0.015) from their
respective summer level are denoted by a subscript (∗).

FIGURE S2 | Proportions of triacylglycerides (“TG”) – % of total TG – of different
carbon chain lengths, and their respective fatty acid composition. Proportions of

different TGs were determined in white adipose tissue (“WAT”), skeletal muscle
(“Muscle”), and blood plasma (“Plasma”) of active (“summer”) and hibernating
(“winter”) brown bears. Error bars represent standard errors. Winter levels differing
significantly (p < 0.015) from their respective summer level are denoted by a
subscript (∗).

FIGURE S3 | Proportions – % of total glycerophospholipids (“GPL”) and
sphingolipids (“SL”) – of different groups of GPL and SL. Proportions of ceramide
(“Cer”), phosphatidyl-choline (“PC”), phosphatidyl-ethanolamine (“PE”),
phosphatidyl-inositol (“PI”), phosphatidyl-serine (“PS”), and sphingomyelin (“SM”)
were determined in white adipose tissue (“WAT”), skeletal muscle (“Muscle”) and
blood plasma (“Plasma”) of active (“summer”) and hibernating (“winter”) brown
bears. Error bars represent standard errors. Winter levels differing significantly
(p < 0.015) from their respective summer level are denoted by a subscript (∗).

TABLE S1 | Arithmetic means (“Means”) standard errors (“SE”) of concentrations
(in mmol l−1) of specific fatty acids among total fatty acids in white adipose tissue
(“WAT”), muscle tissue (“Muscle”) and blood plasma (“Plasma”) of bears during the
summer active period (“Summer”) and in winter hibernation (“Winter”). Sample
sizes used in the linear mixed-effects models are presented in Table 1. Significant
p-values are highlighted in bold. “ND” refers to non-detectable.

TABLE S2 | Arithmetic means (“Means”) and standard errors (“SE”) of proportions
of specific fatty acids (“FA”) among saturated FA, monounsaturated FA or
polyunsaturated FA in white adipose tissue (“WAT”), muscle tissue (“Muscle”) and
blood plasma (“Plasma”) of bears during the summer active period (“Summer”)
and in winter hibernation (“Winter”). Differences of least square means (“Lsmeans”)
between seasons and p-values result from linear-mixed effects models (LMM).
Sample sizes used in the LMM are presented in Table 1. Significant p-values are
highlighted in bold. “ND” refers to non-detectable.

REFERENCES
Aloia, R. C., and Raison, J. K. (1989). Membrane function in mammalian

hibernation. Biochim. Biophys. Acta 988, 123–146. doi: 10.1016/0304-4157(89)
90007-5

Arendt, J. D. (1997). Adaptive intrinsic growth rates: an integration across taxa.
Q. Rev. Biol. 72, 149–177. doi: 10.1086/419764

Arnemo, J. M., Evans, A., and Fahlman, Å. (2012). Biomedical Protocols for Free-
Ranging Brown Bears, Wolves, Wolverines and Lynx. Norwegian: Norwegian
Directorate for Nature Management.

Arnold, W., Giroud, S., Valencak, T. G., and Ruf, T. (2015). Ecophysiology of
omega fatty acids: a lid for every jar. Physiology 30, 232–240. doi: 10.1152/
physiol.00047.2014

Arnold, W., Kim, P. Y., Allen, K. G. D., and Florant, G. L. (2012). “Seasonal
variation in brain prostaglandin D2 and E2 of marmots and n-6 fatty acid
availability,” in Living in a Seasonal World: Thermoregulatory and Metabolic
Adaptations, eds T. Ruf, C. Bieber, W. Arnold, and E. Millesi (Heidelberg:
Springer Verlag), 531–542.

Arnold, W., Ruf, T., Frey-Roos, F., and Bruns, U. (2011). Diet-independent
remodeling of cellular membranes precedes seasonally changing body
temperature in a hibernator. PLoS One 6:e18641. doi: 10.1371/journal.pone.
0018641

Barrans, A., Collet, X., Barbaras, R., Jaspard, B., Manent, J., Vieu, C., et al. (1994).
Hepatic lipase induces the formation of pre-β1 high density lipoprotein (HDL)
from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro
incubation with lipases. J. Biol. Chem. 269, 11572–11577.

Bikman, B. T., and Summers, S. A. (2011). Ceramides as modulators of cellular and
whole-body metabolism. J. Clin. Invest. 121, 4222–4230. doi: 10.1172/JCI57144

Bligh, E. G., and Dyer, W. J. (1959). A rapid method of total lipid extraction and
purification. Can. J. Biochem. Phys. 37, 911–917. doi: 10.1139/o59-099

Bruns, U., Frey-Roos, F., Pudritz, S., Tataruch, F., Ruf, T., and Arnold, W. (2000).
“Essential fatty acids: their impact on free-living alpine marmots (Marmota
marmota),” in Life in the Cold IV, eds G. Heldmaier and M. Klingenspor
(New York, NY: Springer), 215–222.

Carey, H. V., Frank, C. L., and Seifert, J. P. (2000). Hibernation induces oxidative
stress and activation of NF-κB in ground squirrel intestine. J. Comp. Physiol. B
170, 551–559. doi: 10.1007/s003600000135

Cattet, M. R. L., Christison, K., Caulkett, N. A., and Stenhouse, G. B. (2003).
Physiologic responses of grizzly bears to different methods of capture. J. Wildl.
Dis. 39, 649–654. doi: 10.7589/0090-3558-39.3.649

Chavez, J. A., and Summers, S. A. (2012). A ceramide-centric view of
insulin resistance. Cell Metab. 15, 585–594. doi: 10.1016/j.cmet.2012.
04.002

Dahle, B., Sorensen, O. J., Wedul, E. H., Swenson, J. E., and Sandegren, F. (1998).
The diet of brown bears Ursus arctos in central Scandinavia: effect of access to
free-ranging domestic sheep Ovis aries. Wildl. Biol. 4, 147–158. doi: 10.2981/
wlb.1998.017

Evans, A. L., Sahlén, V., Støen, O. G., Fahlman, A., Brunberg, S., Madslien, K.,
et al. (2012). Capture, anesthesia, and disturbance of free-ranging brown bears
(Ursus arctos) during hibernation. PLoS One 7:e40520. doi: 10.1371/journal.
pone.0040520

Evans, A. L., Singh, N. J., Friebe, A., Arnemo, J. M., Laske, T. G., Fröbert, O.,
et al. (2016). Drivers of hibernation in the brown bear. Front. Zool. 13:7. doi:
10.1186/s12983-016-0140-6

Fahlman, Å., Arnemo, J. M., Swenson, J. E., Pringle, J., Brunberg, S., and Nyman, G.
(2011). Physiologic evaluation of capture and anesthesia with medetomidine–
zolazepam–tiletamine in brown bears (Ursus arctos). J. Zoo Wildl. Med. 42,
1–11. doi: 10.1638/2008-0117.1

Falkenstein, F., Körtner, G., Watson, K., and Geiser, F. (2001). Dietary fats and body
lipid composition in relation to hibernation in free-ranging echidnas. J. Comp.
Physiol. B 171, 189–194. doi: 10.1007/s003600000157

Fietz, J., Tataruch, F., Dausmann, K. H., and Ganzhorn, J. U. (2003). White adipose
tissue composition in the free-ranging fat-tailed dwarf lemur (Cheirogaleus
medius; Primates), a tropical hibernator. J. Comp. Physiol. B 173, 1–10. doi:
10.1007/s00360-002-0300-1

Florant, G. L. (1998). Lipid metabolism in hibernators: the importance
of essential fatty acids. Am. Zool. 38, 331–340. doi: 10.1093/icb/38.
2.331

Florant, G. L., Hester, L., Ameenuddin, S., and Rintoul, D. A. (1993). The effect of
a low essential fatty acid diet on hibernation in marmots. Am. J. Physiol. 264,
R747–R753. doi: 10.1152/ajpregu.1993.264.4.R747

Frank, C. L. (1992). The influence of dietary fatty acids on hibernation by golden-
mantled ground squirrels (Spermophilus lateralis). Physiol. Zool. 65, 906–920.
doi: 10.1086/physzool.65.5.30158549

Frontiers in Physiology | www.frontiersin.org 12 April 2019 | Volume 10 | Article 389

https://www.frontiersin.org/articles/10.3389/fphys.2019.00389/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2019.00389/full#supplementary-material
https://doi.org/10.1016/0304-4157(89)90007-5
https://doi.org/10.1016/0304-4157(89)90007-5
https://doi.org/10.1086/419764
https://doi.org/10.1152/physiol.00047.2014
https://doi.org/10.1152/physiol.00047.2014
https://doi.org/10.1371/journal.pone.0018641
https://doi.org/10.1371/journal.pone.0018641
https://doi.org/10.1172/JCI57144
https://doi.org/10.1139/o59-099
https://doi.org/10.1007/s003600000135
https://doi.org/10.7589/0090-3558-39.3.649
https://doi.org/10.1016/j.cmet.2012.04.002
https://doi.org/10.1016/j.cmet.2012.04.002
https://doi.org/10.2981/wlb.1998.017
https://doi.org/10.2981/wlb.1998.017
https://doi.org/10.1371/journal.pone.0040520
https://doi.org/10.1371/journal.pone.0040520
https://doi.org/10.1186/s12983-016-0140-6
https://doi.org/10.1186/s12983-016-0140-6
https://doi.org/10.1638/2008-0117.1
https://doi.org/10.1007/s003600000157
https://doi.org/10.1007/s00360-002-0300-1
https://doi.org/10.1007/s00360-002-0300-1
https://doi.org/10.1093/icb/38.2.331
https://doi.org/10.1093/icb/38.2.331
https://doi.org/10.1152/ajpregu.1993.264.4.R747
https://doi.org/10.1086/physzool.65.5.30158549
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00389 April 12, 2019 Time: 12:46 # 13

Giroud et al. Lipid Shifts in Brown Bears

Frank, C. L., Dierenfeld, E. S., and Storey, K. B. (1998). The relationship between
lipid peroxidation, hibernation, and food selection in mammals. Am. Zool. 38,
341–349. doi: 10.1093/icb/38.2.341

Frank, C. L., and Storey, K. B. (1995). The optimal depot fat composition
for hibernation by golden-mantled ground squirrels (Spermophilus lateralis).
J. Comp. Physiol. B 164, 536–542. doi: 10.1007/BF00261394

Frank, C. L., and Storey, K. B. (1996). “The effect of total unsaturate content
on hibernation,” in Adaptations to the Cold. Tenth International Hibernation
Symposium, eds F. Geiser, A. J. Hulbert, and S. C. Nicol (Armidale: University
Press of New England), 211–216.

Geiser, F., and Kenagy, G. J. (1987). Polyunsaturated lipid diet lengthens
torpor and reduces body temperature in a hibernator. Am. J. Physiol.
Reg. Int. Comp. Physiol. 252, R897–R901. doi: 10.1152/ajpregu.1987.252.
5.R897

Geiser, F., and Kenagy, G. J. (1993). Dietary fats and torpor patterns in hibernating
ground squirrels. Can. J. Zool. 71, 1182–1185. doi: 10.1139/z93-161

Geiser, F., McAllan, B. M., and Kenagy, G. J. (1994). The degree of dietary fatty
acid unsaturation affects torpor patterns and lipid composition of a hibernator.
J. Comp. Physiol. B 164, 299–305. doi: 10.1007/BF00346446

Geiser, F., McAllan, B. M., Kenagy, G. J., and Hiebert, S. M. (2007).
Photoperiod affects daily torpor and tissue fatty acid composition in deer mice.
Naturwissenschaften 94, 319–325. doi: 10.1007/s00114-006-0193-z

Giroud, S., Evans, A. L., Chery, I., Bertile, F., Tascher, G., Bertrand-Michel, J., et al.
(2018a). Seasonal changes in eicosanoid metabolism in the brown bear. Sci. Nat.
105:58. doi: 10.1007/s00114-018-1583-8

Giroud, S., Stalder, G., Gerritsmann, H., Kübber-Heiss, A., Kwak, J., Arnold, W.,
et al. (2018b). Dietary lipids affect the onset of hibernation in the garden
dormouse (Eliomys quercinus): implications for cardiac function. Front. Physiol.
9:1235. doi: 10.3389/fphys.2018.01235

Giroud, S., Frare, C., Strijkstra, A., Boerema, A., Arnold, W., and Ruf, T. (2013).
Membrane phospholipid fatty acid composition regulates cardiac SERCA
activity in a hibernator, the Syrian hamster (Mesocricetus auratus). PLoS One
8:e63111. doi: 10.1371/journal.pone.0063111

Giroud, S., Perret, M., Gilbert, C., Zahariev, A., Goudable, J., Le Maho, Y., et al.
(2009). Dietary palmitate and linoleate oxidations, oxidative stress, and DNA
damage differ according to season in mouse lemurs exposed to a chronic
food deprivation. Am. J. Physiol. Reg. Int. Comp. Physiol. 297, R950–R959.
doi: 10.1152/ajpregu.00214.2009

Giroud, S., Turbill, C., and Ruf, T. (2012). “Torpor use and body mass gain during
pre-hibernation in late-born juvenile garden dormice exposed to food shortage,”
in Living in a Seasonal World. Thermoregulatory and Metabolic Adaptations,
eds T. Ruf, C. Bieber, W. Arnold, and E. Millesi (Berlin: Springer), 481–491.
doi: 10.1007/978-3-642-28678-0_42

Giroud, S., Zahn, S., Criscuolo, F., Chery, I., Blanc, S., Turbill, C., et al. (2014).
Late-born intermittently fasted juvenile garden dormice use torpor to grow and
fatten prior to hibernation: consequences for ageing processes. Proc. R. Soc. B
Biol. Sci. 281:20141131. doi: 10.1098/rspb.2014.1131

Græsli, A. R., Evans, A. L., Fahlman, Å., Bertelsen, M. F., Blanc, S., and Arnemo,
J. M. (2015). Seasonal variation in haematological and biochemical variables
in free-ranging subadult brown bears (Ursus arctos) in Sweden. BMC Vet. Res.
11:301. doi: 10.1186/s12917-015-0615-2

Guenther, G. G., and Edinger, A. L. (2009). A new take on ceramide. Starving cells
by cutting off the nutrient supply. Cell Cycle 8, 1122–1126. doi: 10.4161/cc.8.8.
8161

Harshyne, W. A., Diefenbach, D. R., Alt, G. L., and Matson, G. M. (1998). Analysis
of error from cementum-annuli age estimates of known-age Pennsylvania black
bears. J. Wildl. Manage. 62, 1281–1291. doi: 10.2307/3801992

Haus, J. M., Kashyap, S. R., Kasumov, T., Zhang, R. L., Kelly, K. R., DeFronzo,
R. A., et al. (2009). Plasma ceramides are elevated in obese subjects with type
2 diabetes and correlate with the severity of insulin resistance. Diabetes 58,
337–343. doi: 10.2337/db08-1228

Hertel, A. G., Bischof, R., Langval, O., Mysterud, A., Kindberg, J., Swenson, J. E.,
et al. (2017). Berry production drives bottom–up effects on body mass and
reproductive success in an omnivore. Oikos 127, 197–207. doi: 10.1111/oik.
04515

Hill, V. L., and Florant, G. L. (2000). The effect of a linseed oil diet on hibernation
in yellow-bellied marmots (Marmota flaviventris). Physiol. Behav. 68, 431–437.
doi: 10.1016/s0031-9384(99)00177-8

Hoelzl, F., Cornils, J. S., Smith, S., Moodley, Y., and Ruf, T. (2016). Telomere
dynamics in free-living edible dormice (Glis glis): the impact of hibernation and
food supply. J. Exp. Biol. 219(Pt 16), 2469–2474. doi: 10.1242/jeb.140871

Hulbert, A. J. (2005). On the importance of fatty acid composition of membranes
for aging. J. Theor. Biol. 234, 277–288. doi: 10.1016/j.jtbi.2004.11.024

Hulbert, A. J., Turner, N., Storlien, L. H., and Else, P. L. (2005). Dietary fats and
membrane function: implications for metabolism and disease. Biol. Rev. 80,
155–169. doi: 10.1007/s00360-005-0025-z

Jaross, W., Eckey, R., and Menschikowski, M. (2002). Biological effects of secretory
phospholipase A2 group IIA on lipoproteins and in atherogenesis. Eur. J. Clin.
Invest. 32, 383–393. doi: 10.1046/j.1365-2362.2002.01000.x

Jastroch, M., Giroud, S., Barrett, P., Geiser, F., Heldmaier, G., and Herwig, A.
(2016). Seasonal Control of Mammalian Energy Balance: recent advances in
the understanding of daily torpor and hibernation. J. Neuroendocrinol. 28.
doi: 10.1111/jne.12437

Kindberg, J., Swenson, J. E., Ericsson, G., Bellemain, E., Miquel, C., and Taberlet, P.
(2011). Estimating population size and trends of the Swedish brown bear Ursus
arctos population. Wildl. Biol. 17, 114–123. doi: 10.2981/10-100

Lee, H.-C., Lu, T., Weintraub, N. L., VanRollins, M., Spector, A. A., and Shibata,
E. F. (1999). Effects of epoxyeicosatrienoic acids on the cardiac sodium channels
in isolated rat ventricular myocytes. J. Physiol. 519, 153–168. doi: 10.1111/j.
1469-7793.1999.0153o.x

Lillington, J. M., Trafford, D. J. H., and Makin, H. L. J. (1981). A rapid and simple
method for the esterification of fatty acids and steroid carboxylic acids prior
to gas-liquid chromatography. Clin. Chim. Acta 111, 91–98. doi: 10.1016/0009-
8981(81)90425-3

Mahlert, B., Gerritsmann, H., Stalder, G., Ruf, T., Zahariev, A., Blanc, S., et al.
(2018). Implications of being born late in the active season for growth, fattening,
torpor use, winter survival and fecundity. eLife 7:e31225. doi: 10.7554/eLife.
31225

McCain, S., Ramsay, E., and Kirk, C. (2013). The effects of hibernation and captivity
on glucose metabolism and thyroid hormones in American Black Bear (Ursus
americanus). J. Zoo Wildl. Med. 44, 324–332. doi: 10.1638/2012-0146R1.1

Moe, T. F., Kindberg, J., Jansson, I., and Swenson, J. E. (2007). Importance of diel
behaviour when studying habitat selection: examples from female Scandinavian
brown bears (Ursus arctos). Can. J. Zool. 85, 518–525. doi: 10.1139/Z07-034

Munro, D., and Thomas, D. W. (2004). The role of polyunsaturated fatty acids
in the expression of torpor by mammals: a review. Zoology 107, 29–48. doi:
10.1016/j.zool.2003.12.001

Persson, I. L., Wikan, S., Swenson, J. E., and Mysterud, A. (2001). The diet of the
brown bear Ursus arctos in the Pasvik Valley, northeastern Norway. Wildl. Biol.
7, 27–37. doi: 10.2981/wlb.2001.006

Post, J. A., Verkleij, A. J., and Langer, G. A. (1995). Organization and
function of sarcolemmal phospholipids in control and ischemic-reperfused
cardiomyocytes. J. Mol. Cell. Cardiol. 27, 749–760. doi: 10.1016/0022-2828(95)
90080-2

Prendergast, B. J., Freeman, D. A., Zucker, I., and Nelson, R. J. (2002). Periodic
arousal from hibernation is necessary for initiation of immune responses in
ground squirrels. Am. J. Physiol. Reg. Int. Comp. Physiol. 282, R1054–R1082.
doi: 10.1152/ajpregu.00562.2001

Price, E. R., Armstrong, C., Guglielmo, C. G., and Staples, J. F. (2013). Selective
mobilization of saturated fatty acids in isolated adipocytes of hibernating 13-
lined ground squirrels Ictidomys tridecemlineatus. Physiol. Biochem. Zool. 86,
205–212. doi: 10.1086/668892

Raclot, T., Mioskowski, E., Bach, A. C., and Groscolas, R. (1995). Selectivity of fatty
acid mobilization: a general metabolic feature of adipose tissue. Am. J. Physiol.
269, R1060–R1067. doi: 10.1152/ajpregu.1995.269.5.R1060

Rigano, K. S., Gehring, J. L., Evans Hutzenbiler, B. D., Chen, A. V., Nelson, O. L.,
Vella, C. A., et al. (2017). Life in the fat lane: seasonal regulation of insulin
sensitivity, food intake, and adipose biology in brown bears. J. Comp. Physiol. B
187, 649–676. doi: 10.1007/s00360-016-1050-9

Ruan, Y. C., Wang, Z., Du, J. Y., Zuo, W. L., Guo, J. H., Zhang, J., et al. (2008).
Regulation of smooth muscle contractility by the epithelium in rat vas deferens:
role of ATP-induced release of PGE2. J. Physiol. 586, 4843–4857. doi: 10.1113/
jphysiol.2008.154096

Ruf, T., and Arnold, W. (2008). Effects of polyunsaturated fatty acids on
hibernation and torpor: a review and hypothesis. Am. J. Physiol. Reg. Int. Comp.
Physiol. 294, R1044–R1052. doi: 10.1152/ajpregu.00688.2007

Frontiers in Physiology | www.frontiersin.org 13 April 2019 | Volume 10 | Article 389

https://doi.org/10.1093/icb/38.2.341
https://doi.org/10.1007/BF00261394
https://doi.org/10.1152/ajpregu.1987.252.5.R897
https://doi.org/10.1152/ajpregu.1987.252.5.R897
https://doi.org/10.1139/z93-161
https://doi.org/10.1007/BF00346446
https://doi.org/10.1007/s00114-006-0193-z
https://doi.org/10.1007/s00114-018-1583-8
https://doi.org/10.3389/fphys.2018.01235
https://doi.org/10.1371/journal.pone.0063111
https://doi.org/10.1152/ajpregu.00214.2009
https://doi.org/10.1007/978-3-642-28678-0_42
https://doi.org/10.1098/rspb.2014.1131
https://doi.org/10.1186/s12917-015-0615-2
https://doi.org/10.4161/cc.8.8.8161
https://doi.org/10.4161/cc.8.8.8161
https://doi.org/10.2307/3801992
https://doi.org/10.2337/db08-1228
https://doi.org/10.1111/oik.04515
https://doi.org/10.1111/oik.04515
https://doi.org/10.1016/s0031-9384(99)00177-8
https://doi.org/10.1242/jeb.140871
https://doi.org/10.1016/j.jtbi.2004.11.024
https://doi.org/10.1007/s00360-005-0025-z
https://doi.org/10.1046/j.1365-2362.2002.01000.x
https://doi.org/10.1111/jne.12437
https://doi.org/10.2981/10-100
https://doi.org/10.1111/j.1469-7793.1999.0153o.x
https://doi.org/10.1111/j.1469-7793.1999.0153o.x
https://doi.org/10.1016/0009-8981(81)90425-3
https://doi.org/10.1016/0009-8981(81)90425-3
https://doi.org/10.7554/eLife.31225
https://doi.org/10.7554/eLife.31225
https://doi.org/10.1638/2012-0146R1.1
https://doi.org/10.1139/Z07-034
https://doi.org/10.1016/j.zool.2003.12.001
https://doi.org/10.1016/j.zool.2003.12.001
https://doi.org/10.2981/wlb.2001.006
https://doi.org/10.1016/0022-2828(95)90080-2
https://doi.org/10.1016/0022-2828(95)90080-2
https://doi.org/10.1152/ajpregu.00562.2001
https://doi.org/10.1086/668892
https://doi.org/10.1152/ajpregu.1995.269.5.R1060
https://doi.org/10.1007/s00360-016-1050-9
https://doi.org/10.1113/jphysiol.2008.154096
https://doi.org/10.1113/jphysiol.2008.154096
https://doi.org/10.1152/ajpregu.00688.2007
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00389 April 12, 2019 Time: 12:46 # 14

Giroud et al. Lipid Shifts in Brown Bears

Sahlén, V., Friebe, A., Sæbø, S., Swenson, J. E., and Støen, O.-G. (2015). Den entry
behavior in Scandinavian brown bears: implications for preventing human
injuries. J. Wildl. Manage. 79, 274–287. doi: 10.1002/jwmg.822

Saito, S., Tsuda, H., and Michimata, T. (2002). Prostaglandin D2 and reproduction.
Am. J. Reprod. Immunol. 47, 295–302. doi: 10.1034/j.1600-0897.2002.01113.x

Schönfeld, P., and Wojtczak, L. (2016). Short- and medium-chain fatty acids in
energy metabolism: the cellular perspective. J. Lipid Res. 57, 943–954. doi:
10.1194/jlr.R067629

Sinensky, M. (1974). Homeoviscous adaptation - a homeostatic process that
regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad.
Sci. U.S.A. 71, 522–525. doi: 10.1073/pnas.71.2.522

Stenset, N. E., Lutnæs, P. N., Bjarnadóttir, V., Dahle, B., Fossum, K. H., Jigsved, P.,
et al. (2016). Seasonal and annual variation in the diet of brown bears Ursus
arctos in the boreal forest of Southcentral Sweden. Wildl. Biol. 22, 107–116.
doi: 10.2981/wlb.00194

Swenson, J. E., Schneider, M., Zedrosser, A., Soderberg, A., Franzen, R.,
and Kindberg, J. (2017). Challenges of managing a European brown bear
population; lessons from Sweden, 1943-2013. Wildl. Biol. 1:wlb.00251. doi: 10.
2981/wlb.00251

Thorp, C. R., Ram, P. K., and Florant, G. L. (1994). Diet alters metabolic rate in
the yellow-bellied marmot (Marmota flaviventris) during hibernation. Physiol.
Zool. 67, 1213–1229. doi: 10.2307/30163890

Tiku, P. E., Gracey, A. Y., Macartney, A. I., Beynon, R. J., and Cossins, A. R.
(1996). Cold-induced expression of 19-desaturase in carp by transcriptional
and posttranslational mechanisms. Science 271, 815–818. doi: 10.1126/science.
271.5250.815

Tøien, Ø., Blake, J., Edgar, D. M., Grahn, D. A., Heller, H. C., and Barnes, B. M.
(2011). Hibernation in black bears: independence of metabolic suppression
from body temperature. Science 331, 906–909. doi: 10.1126/science.1199435

Ueno, R., Narumiya, S., Ogorochi, T., Nakayama, T., Ishikawa, Y., and Hayaishi, O.
(1982). Role of prostaglandin D2 in the hypothermia of rats caused by bacterial
lipopolysaccharide. Proc. Natl. Acad. Sci. U.S.A. 79, 6093–6097. doi: 10.1073/
pnas.79.19.6093

Vuarin, P., Henry, P.-Y., Guesnet, P., Alessandri, J.-M., Aujard, F., Perret, M., et al.
(2014). Shallow hypothermia depends on the level of fatty acid unsaturation in
adipose and liver tissues in a tropical heterothermic primate. J. Therm. Biol. 43,
81–88. doi: 10.1016/j.jtherbio.2014.05.002

Vuarin, P., Henry, P. Y., Perret, M., and Pifferi, F. (2016). Dietary supplementation
with n-3 polyunsaturated fatty acids reduces torpor use in a tropical
daily heterotherm. Physiol. Biochem. Zool. 89, 536–545. doi: 10.1086/
688659

Weber, J. M. (2009). The physiology of long-distance migration: extending the
limits of endurance metabolism. J. Exp. Biol. 212, 593–597. doi: 10.1242/jeb.
015024

Xia, T., Mostafa, N., Bhat, B. G., Florant, G. L., and Coleman, R. A. (1993).
Selective retention of essential fatty acids: the role of hepatic monoacylglycerol
acyltransferase. Am. J. Physiol. 265, R414–R419. doi: 10.1152/ajpregu.1993.265.
2.R414

Xiao, Y.-F., Huang, L., and Morgan, J. P. (2004). Cytochrome P450: a novel
system modulating Ca2+ channels and contraction in mammalian heart cells.
J. Physiol. 508, 777–792. doi: 10.1111/j.1469-7793.1998.777bp.x

Yeagle, P. L. (1989). Lipid regulation of cell membrane structure and function.
FASEB J. 3, 1833–1842. doi: 10.1096/fasebj.3.7.2469614

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Giroud, Chery, Bertile, Bertrand-Michel, Tascher, Gauquelin-
Koch, Arnemo, Swenson, Singh, Lefai, Evans, Simon and Blanc. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org 14 April 2019 | Volume 10 | Article 389

https://doi.org/10.1002/jwmg.822
https://doi.org/10.1034/j.1600-0897.2002.01113.x
https://doi.org/10.1194/jlr.R067629
https://doi.org/10.1194/jlr.R067629
https://doi.org/10.1073/pnas.71.2.522
https://doi.org/10.2981/wlb.00194
https://doi.org/10.2981/wlb.00251
https://doi.org/10.2981/wlb.00251
https://doi.org/10.2307/30163890
https://doi.org/10.1126/science.271.5250.815
https://doi.org/10.1126/science.271.5250.815
https://doi.org/10.1126/science.1199435
https://doi.org/10.1073/pnas.79.19.6093
https://doi.org/10.1073/pnas.79.19.6093
https://doi.org/10.1016/j.jtherbio.2014.05.002
https://doi.org/10.1086/688659
https://doi.org/10.1086/688659
https://doi.org/10.1242/jeb.015024
https://doi.org/10.1242/jeb.015024
https://doi.org/10.1152/ajpregu.1993.265.2.R414
https://doi.org/10.1152/ajpregu.1993.265.2.R414
https://doi.org/10.1111/j.1469-7793.1998.777bp.x
https://doi.org/10.1096/fasebj.3.7.2469614
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Lipidomics Reveals Seasonal Shifts in a Large-Bodied Hibernator, the Brown Bear
	Introduction
	Materials and Methods
	Study Area
	Animals and Sample Collection
	Ethics Statement
	Glycerophospholipid and Ceramide-Sphingomyelin Relative Quantification
	Neutral Lipid Relative Quantification
	Total Fatty Acid Methyl Ester ("FAME'') Analysis
	Statistical Analyses

	Results
	Lipids Levels
	Total Fatty Acids
	Triacylglycerides
	Glycerophospholipids and Sphingolipids
	Specific Lipid Moieties

	Discussion
	Selective Retention of Unsaturated Fatty Acids in Bears During Winter
	Selective Mobilization of Saturated Fatty Acids and Shortest Fatty Acids
	Implications and Roles of Specific Lipid Molecules

	Limitations of the Study
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


