data serialization and messaging format. This specification defines JSON-LD 1.1, a JSON-based format to serialize Linked Data. The syntax is designed to easily integrate into deployed systems that already use JSON, and provides a smooth upgrade path from JSON to JSON-LD. It is primarily intended to be a way to use Linked Data in Web-based programming environments, to build interoperable Web services, and to store Linked Data in JSON-based storage engines.

This specification describes a superset of the features defined in JSON-LD 1.0 [JSON-LD10] and, except where noted, documents created using the 1.0 version of this specification remain compatible with JSON-LD 1.1.

community. This Candidate Recommendation is expected to advance to Proposed Recommendation no earlier than 17 February 2020.

Please see the Working Group's implementation report.

Publication as a Candidate Recommendation does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

Introduction

G.

H.

H.1

H.2

Changes since JSON-LD Community Group Final Report

Normative references

Informative references

This section is non-normative.

Linked Data [LINKED-DATA] is a way to create a network of standards-based machine interpretable data across different documents and Web sites. It allows an application to start at one piece of Linked Data, and follow embedded links to other pieces of Linked Data that are hosted on different sites across the Web.

JSON-LD is a lightweight syntax to serialize Linked Data in JSON [START_REF]The JavaScript Object Notation (JSON) Data Interchange Format[END_REF].

Its design allows existing JSON to be interpreted as Linked Data with minimal changes. JSON-LD is primarily intended to be a way to use Linked Data in Web-based programming environments, to build interoperable Web services, and to store Linked Data in JSON-based storage engines. Since JSON-LD is 100% compatible with JSON, the large number of JSON parsers and libraries available today can be reused. In addition to all the features JSON provides, JSON-LD introduces: a universal identifier mechanism for JSON objects via the use of IRIs, a way to disambiguate keys shared among different JSON documents by mapping them to IRIs via a context, a mechanism in which a value in a JSON object may refer to a resource on a different site on the Web, the ability to annotate strings with their language, a way to associate datatypes with values such as dates and times, and a facility to express one or more directed graphs, such as a social network, in a single document.

JSON-LD is designed to be usable directly as JSON, with to serialize an RDF graph or Dataset in a JSON-based syntax will find JSON-LD of interest. People intending to use JSON-LD with RDF tools will find it can be used as another RDF syntax, as with [Turtle] and [TriG]. Complete details of how JSON-LD relates to RDF are in section § 10. Relationship to RDF.

The syntax is designed to not disturb already deployed systems running on JSON, but provide a smooth upgrade path from JSON to JSON-LD. Since the shape of such data varies wildly, JSON-LD features mechanisms to reshape documents into a deterministic structure which simplifies their processing. This section is non-normative. This document is a detailed specification for a serialization of Linked Data in JSON. The document is primarily intended for the following audiences: Software developers who want to encode Linked Data in a variety of programming languages that can use JSON Software developers who want to convert existing JSON to JSON-LD Software developers who want to understand the design decisions and language syntax for JSON-LD Software developers who want to implement processors and APIs for JSON-LD Software developers who want to generate or consume Linked Data, an RDF graph, or an RDF Dataset in a JSON syntax A companion document, the JSON-LD 1.1 Processing Algorithms and API specification , specifies how to work with JSON-LD at a higher level by providing a standard library interface for common JSON-LD operations.

To understand the basics in this specification you must first be familiar with JSON, which is detailed in [START_REF]The JavaScript Object Notation (JSON) Data Interchange Format[END_REF].

This document almost exclusively uses the term IRI (Internationalized Resource Indicator) when discussing hyperlinks. Many Web developers are more familiar with the URL (Uniform Resource Locator) terminology. The document also uses, albeit rarely, the URI (Uniform Resource Indicator) terminology. While these terms are often used interchangeably among This document can highlight changes since the JSON-LD 1.0 version. Select to highlight changes. This section is non-normative.

There are a number of ways that one may participate in the development of this specification:

Technical discussion typically occurs on the working group mailing list: public-json-ld-wg@w3.org

The working group uses #json-ld IRC channel is available for real-time discussion on irc.w3.org.

The #json-ld IRC channel is also available for real-time discussion on irc.freenode.net. This section is non-normative.

The following typographic conventions are used in this specification: markup Markup (elements, attributes, properties), machine processable values (string, characters, media types), property name, or a file name is in redorange monospace font.

A variable in pseudo-code or in an algorithm description is in italics.

definition

A definition of a term, to be used elsewhere in this or other specifications, is in bold and italics.

definition reference

A reference to a definition in this document is underlined and is also an active link to the definition itself.

markup definition reference

A references to a definition in this document, when the reference itself is also a markup, is underlined, red-orange monospace font, and is also an active link to the definition itself.

external definition reference

A reference to a definition in another document is underlined, in italics, and is also an active link to the definition itself.

markup external definition reference

A reference to a definition in another document, when the reference itself is also a markup, is underlined, in italics red-orange monospace font, and is also an active link to the definition itself.

hyperlink

A hyperlink is underlined and in blue.

[reference]

A document reference (normative or informative) is enclosed in square brackets and links to the references section.

Changes from Recommendation

Sections or phrases changed from the previous Recommendation may be highlighted using a control in § 1.1 How to Read this Document.

NOTE

Notes are in light green boxes with a green left border and with a "Note" header in green. Notes are always informative.

This section is non-normative.

This document uses the following terms as defined in external specifications and defines terms specific to JSON-LD.

EXAMPLE 1

Examples are in light khaki boxes, with khaki left border, and with a numbered "Example" header in khaki.

Examples are always informative. The content of the example is in monospace fo

Examples may have tabbed navigation buttons to show the results of transforming an example into other representations.

1.4 Terminology § https://www.w3.org/TR/json-ld11/ Terms imported from ECMAScript Language Specification [ECMASCRIPT],

The JavaScript Object Notation (JSON) Data Interchange Format [START_REF]The JavaScript Object Notation (JSON) Data Interchange Format[END_REF],

Infra Standard [INFRA], and Web IDL [WEBIDL] array In the JSON serialization, an array structure is represented as square brackets surrounding zero or more values. Values are separated by commas. In the internal representation, a list (also called an array) is an ordered collection of zero or more values. While JSON-LD uses the same array representation as JSON, the collection is unordered by default.

While order is preserved in regular JSON arrays, it is not in regular JSON-LD arrays unless specifically defined (see the Sets and Lists section of JSON-LD 1.1.

boolean

The values true and false that are used to express one of two possible states.

JSON object

In the JSON serialization, an object structure is represented as a pair of curly brackets surrounding zero or more name/value pairs (or members).

A name is a string. A single colon comes after each name, separating the name from the value. A single comma separates a value from a following name. In JSON-LD the names in an object must be unique.

In the internal representation a JSON object is described as a map (see [INFRA]), composed of entries with key/value pairs.

In the Application Programming Interface, a map is described using a [WEBIDL] dictionary.

null

The use of the null value within JSON-LD is used to ignore or reset values. A map entry in the @context where the value, or the @id of the value, is null, explicitly decouples a term's association with an IRI. A map entry in the body of a JSON-LD document whose value is null has the same meaning as if the map entry was not defined. If @value, @list, or @set is set to null in expanded form, then the entire JSON object is ignored.

number

In the JSON serialization, a number is similar to that used in most programming languages, except that the octal and hexadecimal formats are not used and that leading zeros are not allowed. In the internal

Terms imported from Other Specifications § https://www.w3.org/TR/json-ld11/ representation, a number is equivalent to either a long or double, depending on if the number has a non-zero fractional part (see [WEBIDL]).

scalar

A scalar is either a string, number, true, or false.

string

A string is a sequence of zero or more Unicode (UTF-8) characters, wrapped in double quotes, using backslash escapes (if necessary). A character is represented as a single character string.

Terms imported from Internationalized Resource Identifiers (IRIs) [START_REF] Duerst | Internationalized Resource Identifiers[END_REF]

IRI

The absolute form of an IRI containing a scheme along with a path and optional query and fragment segments.

IRI reference

Denotes the common usage of an Internationalized Resource Identifier.

An IRI reference may be absolute or relative. However, the "IRI" that results from such a reference only includes absolute IRIs; any relative IRI references are resolved to their absolute form.

relative IRI reference

A relative IRI reference is an IRI reference that is relative to some other IRI, typically the base IRI of the document. Note that properties, values of @type, and values of terms defined to be vocabulary relative are resolved relative to the vocabulary mapping, not the base IRI.

blank node

A node in a graph that is neither an IRI, nor a literal. A blank node does not contain a de-referenceable identifier because it is either ephemeral in nature or does not contain information that needs to be linked to from outside of the linked data graph. In JSON-LD, a blank node is assigned an identifier starting with the prefix _:.

blank node identifier

A blank node identifier is a string that can be used as an identifier for a https://www.w3.org/TR/json-ld11/ blank node within the scope of a JSON-LD document. Blank node identifiers begin with _:. dataset A dataset representing a collection of RDF graphs including exactly one default graph and zero or more named graphs.

datatype IRI

A datatype IRI is an IRI identifying a datatype that determines how the lexical form maps to a literal value.

default graph

The default graph of a dataset is an RDF graph having no name, which may be empty.

graph name

The IRI or blank node identifying a named graph.

language-tagged string

A language-tagged string consists of a string and a non-empty language tag as defined by [BCP47]. The language tag must be well-formed according to section 2.2.9 Classes of Conformance of [BCP47].

Processors may normalize language tags to lowercase.

Linked Data

A set of documents, each containing a representation of a linked data graph or dataset.

list

A list is an ordered sequence of IRIs, blank nodes, and literals.

literal

An object expressed as a value such as a string or number. Implicitly or explicitly includes a datatype IRI and, if the datatype is rdf:langString, an optional language tag.

named graph

A named graph is a linked data graph that is identified by an IRI or blank node.

node

A node in an RDF graph, either the subject and object of at least one triple. Note that a node can play both roles (subject and object) in a graph, even in the same triple.

object An object is a node in a linked data graph with at least one incoming edge.

property

The name of a directed-arc in a linked data graph. Every property is directional and is labeled with an IRI or a blank node identifier.

https://www.w3.org/TR/json-ld11/ Whenever possible, a property should be labeled with an IRI.

NOTE

The use of blank node identifiers to label properties is obsolete, and may be removed in a future version of JSON-LD.

Also, see predicate in [RDF11-CONCEPTS].

RDF graph

A labeled directed graph, i.e., a set of nodes connected by directed-arcs.

Also called linked data graph.

resource

A resource denoted by an IRI, a blank node or literal representing something in the world (the "universe of discourse").

subject

A subject is a node in a linked data graph with at least one outgoing edge, related to an object node through a property.

triple

A component of an RDF graph including a subject, predicate, and object, which represents a node-arc-node segment of an RDF graph.

active context

A context that is used to resolve terms while the processing algorithm is running.

base direction

The base direction is the direction used when a string does not have a direction associated with it directly. It can be set in the context using the @direction key whose value must be one of the strings "ltr", "rtl", or null. See the Context Definitions section of JSON-LD 1.1 for a normative description.

compact IRI

A compact IRI has the form of prefix:suffix and is used as a way of expressing an IRI without needing to define separate term definitions for each IRI contained within a common vocabulary identified by prefix. The default language is the language used when a string does not have a language associated with it directly. It can be set in the context using the @language key whose value must be a string representing a [BCP47] language code or null. See the Context Definitions section of JSON-LD 1.1 for a normative description.

default object

A default object is a map that has a @default key.

embedded context

An embedded context is a context which appears as the @context entry of one of the following: a node object, a value object, a graph object, a list object, a set object, the value of a nested properties, or the value of an expanded term definition. Its value may be a map for a context definition, as an IRI, or as an array combining either of the above.

expanded term definition

An expanded term definition is a term definition where the value is a map containing one or more keyword keys to define the associated IRI, if this is a reverse property, the type associated with string values, and a container mapping. See the Expanded Term Definition section of JSON-LD 1.1 for a normative description.

frame

A JSON-LD document, which describes the form for transforming another JSON-LD document using matching and embedding rules. A frame document allows additional keywords and certain map entries to describe the matching and transforming process.

frame object

A frame object is a map element within a frame which represents a specific portion of the frame matching either a node object or a value object in the input. See the Frame Objects section of JSON-LD 1.1 for a normative description.

graph object

A graph object represents a named graph as the value of a map entry within a node object. When expanded, a graph object must have an @graph entry, and may also have @id, and @index entries. A simple graph object is a graph object which does not have an @id entry. Note that node objects may have a @graph entry, but are not considered graph objects if they include any other entries. A top-level object consisting of @graph is also not a graph object. Note that a node object may also represent a named graph it it includes other properties. See the Graph Objects section of JSON-LD 1.1 for a normative description.

id map

An id map is a map value of a term defined with @container set to @id. The values of the id map must be node objects, and its keys are interpreted as IRIs representing the @id of the associated node object. If a value in the id map contains a key expanding to @id, its value must be equivalent to the referencing key in the id map. See the Id Maps section of JSON-LD 1.1 for a normative description.

implicitly named graph

A named graph created from the value of a map entry having an expanded term definition where @container is set to @graph.

included block

An included block is an entry in a node object where the key is either @included or an alias of @included and the value is one or more node objects. See the Included Blocks section of JSON-LD 1.1 for a normative description.

index map

An index map is a map value of a term defined with @container set to @index, whose values must be any of the following types: string, number, true, false, null, node object, value object, list object, set object, or an array of zero or more of the above possibilities. See the Index Maps @language, whose keys must be strings representing [BCP47] language codes and the values must be any of the following types: null, string, or an array of zero or more of the above possibilities. See the Language Maps section of JSON-LD 1.1 for a normative description.

list object

A list object is a map that has a @list key. It may also have an @index key, but no other entries. See the Lists and Sets section of JSON-LD 1.1 for a normative description.

local context

A context that is specified with a map, specified via the @context keyword. it does not contain the @value, @list, or @set keywords, or it is not the top-most map in the JSON-LD document consisting of no other entries than @graph and @context.

The entries of a node object whose keys are not keywords are also called properties of the node object. See the Node Objects section of JSON-LD 1.1 for a normative description.

node reference

A node object used to reference a node having only the @id key.

prefix

A prefix is the first component of a compact IRI which comes from a term that maps to a string that, when prepended to the suffix of the compact IRI, results in an IRI.

processing mode

The processing mode defines how a JSON-LD document is processed. By default, all documents are assumed to be conformant with this specification. By defining a different version using the @version entry in a https://www.w3.org/TR/json-ld11/ context, publishers can ensure that processors conformant with JSON-LD 1.0 will not accidentally process JSON-LD 1.1 documents, possibly creating a different output. The API provides an option for setting the processing mode to json-ld-1.0, which will prevent JSON-LD 1.1 features from being activated, or error if @version entry in a context is explicitly set to 1.1. This specification extends JSON-LD 1.0 via the jsonld-1.1 processing mode.

scoped context

A scoped context is part of an expanded term definition using the @context entry. It has the same form as an embedded context. When the term is used as a type, it defines a type-scoped context, when used as a property it defines a property-scoped context.

set object

A set object is a map that has an @set entry. It may also have an @index key, but no other entries. See the Lists and Sets section of JSON-LD 1.1 for a normative description.

term

A term is a short word defined in a context that may be expanded to an IRI. See the Terms section of JSON-LD 1.1 for a normative description.

term definition

A term definition is an entry in a context, where the key defines a term which may be used within a map as a key, type, or elsewhere that a string is interpreted as a vocabulary item. Its value is either a string (simple term definition), expanding to an IRI, or a map (expanded term definition).

type map

A type map is a map value of a term defined with @container set to @type, whose keys are interpreted as IRIs representing the @type of the associated node object; the value must be a node object, or array of node objects. If the value contains a term expanding to @type, its values are merged with the map value when expanding. See the Type Maps section of JSON-LD 1.1 for a normative description.

typed value

A typed value consists of a value, which is a string, and a type, which is an IRI.

value object

A value object is a map that has an @value entry.

vocabulary mapping

The vocabulary mapping is set in the context using the @vocab key whose value must be an IRI, a compact IRI, a term, or

Expressiveness

The syntax serializes labeled directed graphs. This ensures that almost every real world data model can be expressed.

Terseness

The JSON-LD syntax is very terse and human readable, requiring as little effort as possible from the developer.

Zero Edits, most of the time JSON-LD ensures a smooth and simple transition from existing JSONbased systems. In many cases, zero edits to the JSON document and the addition of one line to the HTTP response should suffice (see § 6.1

Interpreting JSON as JSON-LD). This allows organizations that have already deployed large JSON-based infrastructure to use JSON-LD's features in a way that is not disruptive to their day-to-day operations and is transparent to their current customers. However, there are times where mapping JSON to a graph representation is a complex undertaking. In these instances, rather than extending JSON-LD to support esoteric use cases, we chose not to support the use case. While Zero Edits is a design goal, it is not always possible without adding great complexity to the language. JSON-LD focuses on simplicity when possible. This allows surface syntaxes other than JSON to be manipulated using the same algorithms, when the syntax maps to equivalent core data structures. This section is non-normative.

Usable as RDF

JSON-LD specifies a number of syntax tokens and keywords that are a core part of the language. A normative description of the keywords is given in § 9.16 Keywords.

:

The separator for JSON keys and values that use compact IRIs.

@base

Used to set the base IRI against which to resolve those relative IRI references which are otherwise interpreted relative to the document. This keyword is described in § 4.1.3 Base IRI.

@container

Used to set the default container type for a term. This keyword is described in the following sections: § 4.3 Value Ordering, § 4.6.1 Data Indexing, § 4.6.2 Language Indexing, § 4.6.3 Node Identifier Indexing, § 4.6.4 Node Type Indexing § 4.9 Named Graphs, § 4.9.3 Named Graph Indexing, and § 4.9.2 Named Graph Data Indexing

@context

Used to define the short-hand names that are used throughout a JSON-LD document. These short-hand names are called terms and help developers to express specific identifiers in a compact manner. The @context keyword 1.7 Syntax Tokens and Keywords § https://www.w3.org/TR/json-ld11/ is described in detail in § 3.1 The Context.

@direction

Used to set the base direction of a JSON-LD value, which are not typed values (e.g. strings, or language-tagged strings). This keyword is described in § 4.2.4 String Internationalization.

@graph

Used to express a graph. This keyword is described in § 4.9 Named Graphs.

@id

Used to uniquely identify node objects that are being described in the document with IRIs or blank node identifiers. This keyword is described in § 3.3 Node Identifiers. A node reference is a node object containing only the @id property, which may represent a reference to a node object found elsewhere in the document.

@import

Used in a context definition to load an external context within which the containing context definition is merged. This can be useful to add JSON-LD 1.1 features to JSON-LD 1.0 contexts.

@included

Used in a top-level node object to define an included block, for including secondary node objects within another node object.

@index

Used to specify that a container is used to index information and that processing should continue deeper into a JSON data structure. This keyword is described in § 4.6.1 Data Indexing.

@json

Used as the @type value of a JSON literal. This keyword is described in § 4.2.2 JSON Literals.

@language

Used to specify the language for a particular string value or the default language of a JSON-LD document. This keyword is described in § 4.2.4

String Internationalization.

@list

Used to express an ordered set of data. This keyword is described in § 4.3.1 Lists.

@nest

Used to define a property of a node object that groups together properties of that node, but is not an edge in the graph.

@none

Used as an index value in an index map, id map, language map, type map, https://www.w3.org/TR/json-ld11/ or elsewhere where a map is used to index into other values, when the indexed node does not have the feature being indexed.

@prefix

With the value true, allows this term to be used to construct a compact IRI when compacting.

@propagate

Used in a context definition to change the scope of that context. By default, it is true, meaning that contexts propagate across node objects (other than for type-scoped contexts, which default to false). Setting this to false causes term definitions created within that context to be removed when entering a new node object.

@protected

Used to prevent term definitions of a context to be overridden by other contexts. This keyword is described in § 4. 1.11 Protected Term Definitions.

@reverse

Used to express reverse properties. This keyword is described in § 4.8

Reverse Properties.

@set

Used to express an unordered set of data and to ensure that values are always represented as arrays. This keyword is described in § 4.3.2 Sets.

@type

Used to set the type of a node or the datatype of a typed value. This keyword is described further in § 3.5 Specifying the Type and § 4.2.1

Typed Values.

NOTE

The use of @type to define a type for both node objects and value objects addresses the basic need to type data, be it a literal value or a more complicated resource. Experts may find the overloaded use of the @type keyword for both purposes concerning, but should note that Web developer usage of this feature over multiple years has not resulted in its misuse due to the far less frequent use of @type to express typed literal values.

@value

Used to specify the data that is associated with a particular property in the graph. This keyword is described in § 4.

@version

Used in a context definition to set the processing mode. New features since JSON-LD 1.0 described in this specification are not available when processing mode has been explicitly set to json-ld-1.0.

NOTE

Within a context definition @version takes the specific value 1.1, not "json-ld-1.1", as a JSON-LD 1.0 processor may accept a string value for @version, but will reject a numeric value.

NOTE

The use of 1.1 for the value of @version is intended to cause a JSON-LD 1.0 processor to stop processing. Although it is clearly meant to be related to JSON-LD 1.1, it does not otherwise adhere to the requirements for Semantic Versioning.

@vocab

Used to expand properties and values in @type with a common prefix IRI.

This keyword is described in § 4. Leveraging the popular schema.org vocabulary, the example above could be unambiguously expressed as follows:

In the example above, every property is unambiguously identified by an IRI and all values representing IRIs are explicitly marked as such by the @id keyword. While this is a valid JSON-LD document that is very specific about its data, the document is also overly verbose and difficult to work with for human developers. To address this issue, JSON-LD introduces the notion of a context as described in the next section. be used as a term. Exceptions are the empty string "" and strings that have the form of a keyword (i.e., starting with "@" followed exclusively by one or more ALPHA characters (see [START_REF]RFC4288Media Type Specifications and Registration Procedures[END_REF])), which must not be used as terms.

Strings that have the form of an IRI (e.g., containing a ":") should not be used as terms.

For the sample document in the previous section, a context would look something like this:

3.1 The Context § https://www.w3.org/TR/json-ld11/ As the context above shows, the value of a term definition can either be a simple string, mapping the term to an IRI, or a map.

A context is introduced using an entry with the key @context and may appear within a node object or a value object.

When an entry with a term key has a map value, the map is called an expanded term definition. The example above specifies that the values of image and homepage, if they are strings, are to be interpreted as IRIs.

Expanded term definitions also allow terms to be used for index maps and to specify whether array values are to be interpreted as sets or lists. Expanded term definitions may be defined using IRIs or compact IRIs as keys, which is mainly used to associate type or language information with an IRIs or compact IRI.

Contexts can either be directly embedded into the document (an embedded context) or be referenced using a URL. Assuming the context document in the previous example can be retrieved at https://json-ld.org/contexts /person.jsonld, it can be referenced by adding a single line and allows a JSON-LD document to be expressed much more concisely as shown in the example below:

Context EXAMPLE 4: Context for the sample document in the previous section { "@context": { "name": "http://schema.org/name", ↑ This means that 'name' is shorthand for 'http://schema.org/name' "image": { "@id": "http://schema.org/image", ↑ This means that 'image' is shorthand for 'http://schema.org/image' "@type": "@id" ↑ This means that a string value associated with 'image' should be interpreted as an identifier that is an IRI }, "homepage": { "@id": "http://schema.org/url", ↑ This means that 'homepage' is shorthand for 'http://schema.org/url' "@type": "@id" ↑ This means that a string value associated with 'homepage' should be interpreted as an identifier that is an IRI } } } https://www.w3.org/TR/json-ld11/ The referenced context not only specifies how the terms map to IRIs in the Schema.org vocabulary but also specifies that string values associated with the homepage and image property can be interpreted as an IRI ("@type": "@id", see § 3.2 IRIs for more details). This information allows developers to re-use each other's data without having to agree to how their data will interoperate on a site-by-site basis. External JSON-LD context documents may contain extra information located outside of the @context key, such as documentation about the terms declared in the document. Information contained outside of the @context value is ignored when the document is used as an external JSON-LD context document.

A remote context may also be referenced using a relative URL, which is resolved relative to the location of the document containing the reference.

For example, if a document were located at http://example.org /document.jsonld and contained a relative reference to context.jsonld, the referenced context document would be found relative at http://example.org /context.jsonld. Open in playground { "@context": { "name": "http://schema.org/name", "image": { "@id": "http://schema.org/image", "@type": "@id" }, "homepage": { "@id": "http://schema.org/url", "@type": "@id" } },

Input

"name": "Manu Sporny", } https://www.w3.org/TR/json-ld11/ This section is non-normative.

IRIs (Internationalized Resource Identifiers [START_REF] Duerst | Internationalized Resource Identifiers[END_REF]) are fundamental to Linked Data as that is how most nodes and properties are identified. In JSON-LD, IRIs may be represented as an IRI reference. An IRI is defined in [START_REF] Duerst | Internationalized Resource Identifiers[END_REF] as containing a scheme along with path and optional query and fragment segments. A relative IRI reference is an IRI that is relative to some other IRI. In JSON-LD, with exceptions that are as described below, all relative IRI references are resolved relative to the base IRI.

NOTE

As noted in § 1.1 How to Read this Document, IRIs can often be confused with URLs (Uniform Resource Locators), the primary distinction is that a URL locates a resource on the web, an IRI identifies a resource. While it is a good practice for resource identifiers to be dereferenceable, sometimes this is not practical. In particular, note the [URN] scheme for Uniform

Resource Names, such as UUID. An example UUID is urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6.

NOTE

Properties, values of @type, and values of properties with a term definition that defines them as being relative to the vocabulary mapping, may have the form of a relative IRI reference, but are resolved using the vocabulary mapping, and not the base IRI.

A string is interpreted as an IRI when it is the value of a map entry with the key @id:

Values that are interpreted as IRIs, can also be expressed as relative IRI IRIs can be expressed directly in the key position like so:

In the example above, the key http://schema.org/name is interpreted as an IRI.

Term-to-IRI expansion occurs if the key matches a term defined within the active context:

JSON keys that do not expand to an IRI, such as status in the example above, are not Linked Data and thus ignored when processed. Open in playground { "@context": { "name": "http://schema.org/name" }, "name": "Manu Sporny", "status": "trollin'" } https://www.w3.org/TR/json-ld11/ If type coercion rules are specified in the @context for a particular term or property IRI, an IRI is generated:

In the example above, since the value http://manu.sporny.org/ is expressed as a JSON string, the type coercion rules will transform the value into an IRI when processing the data. See § 4.2.3 Type Coercion for more details about this feature.

In summary, IRIs can be expressed in a variety of different ways in JSON-LD:

1. Map entries that have a key mapping to a term in the active context expand to an IRI (only applies outside of the context definition).

2. An IRI is generated for the string value specified using @id or @type.

3. An IRI is generated for the string value of any key for which there are coercion rules that contain an @type key that is set to a value of @id or @vocab. To be able to externally reference nodes in an RDF graph, it is important that nodes have an identifier. IRIs are a fundamental concept of Linked Data, for nodes to be truly linked, dereferencing the identifier should result in a representation of that node. This may allow an application to retrieve further information about a node.

In JSON-LD, a node is identified using the @id keyword:

The example above contains a node object identified by the IRI http://me.markus-lanthaler.com/.

This section only covers the most basic features associated with node identifiers in JSON

Language Maps

Allows multiple values differing in their associated language to be indexed by language tag. See § 4.6.2 Language Indexing for more information, and § 9.8 Language Maps for the normative definition.

Index Maps

Allows multiple values (node objects or value objects) to be indexed by an associated @index. See § 4.6.1 Data Indexing for more information, and § 9.9 Index Maps for the normative definition.

Id Maps

Allows multiple node objects to be indexed by an associated @id. See § 4.6.3 Node Identifier Indexing for more information, and § 9.11 Id Maps for the normative definition.

Type Maps

Allows multiple node objects to be indexed by an associated @type.

See § 4.6.4 Node Type Indexing for more information, and § 9.12 Type Maps for the normative definition.

Named Graph Indexing

Allows multiple named graphs to be indexed by an associated graph name. See § 4.9.3 Named Graph Indexing for more information. This section is non-normative.

Graph objects

A
In Linked Data, it is common to specify the type of a graph node; in many cases, this can be inferred based on the properties used within a given node object, or the property for which a node is a value. For example, in the schema.org vocabulary, the givenName property is associated with a Person. Therefore, one may reason that if a node object contains the property givenName, that the type is a Person; making this explicit with @type helps to clarify the association.

The type of a particular node can be specified using the @type keyword. In Linked Data, types are uniquely identified with an IRI.

3.5 Specifying the Type § https://www.w3.org/TR/json-ld11/ A node can be assigned more than one type by using an array:

The value of a @type key may also be a term defined in the active context:

Input EXAMPLE 14: Specifying the type for a node

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { ... "givenName": "http://schema.org/givenName", "familyName": "http://schema.org/familyName" }, "@id": "http://me.markus-lanthaler.com/", "@type": "http://schema.org/Person", "givenName": "Markus", "familyName": "Lanthaler", ... In addition to setting the type of nodes, @type can also be used to set the type of a value to create a typed value. This use of @type is similar to that used to define the type of a node object, but value objects are restricted to having just a single type. The use of @type to create typed values is discussed more fully in § 4.2.1 Typed Values.

}

Input

Typed values can also be defined implicitly, by specifying @type in an expanded term definition. This is covered more fully in § 4.2.3 Type Coercion.

This section is non-normative.

JSON-LD has a number of features that provide functionality above and beyond the core functionality described above. JSON can be used to express data using such structures, and the features described in this section can be used to interpret a variety of different JSON structures as Linked Data. A JSON-LD processor will make use of provided and embedded contexts to interpret property values in a number of different idiomatic ways.

Describing values

One pattern in JSON is for the value of a property to be a string. Often times, this string actually represents some other typed value, for example an IRI, a date, or a string in some specific language. See § 4.2 Describing

Values for details on how to describe such value typing.

Value ordering

In JSON, a property with an array value implies an implicit order; arrays

Property nesting

Another JSON idiom often found in APIs is to use an intermediate object to group together related properties of an object; in JSON-LD these are referred to as nested properties and are described in § 4.4 Nested Properties.

Referencing objects

Linked Data is all about describing the relationships between different resources. Sometimes these relationships are between resources defined in different documents described on the web, sometimes the resources are described within the same document.

In this case, a document residing at http://manu.sporny.org/about may contain the example above, and reference another document at https://greggkellogg.net/foaf which could include a similar representation.

A common idiom found in JSON usage is objects being specified as the value of other objects, called object embedding in JSON-LD; for example, a friend specified as an object value of a Person:

Input

EXAMPLE 17: Referencing Objects on the Web

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@vocab": "http://xmlns.com/foaf/0.1/", "knows": {"@type": "@id"} }, "@id": "http://manu.sporny.org/about#manu", "@type": "Person", "name": "Manu Sporny", "knows": "https://greggkellogg.net/foaf#me" } https://www.w3.org/TR/json-ld11/ See § 4.5 Embedding details these relationships.

Indexed values

Another common idiom in JSON is to use an intermediate object to represent property values via indexing. JSON-LD allows data to be indexed in a number of different ways, as detailed in § 4.6 Indexed

Values.

Reverse Properties

JSON-LD serializes directed graphs. That means that every property points from a node to another node or value. However, in some cases, it is desirable to serialize in the reverse direction, as detailed in § 4.8 Reverse Properties.

The following sections describe such advanced functionality in more detail.

This section is non-normative.

Section § 3.1 The Context introduced the basics of what makes JSON-LD

work. This section expands on the basic principles of the context and demonstrates how more advanced use cases can be achieved using JSON-LD.

In general, contexts may be used any time a map is defined. Open in playground { "@context": { "@vocab": "http://xmlns.com/foaf/0.1/" }, "@id": "http://manu.sporny.org/about#manu", "@type": "Person", "name": "Manu Sporny", "knows": { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg" The outer array is standard for a document in expanded document form and flattened document form, and may be necessary when describing a disconnected graph, where nodes may not reference each other. In such cases, using a top-level map with a @graph property can be useful for saving the repetition of @context. See § 4.5 Embedding for more. Open in playground { "@context": { "name": "http://example.com/person#name", "details": "http://example.com/person#details" },

} } 4.

Input

"name": "Markus Lanthaler", ... "details": { "@context": { "name": "http://example.com/organization#name" }, "name": "Graz University of Technology" } } https://www.w3.org/TR/json-ld11/ In the example above, the name term is overridden in the more deeply nested details structure, which uses its own embedded context. Note that this is rarely a good authoring practice and is typically used when working with legacy applications that depend on a specific structure of the map. If a term is redefined within a context, all previous rules associated with the previous definition are removed. If a term is redefined to null, the term is effectively removed from the list of terms defined in the active context.

Multiple contexts may be combined using an array, which is processed in order. The set of contexts defined within a specific map are referred to as "name": "Manu Sporny", "homepage": "http://manu.sporny.org/", "pic": "http://twitter.com/account/profile_image/manusporny" } https://www.w3.org/TR/json-ld11/ NOTE When possible, the context definition should be put at the top of a JSON-LD document. This makes the document easier to read and might make streaming parsers more efficient. Documents that do not have the context at the top are still conformant JSON-LD.

NOTE

To avoid forward-compatibility issues, terms starting with an @ character followed exclusively by one or more ALPHA characters (see [START_REF]RFC4288Media Type Specifications and Registration Procedures[END_REF]) are to be avoided as they might be used as keyword in future versions of JSON-LD. Terms starting with an @ character that are not JSON-LD 1.1 keywords are treated as any other term, i.e., they are ignored unless mapped to an IRI. Furthermore, the use of empty terms ("") is not allowed as not all programming languages are able to handle empty JSON keys. This section is non-normative.

New features defined in JSON-LD 1.1 are available unless the processing mode is set to json-ld-1.0. This may be set through an API option. The processing mode may be explicitly set to json-ld-1.1 using the @version entry in a context set to the value 1.1 as a number, or through an API option.

Explicitly setting the processing mode to json-ld-1.1 will prohibit JSON-LD 1.0 processors from incorrectly processing a JSON-LD 1.1 document.

The first context encountered when processing a document which contains @version determines the processing mode, unless it is defined explicitly through an API option. This means that if "@version": 1.1 is encountered after processing a context without @version, the former will be interpreted as having had "@version": 1.1 defined within it.

NOTE

Setting the processing mode explicitly to json-ld-1.1 is RECOMMENDED to prevent a JSON-LD 1.0 processor from incorrectly processing a JSON-LD 1.1 document and producing different results.

This section is non-normative.

At times, all properties and types may come from the same vocabulary. JSON-LD's @vocab keyword allows an author to set a common prefix which is used as the vocabulary mapping and is used for all properties and types that do not match a term and are neither an IRI nor a compact IRI (i.e., they do not contain a colon).

If @vocab is used but certain keys in an map should not be expanded using the vocabulary IRI, a term can be explicitly set to null in the context. For instance, in the example below the databaseId entry would not expand to an IRI causing the property to be dropped when expanding.

Default Vocabulary §

Input

EXAMPLE 24: Using a default vocabulary

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@vocab": "http://example.com/vocab/" }, "@id": "http://example.org/places#BrewEats", "@type": "Restaurant", "name": "Brew Eats" ... The following example illustrates the affect of expanding a property using a relative IRI reference, which is shown in the Expanded (Result) tab below.

Input

EXAMPLE 25: Using the null keyword to ignore data

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@vocab": "http://example.com/vocab/", "databaseId": null }, "@id": "http://example.org/places#BrewEats", "@type": "Restaurant", "name": "Brew Eats", "databaseId": "23987520" } Input EXAMPLE 26: Using a default vocabulary relative to a previous default vocabulary

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": [{ "@vocab": "http://example.com/"

}, { "@version": 1.1, "@vocab": "vocab/" }], "@id": "http://example.org/places#BrewEats", "@type": "Restaurant", "name": "Brew Eats" ... } https://www.w3.org/TR/json-ld11/

NOTE

The grammar for @vocab, as defined in § 9.15 Context Definitions allows the value to be a term or compact IRI. Note that terms used in the value of @vocab must be in scope at the time the context is introduced, otherwise there would be a circular dependency between @vocab and other terms defined in the same context. This section is non-normative.

JSON-LD allows IRIs to be specified in a relative form which is resolved against the document base according section 5.1 Establishing a Base URI of [START_REF]Generic Syntax[END_REF]. The base IRI may be explicitly set with a context using the @base keyword.

For example, if a JSON-LD document was retrieved from http://example.com /document.jsonld, relative IRI references would resolve against that IRI: This document uses an empty @id, which resolves to the document base.

However, if the document is moved to a different location, the IRI would change. To prevent this without having to use an IRI, a context may define an @base mapping, to overwrite the base IRI for the document.

Base IRI §

EXAMPLE 27: Use a relative IRI reference as node identifier { "@context": { "label": "http://www.w3.org/2000/01/rdf-schema#label" }, "@id": "", "label": "Just a simple document" } https://www.w3.org/TR/json-ld11/ Setting @base to null will prevent relative IRI references from being expanded to IRIs.

Please note that the @base will be ignored if used in external contexts.

This section is non-normative.

In some cases, vocabulary terms are defined directly within the document itself, rather than in an external vocabulary. Since JSON-LD 1.1, the vocabulary mapping in a local context can be set to a relative IRI reference, which is, if there is no vocabulary mapping in scope, resolved against the base IRI. This causes terms which are expanded relative to the vocabulary, such as the keys of node objects, to be based on the base IRI to create IRIs.

Input

EXAMPLE 28: Setting the document base in a document

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@base": "http://example.com/document.jsonld", "label": "http://www.w3.org/2000/01/rdf-schema#label" }, "@id": "", "label": "Just a simple document" }

Using the Document Base for the Default Vocabulary §

Input

EXAMPLE 29: Using "#" as the vocabulary mapping { "@context": { "@version": 1.1, "@base": "http://example/document", "@vocab": "#" }, "@id": "http://example.org/places#BrewEats", "@type": "Restaurant", "name": "Brew Eats" ... } https://www.w3.org/TR/json-ld11/ If this document were located at http://example/document, it would expand as follows:

This section is non-normative.

A compact IRI is a way of expressing an IRI using a prefix and suffix separated by a colon (:). The prefix is a term taken from the active context and is a short string identifying a particular IRI in a JSON-LD document. For example, the prefix foaf may be used as a shorthand for the Friend-ofa-Friend vocabulary, which is identified using the IRI http://xmlns.com /foaf/0.1/. A developer may append any of the FOAF vocabulary terms to the end of the prefix to specify a short-hand version of the IRI for the vocabulary term. For example, foaf:name would be expanded to the IRI http://xmlns.com /foaf/0.1/name.

In the example above, foaf:name expands to the IRI http://xmlns.com /foaf/0.1/name and foaf:Person expands to http://xmlns.com/foaf/0.1

Result

EXAMPLE 30: Using "#" as the vocabulary mapping (expanded)

Expanded (Result) Statements Turtle

Open in playground [{ "@id": "http://example.org/places#BrewEats", "@type": ["http://example/document#Restaurant"], "http://example/document#name": [{"@value": "Brew Eats Prefixes are expanded when the form of the value is a compact IRI represented as a prefix:suffix combination, the prefix matches a term defined within the active context, and the suffix does not begin with two slashes (//). The compact IRI is expanded by concatenating the IRI mapped to the prefix to the (possibly empty) suffix. If the prefix is not defined in the active context, or the suffix begins with two slashes (such as in http://example.com), the value is interpreted as IRI instead. If the prefix is an underscore (_), the value is interpreted as blank node identifier instead.

It's also possible to use compact IRIs within the context as shown in the following example:

When operating explicitly with the processing mode for JSON-LD 1.0 compatibility, terms may be chosen as compact IRI prefixes when compacting only if a simple term definition is used where the value ends with a URI gendelim character (e.g, /, # and others, see [START_REF]Generic Syntax[END_REF]).

In JSON-LD 1.1, terms may be chosen as compact IRI prefixes when compacting only if a simple term definition is used where the value ends with a URI gen-delim character, or if their expanded term definition contains a @prefix entry with the value true.

Input

EXAMPLE 32: Using vocabularies

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "xsd": "http://www.w3.org/2001/XMLSchema#", "foaf": "http://xmlns.com/foaf/0.1/", "foaf:homepage": { "@type": "@id" }, "picture": { "@id": "foaf:depiction", "@type": "@id" } }, "@id": "http://me.markus-lanthaler.com/", "@type": "foaf:Person", "foaf:name": "Markus Lanthaler", "foaf:homepage": "http://www.markus-lanthaler.com/", "picture": "http://twitter.com/account/profile_image/markuslanthaler" } https://www.w3.org/TR/json-ld11/

NOTE

The term selection behavior for 1.0 processors was changed as a result of an errata against JSON-LD 1.0 reported here. This does not affect the behavior of processing existing JSON-LD documents, but creates a slight change when compacting documents using Compact IRIs.

The behavior when compacting can be illustrated by considering the following input document in expanded form:

Using the following context in the 1.0 processing mode will now select the term vocab rather than property, even though the IRI associated with property captures more of the original IRI.

Compacting using the previous context with the above expanded input document results in the following compacted result: Open in playground { "@context": { "vocab": "http://example.com/vocab/", "property": "http://example.com/vocab/property" }, "property": "property", "vocab:propertyOne": "propertyOne" } Context EXAMPLE 36: Compact IRI generation context (1.1) { "@context": { "@version": 1.1, "vocab": "http://example.com/vocab/", "property": { "@id": "http://example.com/vocab/property", "@prefix": true } } } https://www.w3.org/TR/json-ld11/ In this case, the property term would not normally be usable as a prefix, both because it is defined with an expanded term definition, and because its @id does not end in a gen-delim character. Adding "@prefix": true allows it to be used as the prefix portion of the compact IRI property:One. This section is non-normative.

Input
Each of the JSON-LD keywords, except for @context, may be aliased to application-specific keywords. This feature allows legacy JSON content to be utilized by JSON-LD by re-using JSON keys that already exist in legacy documents. This feature also allows developers to design domain-specific implementations using only the JSON-LD context.

Input

EXAMPLE 37: Compact IRI generation term selection (1.1)

Compacted (Input) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "vocab": "http://example.com/vocab/", "property": { "@id": "http://example.com/vocab/property", "@prefix": true } }, "property": "property", "property:One": "propertyOne" } 4.1.6 Aliasing Keywords § https://www.w3.org/TR/json-ld11/ In the example above, the @id and @type keywords have been given the aliases url and a, respectively.

Other than for @type, properties of expanded term definitions where the term is a keyword result in an error. Unless the processing mode is set to jsonld-1.0, there is also an exception for @type; see § 4.3.3 Using @set with @type for further details and usage examples.

Unless the processing mode is set to json-ld-1.0, aliases of keywords are either simple term definitions, where the value is a keyword, or a expanded term definitions with an @id entry and optionally an @protected entry; no other entries are allowed. There is also an exception for aliases of @type, as indicated above. See § 4.1.11 Protected Term Definitions for further details of using @protected.

Since keywords cannot be redefined, they can also not be aliased to other keywords.

NOTE

Aliased keywords may not be used within a context, itself. See § 9.16 Keywords for a normative definition of all keywords. This section is non-normative. Open in playground { "@context": { "url": "@id", "a": "@type", "name": "http://xmlns.com/foaf/0.1/name" }, "url": "http://example.com/about#gregg", "a": "http://xmlns.com/foaf/0.1/Person", "name": "Gregg Kellogg" In general, normal IRI expansion rules apply anywhere an IRI is expected (see § 3.2 IRIs). Within a context definition, this can mean that terms defined within the context may also be used within that context as long as there are no circular dependencies. For example, it is common to use the xsd namespace when defining typed values:

In this example, the xsd term is defined and used as a prefix for the @type coercion of the age property.

Terms may also be used when defining the IRI of another term: EXAMPLE 39: IRI expansion within a context "name": "foaf:name", "foaf:age": { "@id": "http://xmlns.com/foaf/0.1/age", "@type": "xsd:integer" }, "foaf:homepage": { "@id": "http://schema.org/url", "@type": "@id" } }, ... } https://www.w3.org/TR/json-ld11/

⚠

In order for the IRI to match above, the IRI needs to be used in the JSON-LD document. Also note that foaf:homepage will not use the { "@type": "@id" } declaration because foaf:homepage is not the same as http://xmlns.com /foaf/0.1/homepage. That is, terms are looked up in a context using direct string comparison before the prefix lookup mechanism is applied.

Warning

Neither an IRI reference nor a compact IRI may expand to some other unrelated IRI. This represents a change to the original 1.0 algorithm which allowed this behavior but discouraged it.

The only other exception for using terms in the context is that circular definitions are not allowed. That is, a definition of term1 cannot depend on the definition of term2 if term2 also depends on term1. For example, the following context definition is illegal: EXAMPLE 43: Associating context definitions with IRIs { "@context": { "foaf": "http://xmlns.com/foaf/0.1/", "xsd": "http://www.w3.org/2001/XMLSchema#", "name": "foaf:name", "foaf:age": { "@id": "http://xmlns.com/foaf/0.1/age", "@type": "xsd:integer" }, "http://xmlns.com/foaf/0.1/homepage": { "@type": "@id" } }, ... } https://www.w3.org/TR/json-ld11/ This section is non-normative.

An expanded term definition can include a @context property, which defines a context (a scoped context) for values of properties defined using that term.

When used for a property, this is called a property-scoped context. This allows values to use term definitions, the base IRI, vocabulary mappings or the default language which are different from the node object they are contained in, as if the context was specified within the value itself.

In this case, the social profile is defined using the schema.org vocabulary, but EXAMPLE 44: Illegal circular definition of terms within a context { "@context": { "term1": "term2:foo", "term2": "term1:bar" }, ... } Open in playground { "@context": { "@version": 1.1, "name": "http://schema.org/name", "interest": { "@id": "http://xmlns.com/foaf/0.1/interest", "@context": {"@vocab": "http://xmlns.com/foaf/0.1/"} } }, "name": "Manu Sporny", "interest": { "@id": "https://www.w3.org/TR/json-ld11/", "name": "JSON-LD", "topic": "Linking Data" } } https://www.w3.org/TR/json-ld11/ interest is imported from FOAF, and is used to define a node describing one of Manu's interests where those properties now come from the FOAF vocabulary.

Scoped Contexts

Expanding this document, uses a combination of terms defined in the outer context, and those defined specifically for that term in a property-scoped context.

Scoping can also be performed using a term used as a value of @type:

Scoping on @type is useful when common properties are used to relate things of different types, where the vocabularies in use within different entities calls for different context scoping. For example, hasPart/partOf may be common terms used in a document, but mean different things depending on the context. A type-scoped context is only in effect for the node object on which the type is used; the previous in-scope contexts are placed back into effect when traversing into another node object. As described further in § 4. 1.9 Context Propagation, this may be controlled using the @propagate keyword. Open in playground { "@context": { "@version": 1.1, "name": "http://schema.org/name", "interest": "http://xmlns.com/foaf/0.1/interest", "Person": "http://schema.org/Person", "Document": { "@id": "http://xmlns.com/foaf/0.1/Document", "@context": {"@vocab": "http://xmlns.com/foaf/0.1/"} } }, "@type": "Person", "name": "Manu Sporny", "interest": { "@id": "https://www.w3.org/TR/json-ld11/", "@type": "Document", "name": "JSON-LD", "topic": "Linking Data" } } https://www.w3.org/TR/json-ld11/ NOTE Any property-scoped or local contexts that were introduced in the node object would still be in effect when traversing into another node object.

When expanding, each value of @type is considered (ordering them lexicographically) where that value is also a term in the active context having its own type-scoped context. If so, that the scoped context is applied to the active context.

NOTE

The values of @type are unordered, so if multiple types are listed, the order that type-scoped contexts are applied is based on lexicographical ordering.

For example, consider the following semantically equivalent examples. The first example, shows how properties and types can define their own scoped contexts, which are included when expanding. https://www.w3.org/TR/json-ld11/ Contexts are processed depending on how they are defined. A propertyscoped context is processed first, followed by any embedded context, followed lastly by the type-scoped contexts, in the appropriate order. The EXAMPLE 47: Expansion using embedded and scoped contexts { "@context": { "@version": 1.1, "@vocab": "http://example.com/vocab/", "property": { "@id": "http://example.com/vocab/property", "@context": { "term1": "http://example.com/vocab/term1" ↑ Scoped context for "property" defines term1 } }, "Type1": { "@id": "http://example.com/vocab/Type1", "@context": { "term3": "http://example.com/vocab/term3" ↑ Scoped context for "Type1" defines term3 } }, "Type2": { "@id": "http://example.com/vocab/Type2", "@context": { "term4": "http://example.com/vocab/term4" ↑ Scoped context for "Type2" defines term4 } } }, "property": { "@context": { "term2": "http://example.com/vocab/term2" ↑ Embedded context defines term2 }, "@type": ["Type2", "Type1"], "term1": "a", "term2": "b", "term3": "c", "term4": "d" } } https://www.w3.org/TR/json-ld11/ previous example is logically equivalent to the following: NOTE If a term defines a scoped context, and then that term is later redefined, the association of the context defined in the earlier expanded term definition is lost within the scope of that redefinition. This is consistent with term definitions of a term overriding previous term definitions from earlier less deeply nested definitions, as discussed in § 4.1 Advanced Context Usage. EXAMPLE 48: Expansion using embedded and scoped contexts (embedding equivalent)

{ "@context": { "@vocab": "http://example.com/vocab/", "property": "http://example.com/vocab/property", "Type1": "http://example.com/vocab/Type1", "Type2": "http://example.com/vocab/Type2" }, "property": { "@context": [{ "term1": "http://example.com/vocab/term1" ↑ Previously scoped context for "property" defines term1 }, { "term2": "http://example.com/vocab/term2" ↑ Embedded context defines term2 }, { "term3": "http://example.com/vocab/term3" ↑ Previously scoped context for "Type1" defines term3 }, { "term4": "http://example.com/vocab/term4" ↑ Previously scoped context for "Type2" defines term4 }], "@type": ["Type2", "Type1"], "term1": "a", "term2": "b", "term3": "c", "term4": "d" This section is non-normative.

Once introduced, contexts remain in effect until a subsequent context removes it by setting @context to null, or by redefining terms, with the exception of type-scoped contexts, which limit the effect of that context until the next node object is entered. This behavior can be changed using the @propagate keyword.

The following example illustrates how terms defined in a context with @propagate set to false are effectively removed when descending into new node object. Open in playground { "@context": { "@version": 1.1, "term": { "@id": "http://example.org/original", "@context": { "@propagate": false, This section is non-normative.

↑
JSON-LD 1.0 included mechanisms for modifying the context that is in effect. This included the capability to load and process a remote context and then apply further changes to it via new contexts.

However, with the introduction of JSON-LD 1.1, it is also desirable to be able to load a remote context, in particular an existing JSON-LD 1.0 context, and apply JSON-LD 1.1 features to it prior to processing. By using the @import keyword in a context, another remote context, referred to as an imported context, can be loaded and modified prior to processing.

The modifications are expressed in the context that includes the @import keyword, referred to as the wrapping context. Once an imported context is loaded, the contents of the wrapping context are merged into it prior to processing. The merge operation will cause each key-value pair in the wrapping context to be added to the loaded imported context, with the wrapping context key-value pairs taking precedence.

By enabling existing contexts to be reused and edited inline prior to processing, context-wide keywords can be applied to adjust all term definitions in the imported context. Similarly, term definitions can be replaced prior to processing, enabling adjustments that, for instance, ensure term definitions match previously protected terms or that they include additional type coercion information.

The following examples illustrate how @import can be used to express a typescoped context that loads an imported context and sets @propagate to true, as a technique for making other similar modifications.

Suppose there was a context that could be referenced remotely via the URL https://json-ld.org/contexts/remote-context.jsonld: Similarly, the wrapping context may replace term definitions or set other context-wide keywords that may affect how the imported context term definitions will be processed:

Again, the effect would be the same as if the entire imported context had been copied into the context: EXAMPLE 52: Result of sourcing a context in a type-scoped context and setting it to propagate { "@context": { "@version": 1.1, "MyType": { "@id": "http://example.com/vocab#MyType", "@context": { "@version": 1.1, "Type1": "http://example.com/vocab/Type1", "Type2": "http://example.com/vocab/Type2", "term1": "http://example.com/vocab#term1", "term2": "http://example.com/vocab#term2", ... "@propagate": true } } } } EXAMPLE 53: Sourcing a context to modify @vocab and a term definition { "@context": { "@version": 1.1, "@import": "https://json-ld.org/contexts/remote-context.jsonld", "@vocab": "http://example.org/vocab#", ↑ This will replace any previous @vocab definition prior to processing it "term1": { "@id": "http://example.org/vocab#term1", "@type": "http://www.w3.org/2001/XMLSchema#integer" } ↑ This will replace the old term1 definition prior to processing it } } https://www.w3.org/TR/json-ld11/

The result of loading imported contexts must be context definition, not an IRI or an array. Additionally, the imported context cannot include an @import entry.

This section is non-normative.

JSON-LD is used in many specifications as the specified data format.

However, there is also a desire to allow some JSON-LD contents to be processed as plain JSON, without using any of the JSON-LD algorithms.

Because JSON-LD is very flexible, some terms from the original format may be locally overridden through the use of embedded contexts, and take a different meaning for JSON-LD based implementations. On the other hand, "plain JSON" implementations may not be able to interpret these embedded contexts, and hence will still interpret those terms with their original meaning. To prevent this divergence of interpretation, JSON-LD 1.1 allows term definitions to be protected.

A protected term definition is a term definition with an entry @protected set to true. It generally prevents further contexts from overriding this term definition, either through a new definition of the same term, or through clearing the context with "@context": null. Such attempts will raise an error EXAMPLE 54: Result of sourcing a context to modify @vocab and a term definition { "@context": { "@version": 1.1, "Type1": "http://example.com/vocab/Type1", "Type2": "http://example.com/vocab/Type2", "term1": { "@id": "http://example.org/vocab#term1", "@type": "http://www.w3.org/2001/XMLSchema#integer" }, ↑ Note term1 has been replaced prior to processing "term2": "http://example.com/vocab#term2", ..., "@vocab": "http://example.org/vocab#" } } 4.1.11 Protected Term Definitions § https://www.w3.org/TR/json-ld11/ and abort the processing (except in some specific situations described below).

When all or most term definitions of a context need to be protected, it is possible to add an entry @protected set to true to the context itself. It has the same effect as protecting each of its term definitions individually. Exceptions can be made by adding an entry @protected set to false in some term definitions.

EXAMPLE 55: A protected term definition can generally not be overridden { "@context": [{ "@version": 1.1, "Person": "http://xmlns.com/foaf/0.1/Person", "knows": "http://xmlns.com/foaf/0.1/knows", "name": { "@id": "http://xmlns.com/foaf/0.1/name", "@protected": true

} }, {

-this attempt will fail with an error "name": "http://schema.org/name" }], "@type": "Person", "name": "Manu Sporny", "knows": { "@context": [-this attempt would also fail with an error null,

"http://schema.org/"],

"name": "Gregg Kellogg" } } https://www.w3.org/TR/json-ld11/ While protected terms can in general not be overridden, there are two exceptions to this rule. The first exception is that a context is allowed to redefine a protected term if the new definition is identical to the protected term definition (modulo the @protected flag). The rationale is that the new definition does not violate the protection, as it does not change the semantics of the protected term. This is useful for widespread term definitions, such as aliasing @type to type, which may occur (including in a protected form) in several contexts.

Input

EXAMPLE 56: A protected @context with an exception

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": [{ "@version": 1.1, "@protected": true, "name": "http://schema.org/name", "member": "http://schema.org/member", "Person": { "@id": "http://schema.org/Person", "@protected": false } }], "name": "Digital Bazaar", "member": { "@context": { -name *is* protected, so the following would fail with an error -"name": "http://xmlns.com/foaf/0.1/Person", -Person is *not* protected, and can be overridden "Person": "http://xmlns.com/foaf/0.1/Person" }, "@type": "Person", "name": "Manu Sporny" } } https://www.w3.org/TR/json-ld11/

The second exception is that a property-scoped context is not affected by protection, and can therefore override protected terms, either with a new term definition, or by clearing the context with "@context": null.

The rationale is that "plain JSON" implementations, relying on a given specification, will only traverse properties defined by that specification.

Scoped contexts belonging to the specified properties are part of the specification, so the "plain JSON" implementations are expected to be aware of the change of semantics they induce. Scoped contexts belonging to other properties apply to parts of the document that "plain JSON" implementations EXAMPLE 57: Overriding permitted if both definitions are identical

Original

Expanded Statements Turtle

Open in playground { "@context": [{ "@version": 1.1, "@protected": true, "id": "@id", "type": "@type", "Organization": "http://example.org/orga/Organization", "member": { "@id": "http://example.org/orga/member", "@type": "@id" } }, { "id": "@id", "type": "@type", -Those "redefinitions" do not raise an error.

-Note however that the terms are still protected "Person": "http://schema.org/Person", "name": "http://schema.org/name" }],

"id": "https://digitalbazaar.com/", "type": "Organization", "member" : { "id": "http://manu.sporny.org/about#manu", "type": "Person", "name": "Manu Sporny" } } https://www.w3.org/TR/json-ld11/ will ignore. In both cases, there is therefore no risk of diverging interpretations between JSON-LD-aware implementations and "plain JSON" implementations, so overriding is permitted.

Input

EXAMPLE 58: overriding permitted in property scoped context

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": [{ -This context reflects the specification used by "plain JSON" implementat "@version": 1.1, "@protected": true, "Organization": "http://schema.org/Organization", "name": "http://schema.org/name", "employee": { "@id": "http://schema.org/employee", "@context": { "@protected": true, "name": "http://schema.org/familyName" } ↑ overrides the definition of "name" } },

{

-This context extends the previous one, -only JSON-LD-aware implementations are expected to use it "location": { "@id": "http://xmlns.com/foaf/0.1/based_near", "@context": [null, ↑ clears the context entirely, including all protected terms { "@vocab": "http://xmlns.com/foaf/0.1/" }] } }], "@type": "Organization", "name": "Digital Bazaar", "employee" : { "name": "Sporny", "location": {"name": "Blacksburg, Virginia"} } } https://www.w3.org/TR/json-ld11/ NOTE By preventing terms from being overridden, protection also prevents any adaptation of a term (e.g., defining a more precise datatype, restricting the term's use to lists, etc.). This kind of adaptation is frequent with some general purpose contexts, for which protection would therefore hinder their usability. As a consequence, context publishers should use this feature with care.

NOTE

Protected term definitions are a new feature in JSON-LD 1.1.

This section is non-normative.

Values are leaf nodes in a graph associated with scalar values such as strings, dates, times, and other such atomic values. This section is non-normative.

A value with an associated type, also known as a typed value, is indicated by associating a value with an IRI which indicates the value's type. Typed values may be expressed in JSON-LD in three ways:

1. By utilizing the @type keyword when defining a term within an @context section.

2. By utilizing a value object.

3. By using a native JSON type such as number, true, or false.

The first example uses the @type keyword to associate a type with a particular term in the @context: Open in playground { "@context": { "modified": { "@id": "http://purl.org/dc/terms/modified", "@type": "http://www.w3.org/2001/XMLSchema#dateTime" } }, ... "@id": "http://example.com/docs/1", "modified": "2010-05-29T14:17:39+02:00", ...

NOTE

The @type keyword is also used to associate a type with a node. The concept of a node type and a value type are distinct. For more on adding types to nodes, see § 3.5 Specifying the Type.

NOTE

When expanding, an @type defined within a term definition can be associated with a string value to create an expanded value object, which is described in § 4.2.3 Type Coercion. Type coercion only takes place on string values, not for values which are maps, such as node objects and value objects in their expanded form.

A node type specifies the type of thing that is being described, like a person, place, event, or web page. A value type specifies the data type of a particular value, such as an integer, a floating point number, or a date.

The first use of @type associates a node type (http://schema.org/BlogPosting) with the node, which is expressed using the @id keyword. The second use of @type associates a value type (http://www.w3.org/2001/XMLSchema#dateTime) with the value expressed using the @value keyword. As a general rule, when @value and @type are used in the same map, the @type keyword is expressing a value type. Otherwise, the @type keyword is expressing a node type. The example above expresses the following data: EXAMPLE 61: Example demonstrating the context-sensitivity for @type { ... "@id": "http://example.org/posts#TripToWestVirginia", "@type": "http://schema.org/BlogPosting", ← This is a node type "http://purl.org/dc/terms/modified": { "@value": "2010-05-29T14:17:39+02:00", "@type": "http://www.w3.org/2001/XMLSchema#dateTime" ← This is a value type } ... } https://www.w3.org/TR/json-ld11/

⚠

This section is non-normative.

At times, it is useful to include JSON within JSON-LD that is not interpreted as JSON-LD. Generally, a JSON-LD processor will ignore properties which don't map to IRIs, but this causes them to be excluded when performing various algorithmic transformations. But, when the data that is being described is, itself, JSON, it's important that it survive algorithmic transformations.

Warning JSON-LD is intended to allow native JSON to be interpreted through the use of a context. The use of JSON literals creates blobs of data which are not available for interpretation. It is for use only in the rare cases that JSON cannot be represented as JSON-LD.

When a term is defined with @type set to @json, a JSON-LD processor will treat the value as a JSON literal, rather than interpreting it further as JSON-LD. In the expanded document form, such JSON will become the value of @value within a value object having "@type": "@json".

When transformed into RDF, the JSON literal will have a lexical form based on a specific serialization of the JSON, as described in Compaction algorithm of and the JSON datatype.

The following example shows an example of a JSON Literal contained as the value of a property. Note that the RDF results use a canonicalized form of the

NOTE

Generally, when a JSON-LD processor encounters null, the associated entry or value is removed. However, null is a valid JSON token; when used as the value of a JSON literal, a null value will be preserved.

This section is non-normative. Type coercion is specified within an expanded term definition using the @type key. The value of this key expands to an IRI. Alternatively, the keyword @id or @vocab may be used as value to indicate that within the body of a JSON-LD document, a string value of a term coerced to @id or @vocab is to be Open in playground { "@context": { "@version": 1.1, "e": {"@id": "http://example.com/vocab/json", "@type": "@json"} interpreted as an IRI. The difference between @id and @vocab is how values are expanded to IRIs. @vocab first tries to expand the value by interpreting it as term. If no matching term is found in the active context, it tries to expand it as an IRI or a compact IRI if there's a colon in the value; otherwise, it will expand the value using the active context's vocabulary mapping, if present.

Values coerced to @id in contrast are expanded as an IRI or a compact IRI if a colon is present; otherwise, they are interpreted as relative IRI references.

NOTE

The ability to coerce a value using a term definition is distinct from setting one or more types on a node object, as the former does not result in new data being added to the graph, while the later manages node types through adding additional relationships to the graph.

Terms or compact IRIs used as the value of a @type key may be defined within the same context. This means that one may specify a term like xsd and then Open in playground { "@context": { "xsd": "http://www.w3.org/2001/XMLSchema#", "name": "http://xmlns.com/foaf/0.1/name", "age": { "@id": "http://xmlns.com/foaf/0.1/age", "@type": "xsd:integer" }, "homepage": { "@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id" } }, "@id": "http://example.com/people#john", "name": "John Smith", "age": "41", "homepage": ["http://personal.example.org/", "http://work.example.com/jsmith/"] } https://www.w3.org/TR/json-ld11/ The unexpected result is that "barney" expands to both http://example1.com /barney and http://example2.com/barney, depending where it is encountered. String values interpreted as IRIs because of the associated term definitions are typically considered to be document-relative. In some cases, it makes sense to interpret these relative to the vocabulary, prescribed using "@type": "@vocab" in the term definition, though this can lead to unexpected consequences such as these.

In the previous example, "barney" appears twice, once as the value of @id, which is always interpreted as a document-relative IRI, and once as the value of "fred", which is defined to be vocabulary-relative, thus the different expanded values.

For more on this see § 4.1.2 Default Vocabulary.

A variation on the previous example using "@type": "@id" instead of @vocab illustrates the behavior of interpreting "barney" relative to the document: Open in playground { "@context": { "@base": "http://example1.com/", "@vocab": "http://example2.com/", "knows": {"@type": "@vocab"} }, "@id": "fred", "knows": [{"@id": "barney", "mnemonic": "the sidekick"}, "barney"] } https://www.w3.org/TR/json-ld11/

NOTE

The triple ex1:fred ex2:knows ex1:barney . is emitted twice, but exists only once in an output dataset, as it is a duplicate triple.

Terms may also be defined using IRIs or compact IRIs. This allows coercion rules to be applied to keys which are not represented as a simple term. For example:

Input EXAMPLE 66: Terms not expanded when document-relative

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@base": "http://example1.com/", "@vocab": "http://example2.com/", "knows": {"@type": "@id"} }, "@id": "fred", "knows": [{"@id": "barney", "mnemonic": "the sidekick"}, "barney"] } https://www.w3.org/TR/json-ld11/ In this case the @id definition in the term definition is optional. If it does exist, the IRI or compact IRI representing the term will always be expanded to IRI defined by the @id key-regardless of whether a prefix is defined or not.

Type coercion is always performed using the unexpanded value of the key. In the example above, that means that type coercion is done looking for foaf:age in the active context and not for the corresponding, expanded IRI http://xmlns.com/foaf/0.1/age.

NOTE

Keys in the context are treated as terms for the purpose of expansion and value coercion. At times, this may result in multiple representations for the same expanded IRI. For example, one could specify that dog and cat both expanded to http://example.com/vocab#animal. Doing this could be useful for establishing different type coercion or language specification rules.

Input

EXAMPLE 67: Term definitions using IRIs and compact IRIs

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "xsd": "http://www.w3.org/2001/XMLSchema#", "foaf": "http://xmlns.com/foaf/0.1/", "foaf:age": { "@id": "http://xmlns.com/foaf/0.1/age", "@type": "xsd:integer" }, "http://xmlns.com/foaf/0.1/homepage": { "@type": "@id" } }, "foaf:name": "John Smith", "foaf:age": "41", "http://xmlns.com/foaf/0.1/homepage": ["http://personal.example.org/", "http://work.example.com/jsmith/"] }

String Internationalization

https://www.w3.org/TR/json-ld11/ This section is non-normative.

At times, it is important to annotate a string with its language. In JSON-LD this is possible in a variety of ways. First, it is possible to define a default language for a JSON-LD document by setting the @language key in the context:

The example above would associate the ja language tag with the two strings 花澄 and 科学者 Languages tags are defined in [BCP47]. The default language applies to all string values that are not type coerced.

To clear the default language for a subtree, @language can be set to null in an intervening context, such as a scoped context as follows:

Input EXAMPLE 68: Setting the default language of a JSON-LD document

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "name": "http://example.org/name", "occupation": "http://example.org/occupation", ... "@language": "ja" },

"name": "花澄", "occupation": "科学者" } https://www.w3.org/TR/json-ld11/ Second, it is possible to associate a language with a specific term using an expanded term definition:

The example above would associate 忍者 with the specified default language tag ja, Ninja with the language tag en, and Nindža with the language tag cs.

The value of name, Yagyū Muneyoshi wouldn't be associated with any language tag since @language was reset to null in the expanded term EXAMPLE 69: Clearing default language { "@context": { ... "@version": 1.1, "@vocab": "http://example.com/", "@language": "ja", "details": { "@context": { "@language": null } } }, "name": "花澄", "details": {"occupation": "Ninja"} } EXAMPLE 70: Expanded term definition with language { "@context": { ... "ex": "http://example.com/vocab/", "@language": "ja", "name": { "@id": "ex:name", "@language": null }, "occupation": { "@id": "ex:occupation" }, "occupation_en": { "@id": "ex:occupation", "@language": "en" }, "occupation_cs": { "@id": "ex:occupation", "@language": "cs" } }, "name": "Yagyū Muneyoshi", "occupation": "忍者", "occupation_en": "Ninja", "occupation_cs": "Nindža", ...

NOTE

Language associations are only applied to plain strings. Typed values or values that are subject to type coercion are not language tagged. Just as in the example above, systems often need to express the value of a property in multiple languages. Typically, such systems also try to ensure that developers have a programmatically easy way to navigate the data structures for the language-specific data. In this case, language maps may be utilized.

The example above expresses exactly the same information as the previous example but consolidates all values in a single property. To access the value in a specific language in a programming language supporting dot-notation accessors for object properties, a developer may use the property.language pattern (when languages are limited to the primary language sub-tag, and do not depend on other sub-tags, such as "en-us"). For example, to access the occupation in English, a developer would use the following code snippet: obj.occupation.en.

Third, it is possible to override the default language by using a value object:

EXAMPLE 71: Language map expressing a property in three languages { "@context": { ... "occupation": { "@id": "ex:occupation", "@container": "@language" } }, "name": "Yagyū Muneyoshi", "occupation": { "ja": "忍者", "en": "Ninja", "cs": "Nindža" } ... } https://www.w3.org/TR/json-ld11/ This makes it possible to specify a plain string by omitting the @language tag or setting it to null when expressing it using a value object: See § 9.8 Language Maps for a description of using language maps to set the language of mapped values. This section is non-normative.

It is also possible to annotate a string, or language-tagged string, with its base direction. As with language, it is possible to define a default base EXAMPLE 72: Overriding default language using an expanded value { "@context": { ... "@language": "ja" }, "name": "花澄", "occupation": { "@value": "Scientist", "@language": "en" } } EXAMPLE 73: Removing language information using an expanded value { "@context": { ... "@language": "ja" }, "name": { "@value": "Frank" }, "occupation": { "@value": "Ninja", "@language": "en" }, "speciality": "⼿裏剣" } 4.2.4.1 Base Direction § https://www.w3.org/TR/json-ld11/ direction for a JSON-LD document by setting the @direction key in the context:

The example above would associate the ar-EG language tag and "rtl" base To clear the default base direction for a subtree, @direction can be set to null in an intervening context, such as a scoped context as follows: Open in playground { "@context": { "title": "http://example.org/title", "publisher": "http://example.org/publisher", ... "@language": "ar-EG", "@direction": "rtl"

"@version": 1.1,

"@vocab": "http://example.com/", "@language": "ar-EG", "@direction": "rtl", "details": { "@context": { "@direction": null } This section is non-normative.

}

A JSON-LD author can express multiple values in a compact way by using arrays. Since graphs do not describe ordering for links between nodes, arrays in JSON-LD do not convey any ordering of the contained elements by default. This is exactly the opposite from regular JSON arrays, which are ordered by default. For example, consider the following simple document:

Multiple values may also be expressed using the expanded form: EXAMPLE 77: Overriding default language and default base direction using an expanded value { "@context": { ... "@language": "ar-EG", "@direction": "rtl" }, "title": "HTML و CSS:

ﺗ ﺼ ﻤ ﻴ ﻢ و إ ﻧ ﺸ ﺎ ء ﻣ ﻮ ا ﻗ ﻊ ا ﻟ ﻮ ﻳ ﺐ
", "author": { "@value": "Jon Duckett", "@language": "en", "@direction": null Open in playground { "@context": {"foaf": "http://xmlns.com/foaf/0.1/"}, ... "@id": "http://example.org/people#joebob", "foaf:nick": ["joe", "bob", "JB"],

... This section is non-normative.

As the notion of ordered collections is rather important in data modeling, it is useful to have specific language support. In JSON-LD, a list may be represented using the @list keyword as follows:

This describes the use of this array as being ordered, and order is maintained when processing a document. If every use of a given multi-valued property is a list, this may be abbreviated by setting @container to @list in the context: Open in playground { "@context": {"foaf": "http://xmlns.com/foaf/0.1/"}, ... "@id": "http://example.org/people#joebob", "foaf:nick": { "@list": ["joe", "bob", "jaybee"] }, ... Values of terms associated with an @list container are always represented in the form of an array, even if there is just a single value or no value at all. This section is non-normative.

While @list is used to describe ordered lists, the @set keyword is used to describe unordered sets. The use of @set in the body of a JSON-LD document is optimized away when processing the document, as it is just syntactic sugar.

However, @set is helpful when used within the context of a document. Values of terms associated with an @set container are always represented in the form of an array, even if there is just a single value that would otherwise be optimized to a non-array form in compact form (see § 5. Open in playground { "@context": { "@vocab": "https://purl.org/geojson/vocab#", "type": "@type", "bbox": {"@container": "@list"}, "coordinates": {"@container": "@list"} }, "type": "Feature", "bbox": [-10.0, -10.0, 10.0, 10.0], "geometry": { "type": "Polygon", "coordinates": [

Sets §

https://www.w3.org/TR/json-ld11/ Document Form). This makes post-processing of JSON-LD documents easier as the data is always in array form, even if the array only contains a single value.

This describes the use of this array as being unordered, and order may change when processing a document. By default, arrays of values are unordered, but this may be made explicit by setting @container to @set in the context: Since JSON-LD 1.1, the @set keyword may be combined with other container specifications within an expanded term definition to similarly cause compacted values of indexes to be consistently represented using arrays. See § 4.6 Indexed Values for a further discussion.

Input EXAMPLE 85: An unordered collection of values in JSON-LD

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": {"foaf": "http://xmlns.com/foaf/0.1/"}, ... "@id": "http://example.org/people#joebob", "foaf:nick": { "@set": ["joe", "bob", "jaybee"] }, ... } Input EXAMPLE 86: Specifying that a collection is unordered in the context

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { ... "nick": { "@id": "http://xmlns.com/foaf/0.1/nick", "@container": "@set" } }, ... "@id": "http://example.org/people#joebob", "nick": ["joe", "bob", "jaybee"],

... } https://www.w3.org/TR/json-ld11/ This section is non-normative.

Unless the processing mode is set to json-ld-1.0, @type may be used with an expanded term definition with @container set to @set; no other entries may be set within such an expanded term definition. This is used by the Compaction algorithm to ensure that the values of @type (or an alias) are always represented in an array. This section is non-normative.

Many JSON APIs separate properties from their entities using an intermediate object; in JSON-LD these are called nested properties. For example, a set of possible labels may be grouped under a common property: 4.3.3 Using @set with @type § EXAMPLE 87: Setting @container: @set on @type { "@context": { "@version": 1.1, "@type": {"@container": "@set"} }, "@type": ["http:/example.org/type"] } 4.4 Nested Properties § https://www.w3.org/TR/json-ld11/ By defining labels using the keyword @nest, a JSON-LD processor will ignore the nesting created by using the labels property and process the contents as if it were declared directly within containing object. In this case, the labels property is semantically meaningless. Defining it as equivalent to @nest causes it to be ignored when expanding, making it equivalent to the following:

Input EXAMPLE 88: Nested properties

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "skos": "http://www.w3.org/2004/02/skos/core#", "labels": "@nest", "main_label": {"@id": "skos:prefLabel"}, "other_label": {"@id": "skos:altLabel"}, "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"} }, "@id": "http://example.org/myresource", "homepage": "http://example.org", "labels": { "main_label": "This is the main label for my resource", "other_label": "This is the other label" } } Input EXAMPLE 89: Nested properties folded into containing object

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "skos": "http://www.w3.org/2004/02/skos/core#", "main_label": {"@id": "skos:prefLabel"}, "other_label": {"@id": "skos:altLabel"}, "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"} }, "@id": "http://example.org/myresource", "homepage": "http://example.org", "main_label": "This is the main label for my resource", "other_label": "This is the other label" } https://www.w3.org/TR/json-ld11/ Similarly, term definitions may contain a @nest property referencing a term aliased to @nest which will cause such properties to be nested under that aliased term when compacting. In the example below, both main_label and other_label are defined with "@nest": "labels", which will cause them to be serialized under labels when compacting.

Input

EXAMPLE 90: Defining property nesting -Expanded Input [{ "@id": "http://example.org/myresource", "http://xmlns.com/foaf/0.1/homepage": [{"@id": "http://example.org"}],

"http://www.w3.org/2004/02/skos/core#prefLabel": [{"@value": "This is the main label for my resource"}], "http://www.w3.org/2004/02/skos/core#altLabel": [{"@value": "This is the other label"}] }]

Context

EXAMPLE 91: Defining property nesting -Context { "@context": { "@version": 1.1, "skos": "http://www.w3.org/2004/02/skos/core#", "labels": "@nest", "main_label": {"@id": "skos:prefLabel", "@nest": "labels"}, "other_label": {"@id": "skos:altLabel", "@nest": "labels"}, "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"} } } https://www.w3.org/TR/json-ld11/ NOTE Nested properties are a new feature in JSON-LD 1.1.

This section is non-normative.

Embedding is a JSON-LD feature that allows an author to use node objects as property values. This is a commonly used mechanism for creating a parentchild relationship between two nodes.

Without embedding, node objects can be linked by referencing the identifier of another node object. For example:

Result EXAMPLE 92: Defining property nesting

Compacted (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "skos": "http://www.w3.org/2004/02/skos/core#", "labels": "@nest", "main_label": {"@id": "skos:prefLabel", "@nest": "labels"}, "other_label": {"@id": "skos:altLabel", "@nest": "labels"}, "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"} }, "@id": "http://example.org/myresource", "homepage": "http://example.org", "labels": { "main_label": "This is the main label for my resource", "other_label": "This is the other label" } } 4.5 Embedding § https://www.w3.org/TR/json-ld11/

The previous example describes two node objects, for Manu and Gregg, with the knows property defined to treat string values as identifiers. Embedding allows the node object for Gregg to be embedded as a value of the knows property:

A node object, like the one used above, may be used in any value position in the body of a JSON-LD document.

Input EXAMPLE 93: Referencing node objects

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@vocab": "http://xmlns.com/foaf/0.1/", "knows": {"@type": "@id"} }, "@graph": [{ "name": "Manu Sporny", "@type": "Person", "knows": "https://greggkellogg.net/foaf#me" }, { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg" }] } Input EXAMPLE 94: Embedding a node object as property value of another node object

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@vocab": "http://xmlns.com/foaf/0.1/" }, "@type": "Person", "name": "Manu Sporny", "knows": { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg" } } https://www.w3.org/TR/json-ld11/ While it is considered a best practice to identify nodes in a graph, at times this is impractical. In the data model, nodes without an explicit identifier are called blank nodes, which can be represented in a serialization such as JSON-LD using a blank node identifier. In the previous example, the top-level node for Manu does not have an identifier, and does not need one to describe it within the data model. However, if we were to want to describe a knows relationship from Gregg to Manu, we would need to introduce a blank node identifier (here _:b0).

Blank node identifiers may be automatically introduced by algorithms such as flattening, but they are also useful for authors to describe such relationships directly.

This section is non-normative.

At times, it becomes necessary to be able to express information without being able to uniquely identify the node with an IRI. This type of node is called a blank node. JSON-LD does not require all nodes to be identified using @id. However, some graph topologies may require identifiers to be serializable. Graphs containing loops, e.g., cannot be serialized using embedding alone, @id must be used to connect the nodes. In these situations, one can use blank node identifiers, which look like IRIs using an underscore Open in playground { "@context": { "@vocab": "http://xmlns.com/foaf/0.1/" }, "@id": "_:b0", "@type": "Person", "name": "Manu Sporny", "knows": { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg", "knows": {"@id": "_:b0"} } }

Identifying Blank Nodes §

https://www.w3.org/TR/json-ld11/ (_) as scheme. This allows one to reference the node locally within the document, but makes it impossible to reference the node from an external document. The blank node identifier is scoped to the document in which it is used.

The example above contains information about two secret agents that cannot be identified with an IRI. While expressing that agent 1 knows agent 2 is possible without using blank node identifiers, it is necessary to assign agent 1 an identifier so that it can be referenced from agent 2.

It is worth noting that blank node identifiers may be relabeled during processing. If a developer finds that they refer to the blank node more than once, they should consider naming the node using a dereferenceable IRI so that it can also be referenced from other documents. This section is non-normative.

Sometimes multiple property values need to be accessed in a more direct fashion than iterating though multiple array values. JSON-LD provides an indexing mechanism to allow the use of an intermediate map to associate specific indexes with associated values.

Data Indexing

As described in § 4.6.1 Data Indexing, data indexing allows an arbitrary key to reference a node or value.

Language Indexing

Input EXAMPLE 96: Specifying a local blank node identifier

Compacted (Input) Expanded (Result) Statements Turtle
Open in playground { "@context": "http://schema.org/", ... "@id": "_:n1", "name": "Secret Agent 1", "knows": { "name": "Secret Agent 2", "knows": { "@id": "_:n1" } } } 4.6 Indexed Values § https://www.w3.org/TR/json-ld11/ As described in § 4.6.2 Language Indexing, language indexing allows a language to reference a string and be interpreted as the language associated with that string.

Node Identifier Indexing

As described in § 4.6.3 Node Identifier Indexing, node identifier indexing allows an IRI to reference a node and be interpreted as the identifier of that node.

Node Type Indexing

As described in § 4.6.4 Node Type Indexing, node type indexing allows an IRI to reference a node and be interpreted as a type of that node.

See § 4.9 Named Graphs for other uses of indexing in JSON-LD.

This section is non-normative.

Databases are typically used to make access to data more efficient.

Developers often extend this sort of functionality into their application data to deliver similar performance gains. This data may have no meaning from a Linked Data standpoint, but is still useful for an application.

JSON-LD introduces the notion of index maps that can be used to structure data into a form that is more efficient to access. The data indexing feature allows an author to structure data using a simple key-value map where the keys do not map to IRIs. This enables direct access to data instead of having to scan an array in search of a specific item. In JSON-LD such data can be specified by associating the @index keyword with a @container declaration in the context:

Data Indexing §

https://www.w3.org/TR/json-ld11/

In the example above, the athletes term has been marked as an index map.

The catcher and pitcher keys will be ignored semantically, but preserved syntactically, by the JSON-LD Processor. If used in JavaScript, this can allow a developer to access a particular athlete using the following code snippet: Open in playground { "@context": { "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "athletes": { "@id": "schema:athlete", "@container": "@index" }, "position": "schema:jobTitle" }, "@id": "http://example.com/", "@type": "schema:SportsTeam", "name": "San Franciso Giants", "athletes": { "catcher": { "@type": "schema:Person", "name": "Buster Posey", "position": "Catcher" }, "pitcher": { "@type": "schema:Person", "name": "Madison Bumgarner", "position": "Starting Pitcher" },

} }

https://www.w3.org/TR/json-ld11/ This section is non-normative.

In its simplest form (as in the examples above), data indexing assigns no semantics to the keys of an index map. However, in some situations, the keys

Input

EXAMPLE 98: Indexing data using @none

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "athletes": { "@id": "schema:athlete", "@container": "@index" }, "position": "schema:jobTitle" }, "@id": "http://example.com/", "@type": "schema:SportsTeam", "name": "San Franciso Giants", "athletes": { "catcher": { "@type": "schema:Person", "name": "Buster Posey", "position": "Catcher" }, "pitcher": { "@type": "schema:Person", "name": "Madison Bumgarner", "position": "Starting Pitcher" }, "@none": { "name": "Lou Seal", "position": "Mascot" }, } } 4.6.1.1 Property-based data indexing § https://www.w3.org/TR/json-ld11/ used to index objects are semantically linked to these objects, and should be preserved not only syntactically, but also semantically.

Unless the processing mode is set to json-ld-1.0, "@container": "@index" in a term description can be accompanied with an "@index" key. The value of that key must map to an IRI, which identifies the semantic property linking each object to its key. Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "athletes": { "@id": "schema:athlete", "@container": "@index", "@index": "schema:jobTitle" } }, "@id": "http://example.com/", "@type": "schema:SportsTeam", "name": "San Franciso Giants", "athletes": { "Catcher": { ↑ "Catcher" will add `"schema:jobTitle": "Catcher"` when expanded "@type": "schema:Person", "name": "Buster Posey" }, "Starting Pitcher": { "@type": "schema:Person", "name": "Madison Bumgarner" }, } } https://www.w3.org/TR/json-ld11/ This section is non-normative.

Input

In addition to index maps, JSON-LD introduces the notion of id maps for structuring data. The id indexing feature allows an author to structure data using a simple key-value map where the keys map to IRIs. This enables direct access to associated node objects instead of having to scan an array in search of a specific item. In JSON-LD such data can be specified by associating the @id keyword with a @container declaration in the context: Input EXAMPLE 102: Indexing languaged-tagged strings using @none for no language

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "vocab": "http://example.com/vocab/", "label": { "@id": "vocab:label", "@container": "@language" } }, "@id": "http://example.com/queen", "label": { "en": "The Queen", "de": ["Die Königin", "Ihre Majestät"],

"@none": "The Queen" } } 4.6.3 Node Identifier Indexing § https://www.w3.org/TR/json-ld11/

The special index @none is used for indexing node objects which do not have an @id, which is useful to maintain a normalized representation. The @none index may also be a term which expands to @none, such as the term none used in the example below.

Input

EXAMPLE 104: Indexing data in JSON-LD by node identifiers with @set representation

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "words": "schema:wordCount", "post": { "@id": "schema:blogPost", "@container": ["@id", "@set"] } }, "@id": "http://example.com/", "@type": "schema:Blog", "name": "World Financial News", "post": { "http://example.com/posts/1/en": [{ "body": "World commodities were up today with heavy trading of crude oil.. This section is non-normative.

Input

EXAMPLE 105: Indexing data in JSON-LD by node identifiers using @none

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "words": "schema:wordCount", "post": { "@id": "schema:blogPost", "@container": "@id" }, "none": "@none" }, "@id": "http://example.com/", "@type": "schema:Blog", "name": "World Financial News", "post": { "http://example.com/posts/1/en": { "body": "World commodities were up today with heavy trading of crude oil.. "words": 1539 }, "http://example.com/posts/1/de": { "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von "words": 1204 }, "none": { "body": "Description for object without an @id", "words": 20 } } } 4.6.4 Node Type Indexing § https://www.w3.org/TR/json-ld11/ The special index @none is used for indexing node objects which do not have an @type, which is useful to maintain a normalized representation. The @none index may also be a term which expands to @none, such as the term none used in the example below.

Input

EXAMPLE 107: Indexing data in JSON-LD by type with @set representation

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "affiliation": { "@id": "schema:affiliation", "@container": ["@type", "@set"] } }, "name": "Manu Sporny", "affiliation": { "schema:Corporation": [{ "@id": "https://digitalbazaar.com/", "name": "Digital Bazaar" }],

"schema:ProfessionalService": [{ "@id": "https://spec-ops.io", "name": "Spec-Ops" }] } } https://www.w3.org/TR/json-ld11/ As with id maps, when used with @type, a container may also include @set to ensure that key values are always contained in an array.

NOTE

Type maps are a new feature in This section is non-normative.

Input

EXAMPLE 108: Indexing data in JSON-LD by type using @none

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "affiliation": { "@id": "schema:affiliation", "@container": "@type" }, "none": "@none" }, "name": "Manu Sporny", "affiliation": { "schema:Corporation": { "@id": "https://digitalbazaar.com/", "name": "Digital Bazaar" }, "schema:ProfessionalService": { "@id": "https://spec-ops.io", "name": "Spec-Ops" }, "none": { "@id": "https://greggkellogg.net/", "name": "Gregg Kellogg" } } } 4.7 Included Nodes § https://www.w3.org/TR/json-ld11/ Sometimes it is also useful to list node objects as part of another node object.

For instance, to represent a set of resources which are used by some other resource. Included blocks may be also be used to collect such secondary node objects which can be referenced from a primary node object. For an example, consider a node object containing a list of different items, some of which share some common elements: When flattened, this will move the enum:c6 and enum:s2 elements from the included block into the outer array.

Input

EXAMPLE 109: Included Blocks { "@context": { "@version": 1.1, "@vocab": "http://example.org/", "classification": {"@type": "@vocab"}, "service": {"@type": "@vocab"} }, "@id": "http://example.org/base/1", "@type": "Thing-with-Items", "items": [{ "@id":"http://example.org/base/2", "classification": "enum#c6", "service": "enum#s2" }, { "@id": "http://example.org/base/3", "classification": "enum#c6" }],

"@included": [{ "@id": "http://example.org/enum#c6", "@type": "Type", "label": "Classification 6" }, { "@id": "http://example.org/enum#s2", "@type": "Service", "label": "Login Service"

}]

} https://www.w3.org/TR/json-ld11/ Included resources are described in Inclusion of Related Resources of JSON API [JSON.API] as a way to include related resources associated with some primary resource; @included provides an analogous possibility in JSON-LD.

As a by product of the use of @included within node objects, a map may contain only @included, to provide a feature similar to that described in § 4.1

Advanced Context Usage, where @graph is used to described disconnected nodes.

Result

EXAMPLE 110: Flattened form for included blocks

Flattened (Result) Statements Turtle

Open in playground [{ "@id": "http://example.org/base/1", "@type": ["http://example.org/Thing-with-Items"], "http://example.org/items": [{"@id": "http://example.org/base/2"}, {"@id": "http://example.org/base/3"}] }, { "@id": "http://example.org/enum#c6", "@type": ["http://example.org/Type"],

"http://example.org/label": [{"@value": "Classification 6"}] }, { "@id": "http://example.org/enum#s2", "@type": ["http://example.org/Service"],

"http://example.org/label": [{"@value": "Login Service"}] }, { "@id": "http://example.org/base/2", "http://example.org/classification": [{"@id": "http://example.org/enum#c6"}],

"http://example.org/service": [{"@id": "http://example.org/enum#s2"}] }, { "@id": "http://example.org/base/3", "http://example.org/classification": [{"@id": "http://example.org/enum#c6"}] }] https://www.w3.org/TR/json-ld11/ However, in contrast to @graph, @included does not interact with other properties contained within the same map, a feature discussed further in § 4.9 Named Graphs. This section is non-normative.

JSON-LD serializes directed graphs. That means that every property points from a node to another node or value. However, in some cases, it is desirable to serialize in the reverse direction. Consider for example the case where a person and its children should be described in a document. If the used vocabulary does not provide a children property but just a parent property, every node representing a child would have to be expressed with a property pointing to the parent as in the following example. Open in playground { "@context": { "Person": "http://xmlns.com/foaf/0.1/Person", "name": "http://xmlns.com/foaf/0.1/name", "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"} }, "@included": [{ "@id": "http://manu.sporny.org/about#manu", "@type": "Person", "name": "Manu Sporny", "knows": "https://greggkellogg.net/foaf#me" }, { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg", "knows": "http: Expressing such data is much simpler by using JSON-LD's @reverse keyword:

Input

The @reverse keyword can also be used in expanded term definitions to create reverse properties as shown in the following example:

Input EXAMPLE 112: A document with children linking to their parent

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground [{ "@id": "#homer", "http://example.com/vocab#name": "Homer" }, { "@id": "#bart", "http://example.com/vocab#name": "Bart", "http://example.com/vocab#parent": { "@id": "#homer" } }, { "@id": "#lisa", "http://example.com/vocab#name": "Lisa", "http://example.com/vocab#parent": { "@id": "#homer" } }] Input EXAMPLE 113: A person and its children using a reverse property

Compacted (Input) Expanded (Result) Flattened Statements Turtle
Open in playground { "@id": "#homer", "http://example.com/vocab#name": "Homer", "@reverse": { "http://example.com/vocab#parent": [{ "@id": "#bart", "http://example.com/vocab#name": "Bart" }, { "@id": "#lisa", "http://example.com/vocab#name": "Lisa" }] } } https://www.w3.org/TR/json-ld11/ This section is non-normative.

At times, it is necessary to make statements about a graph itself, rather than just a single node. This can be done by grouping a set of nodes using the @graph keyword. A developer may also name data expressed using the @graph keyword by pairing it with an @id keyword as shown in the following example: Input EXAMPLE 114: Using @reverse to define reverse properties

Compacted (Input) Expanded (Result) Flattened Statements Turtle
Open in playground { "@context": { "name": "http://example.com/vocab#name", "children": { "@reverse": "http://example.com/vocab#parent" } }, "@id": "#homer", "name": "Homer", "children": [{ "@id": "#bart", "name": "Bart" }, { "@id": "#lisa", "name": "Lisa" }] } 4.9 Named Graphs § https://www.w3.org/TR/json-ld11/ This section is non-normative.

In some cases, it is useful to logically partition data into separate graphs, without making this explicit within the JSON expression. For example, a JSON document may contain data against which other metadata is asserted and it is useful to separate this data in the data model using the notion of named graphs, without the syntactic overhead associated with the @graph keyword.

An expanded term definition can use @graph as the value of @container. This indicates that values of this term should be considered to be named graphs, where the graph name is an automatically assigned blank node identifier creating an implicitly named graph. When expanded, these become simple graph objects.

A different example uses an anonymously named graph as follows:

Input EXAMPLE 117: Context needs to be duplicated if @graph is not used

Compacted (Input) Expanded (Result) Statements TriG

Open in playground [{ "@context": { "@vocab": "http://xmlns.com/foaf/0.1/", "knows": {"@type": "@id"} }, "@id": "http://manu.sporny.org/about#manu", "@type": "Person", "name": "Manu Sporny", "knows": "https://greggkellogg.net/foaf#me" }, { "@context": { "@vocab": "http://xmlns.com/foaf/0.1/", "knows": {"@type": "@id"} }, "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg", "knows": "http://manu.sporny.org/about#manu" }] 4.9.1 Graph Containers § https://www.w3.org/TR/json-ld11/

The example above expresses an anonymously named graph making a statement. The default graph includes a statement saying that the subject wrote that statement. This is an example of separating statements into a named graph, and then making assertions about the statements contained within that named graph.

NOTE

Strictly speaking, the value of such a term is not a named graph, rather it is the graph name associated with the named graph, which exists separately within the dataset.

NOTE

Graph Containers are a new feature in JSON-LD 1.1. This section is non-normative.

In addition to indexing node objects by index, graph objects may also be indexed by an index. By using the @graph container type, introduced in § 4.9.1 Graph Containers in addition to @index, an object value of such a property is Input EXAMPLE 118: Implicitly named graph

Compacted (Input) Expanded (Result) Statements TriG

Open in playground { "@context": { "@version": 1.1, "@base": "http://dbpedia.org/resource/", "said": "http://example.com/said", "wrote": {"@id": "http://example.com/wrote", "@container": "@graph"} }, "@id": "William_Shakespeare", "wrote": { "@id": "Richard_III_of_England", "said": "My kingdom for a horse" } } 4.9.2 Named Graph Data Indexing § https://www.w3.org/TR/json-ld11/ treated as a key-value map where the keys do not map to IRIs, but are taken from an @index property associated with named graphs which are their values. When expanded, these must be simple graph objects

The following example describes a default graph referencing multiple named graphs using an index map.

As with index maps, when used with @graph, a container may also include @set to ensure that key values are always contained in an array.

The special index @none is used for indexing graphs which do not have an @index key, which is useful to maintain a normalized representation. Note, however, that compacting a document where multiple unidentified named Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "words": "schema:wordCount", "post": { "@id": "schema:blogPost", "@container": ["@graph", "@index"] } }, "@id": "http://example.com/", "@type": "schema:Blog", "name": "World Financial News", "post": { "en": { "@id": "http://example.com/posts/1/en", "body": "World commodities were up today with heavy trading of crude oil. "words": 1539 }, "de": { "@id": "http://example.com/posts/1/de", "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels vo "words": 1204 } } } https://www.w3.org/TR/json-ld11/ graphs are compacted using the @none index will result in the content of those graphs being merged. To prevent this, give each graph a distinct @index key.

NOTE

Named Graph Data Indexing is a new feature in JSON-LD 1.1.

Input

EXAMPLE 120: Indexing graphs using @none for no index

Compacted (Input) Expanded (Result) Statements TriG

Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "words": "schema:wordCount", "post": { "@id": "schema:blogPost", "@container": ["@graph", "@index"] } }, "@id": "http://example.com/", "@type": "schema:Blog", "name": "World Financial News", "post": { "en": { "@id": "http://example.com/posts/1/en", "body": "World commodities were up today with heavy trading of crude oil.

"words": 1539 }, "@none": { "@id": "http://example.com/posts/1/no-language", "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels vo "words": 1204 } } }

Named Graph Indexing

This section is non-normative.

In addition to indexing node objects by identifier, graph objects may also be indexed by their graph name. By using the @graph container type, introduced in § 4.9.1 Graph Containers in addition to @id, an object value of such a property is treated as a key-value map where the keys represent the identifiers of named graphs which are their values.

The following example describes a default graph referencing multiple named graphs using an id map.

https://www.w3.org/TR/json-ld11/ As with id maps, when used with @graph, a container may also include @set to ensure that key values are always contained in an array.

As with id maps, the special index @none is used for indexing named graphs which do not have an @id, which is useful to maintain a normalized representation. The @none index may also be a term which expands to @none.

Input

EXAMPLE 121: Referencing named graphs using an id map

Compacted (Input) Expanded (Result) Statements TriG

Open in playground { "@context": { "@version": 1.1, "generatedAt": { "@id": "http://www.w3.org/ns/prov#generatedAtTime", "@type": "http://www.w3.org/2001/XMLSchema#dateTime" }, "Person": "http://xmlns.com/foaf/0.1/Person", "name": "http://xmlns.com/foaf/0.1/name", "knows": { "@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id" }, "graphMap": { "@id": "http://example.org/graphMap", "@container": ["@graph", "@id"] } }, "@id": "http://example.org/foaf-graph", "generatedAt": "2012-04-09T00:00:00", "graphMap": { "http://manu.sporny.org/about": { "@id": "http://manu.sporny.org/about#manu", "@type": "Person", "name": "Manu Sporny", "knows": "https://greggkellogg.net/foaf#me" }, "https://greggkellogg.net/foaf": { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg", "knows": "http://manu.sporny.org/about#manu" } } } https://www.w3.org/TR/json-ld11/ This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification defines the interface to a JSON-LD Processor and includes a number of methods used for manipulating different forms of JSON-LD (see § 5. Forms of JSON-LD). This includes a general mechanism for loading remote documents, including referenced JSON-LD documents and remote contexts, and potentially extracting embedded JSON-LD from other formats such as [HTML]. This is more fully described in Remote Document and Context

Retrieval in .

A documentLoader can be useful in a number of contexts where loading remote documents can be problematic:

Remote context documents should be cached to prevent overloading the location of the remote context for each request. Normally, an HTTP caching infrastructure might be expected to handle this, but in some contexts this might not be feasible. A documentLoader implementation might provide separate logic for performing such caching.

Non-standard URL schemes may not be widely implemented, or may have behavior specific to a given application domain. A documentLoader can be defined to implement document retrieval semantics.

Certain well-known contexts may be statically cached within a documentLoader implementation. This might be particularly useful in embedded applications, where it is not feasible, or even possible, to access remote documents.

For security purposes, the act of remotely retrieving a document may provide a signal of application behavior. The judicious use of a documentLoader can isolate the application and reduce its online fingerprint.

This section is non-normative.

As with many data formats, there is no single correct way to describe data in JSON-LD. However, as JSON-LD is used for describing graphs, certain transformations can be used to change the shape of the data, without changing its meaning as Linked Data.

Expanded Document Form

Expansion is the process of taking a JSON-LD document and applying a context so that the @context is no longer necessary. This process is described further in § 5.1 Expanded Document Form.

Compacted Document Form

Compaction is the process of applying a provided context to an existing JSON-LD document. This process is described further in § 5.2 Compacted Document Form.

Flattened Document Form

Flattening is the process of extracting embedded nodes to the top level of the JSON tree, and replacing the embedded node with a reference, creating blank node identifiers as necessary. This process is described further in § 5.3 Flattened Document Form.

Framed Document Form

Framing is used to shape the data in a JSON-LD document, using an example frame document which is used to both match the flattened data and show an example of how the resulting data should be shaped. This process is described further in § 5.4 Framed Document Form.

This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API] defines a method for expanding a JSON-LD document. Expansion is the process of taking a JSON-LD document and applying a context such that all IRIs, types, and values are expanded so that the @context is no longer necessary.

For example, assume the following JSON-LD input document:

5. This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API] defines a method for compacting a JSON-LD document. Compaction is

Input

EXAMPLE 123: Sample JSON-LD document to be expanded { "@context": { "name": "http://xmlns.com/foaf/0.1/name", "homepage": { "@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id" } }, "name": "Manu Sporny", "homepage": "http://manu.sporny.org/" } Result EXAMPLE 124: Expanded form for the previous example [{ "http://example.com/plain": [{"@value": "string"}, {"@value": true}, {"@value": 1}],

"http://example.com/date": [{ "@value": "2018-02-16", "@type": "http://www.w3.org/2001/XMLSchema#date" }], "http://example.com/en": [{"@value": "English", "@language": "en"}], "http://example.com/iri": [{"@id": "http://example.com/some-location"}] }]

And the following context: { "@context": { "@vocab": "http://example.com/", "date": {"@type": "http://www.w3.org/2001/XMLSchema#date"}, "en":

{"@language": "en"}, "iri": {"@type": "@id"} } }

The compacted version will use string values for the defined terms when the values match the term definition. Note that there is no term defined for "plain", that is created automatically using the vocabulary mapping.

Also, the other native values, 1 and true, can be represented without defining a specific type mapping.

relationship between two people and a common parent. See § 4.8 Reverse

Properties for more details.

https://www.w3.org/TR/json-ld11/ which can actually make node objects defined at the top-level of a document to become embedded nodes. JSON-LD provides a means to index such values, by defining an appropriate @container definition within a term definition.

This section is non-normative.

Properties with multiple values are typically represented using an unordered array. This means that an application working on an internalized representation of that JSON would need to iterate through the values of the array to find a value matching a particular pattern, such as a languagetagged string using the language en.

Indexing Values §

https://www.w3.org/TR/json-ld11/ This section is non-normative.

Generally, when compacting, properties having only one value are represented as strings or maps, while properties having multiple values are represented as an array of strings or maps. This means that applications accessing such properties need to be prepared to accept either representation. To force all values to be represented using an array, a term definition can set "@container": "@set". Moreover, @set can be used in combination with other container settings, for example looking at our language-map example from § 5.2.5 Indexing Values:

{ "@context": { "@version": 1.1, "xsd": "http://www.w3.org/2001/XMLSchema#", "notype": {"@id": "http://example.com/notype", "@type": "@none"} }, "notype": [{"@value": "string"}, {"@value": true}, {"@value": false}, {"@value": 1}, {"@value": 10.0}, {"@value": "plain"}, {"@value": "false", "@type": "xsd:boolean"}, {"@value": "english", "@language": "en"}, {"@value": "2018-02-17", "@type": "xsd:date"}, {"@id": "http://example.com/iri"}] } [{ "http://example.com/vocab/property": [{"@value": "string"}, {"@value": true}, {"@value": 1}, {"@value": "false", "@type": "http://www.w3.org/2001/XMLSchema#boolean"}, {"@value": "10", "@type": "http://www.w3.org/2001/XMLSchema#integer"}, {"@value": "english", "@language": "en"}, {"@value": "2018-02-17", "@type": "http://www.w3.org/2001/XMLSchema#date"}, {"@id": "http://example.com/some-location"}] }]

Representing Singular Values as Arrays

And the following context:

{ "@context": { "vocab": "http://example.com/vocab/", "xsd": "http://www.w3.org/2001/XMLSchema#", "integer": {"@id": "vocab:property", "@type": "xsd:integer"}, "date":

{"@id": "vocab:property", "@type": "xsd:date"}, "english": {"@id": "vocab:property", "@language": "en"}, "list":

{"@id": "vocab:property", "@container": "@list"}, "iri": {"@id": "vocab:property", "@type": "@id"} } }

Note that the values that match the "integer", "english", "date", and "iri" terms are properly matched, and that everything that does not explicitly match is added to a property created using a compact IRI. https://www.w3.org/TR/json-ld11/ This section is non-normative.

The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API] defines a method for flattening a JSON-LD document. Flattening collects all properties of a node in a single map and labels all blank nodes with blank node identifiers. This ensures a shape of the data and consequently may drastically simplify the code required to process JSON-LD in certain applications.

For example, assume the following JSON-LD input document: Result { "@context": { "vocab": "http://example.com/vocab/", "xsd": "http://www.w3.org/2001/XMLSchema#", "integer": {"@id": "vocab:property", "@type": "xsd:integer"}, "date":

{"@id": "vocab:property", "@type": "xsd:date"}, "english": {"@id": "vocab:property", "@language": "en"}, "list":

{"@id": "vocab:property", "@container": "@list"}, "iri":

{"@id": "vocab:property", "@type": "@id"} }, "vocab:property": ["string", true, 1,

{"@value": "false", "@type": "xsd:boolean"}],

"integer": "10", "english": "english", "date": "2018-02-17", "iri": "http://example.com/some-location" } Input EXAMPLE 137: Sample JSON-LD document to be flattened { "@context": { "name": "http://xmlns.com/foaf/0.1/name", "knows": "http://xmlns.com/foaf/0.1/knows" }, "@id": "http://me.markus-lanthaler.com/", "name": "Markus Lanthaler", "knows": [{ "@id": "http://manu.sporny.org/about#manu", "name": "Manu Sporny" }, { "name": "Dave Longley" }] } https://www.w3.org/TR/json-ld11/ This frame document describes an embedding structure that would place objects with type Library at the top, with objects of type Book that were linked to the library object using the contains property embedded as property values. It also places objects of type Chapter within the referencing Book object as embedded values of the Book object. When using a flattened set of objects that match the frame components:

Flattened Document Form

Frame EXAMPLE 139: Sample library frame { "@context": { "@version": 1.1, "@vocab": "http://example.org/" }, "@type": "Library", "contains": { "@type": "Book", "contains": { "@type": "Chapter" } } } https://www.w3.org/TR/json-ld11/ In other cases, a resource may be returned using a representation that cannot easily be interpreted as JSON-LD. Normally, HTTP content negotiation would be used to allow a client to specify a preference for JSON-LD over another representation, but in certain situations, it is not possible or practical for a server to respond appropriately to such requests. For this, an HTTP Link Header can be used to provide an alternate location for a document to be used in place of the originally requested resource, as described in § 6.2 Alternate Document Location.

Ordinary JSON documents can be interpreted as JSON-LD by providing an explicit JSON-LD context document. One way to provide this is by using referencing a JSON-LD context document in an HTTP Link Header. Doing so allows JSON to be unambiguously machine-readable without requiring developers to drastically change their documents and provides an upgrade path for existing infrastructure without breaking existing clients that rely on the application/json media type or a media type with a +json suffix as defined in [RFC6839].

In order to use an external context with an ordinary JSON document, when retrieving an ordinary JSON document via HTTP, processors MUST attempt to retrieve any JSON-LD document referenced by a Link Header with:

rel="http://www.w3.org/ns/json-ld#context", and type="application/ld+json".

The referenced document MUST have a top-level JSON object. The @context entry within that object is added to the top-level JSON object of the referencing document. If an array is at the top-level of the referencing document and its items are JSON objects, the @context subtree is added to all array items. All extra information located outside of the @context subtree in the referenced document MUST be discarded. Effectively this means that the active context is initialized with the referenced external context. A response MUST NOT contain more than one HTTP Link Header using the Documents which can't be directly interpreted as JSON-LD can provide an alternate location containing JSON-LD. One way to provide this is by referencing a JSON-LD document in an HTTP Link Header. This might be useful, for example, when the URL associated with a namespace naturally contains an HTML document, but the JSON-LD context associated with that URL is located elsewhere.

To specify an alternate location, a non-JSON resource (i.e., one using a media type other than application/json or a derivative) can return the alternate location using a Link Header with: EXAMPLE 142: Referencing a JSON-LD context from a JSON document via an HTTP Link Header A response MUST NOT contain more than one HTTP Link Header using the alternate link relation with type="application/ld+json" .

Other mechanisms for providing an alternate location MAY be described for other URI schemes.

The following example demonstrates the use of an alternate location with an ordinary HTTP document over HTTP:

A processor seeing a non-JSON result will note the presence of the link header and load that document instead. <html> <head> <base href="http://dbpedia.org/resource/"/> <script type="application/ld+json"> { "@context": "https://json-ld.org/contexts/person.jsonld", "@id": "John_Lennon", "name": "John Lennon", "born": "1940-10-09", "spouse": "Cynthia_Lennon" } </script> </head> </html> 7.2 Restrictions for contents of JSON-LD script elements § https://www.w3.org/TR/json-ld11/ SHOULD be an IRI.

A graph is a labeled directed graph, i.e., a set of nodes connected by directed-arcs.

Every directed-arc is labeled with an IRI or a blank node identifier. Within the JSON-LD syntax these arc labels are called properties. Whenever practical, a directed-arc SHOULD be labeled with an IRI.

NOTE

The use of blank node identifiers to label properties is obsolete, and may be removed in a future version of JSON-LD. Consider using a document-relative IRI, instead, such as #.

Every node is an IRI, a blank node, or a literal, although syntactically lists and native JSON values may be represented directly.

A node having an outgoing edge MUST be an IRI or a blank node.

A graph MUST NOT contain unconnected nodes, i.e., nodes which are not connected by an property to any other node.

NOTE

This effectively just prohibits unnested, empty node objects and unnested node objects that contain only an @id. A document may have nodes which are unrelated, as long as one or more properties are defined, or the node is referenced from another node object.

An IRI (Internationalized Resource Identifier) is a string that conforms to the syntax defined in [START_REF] Duerst | Internationalized Resource Identifiers[END_REF]. IRIs used within a graph SHOULD return a Linked Data document describing the resource denoted by that IRI when being dereferenced.

A blank node is a node which is neither an IRI, nor a JSON-LD value, nor a list. A blank node is identified using a blank node identifier.

A blank node identifier is a string that can be used as an identifier for a blank node within the scope of a A typed value consists of a value, which is a string, and a type, which is an IRI.

A language-tagged string consists of a string and a non-empty language tag as defined by [BCP47]. The language tag MUST be well-formed according to section 2.2.9 Classes of Conformance of [BCP47].

Processors MAY normalize language tags to lowercase.

Either strings, or language-tagged strings may include a base direction, which represents an extension to the underlying RDF data model.

A list is a sequence of zero or more IRIs, blank nodes, and JSON-LD values. Lists are interpreted as RDF list structures [RDF11-MT].

JSON-LD documents MAY contain data that cannot be represented by the data model defined above. Unless otherwise specified, such data is ignored when a JSON-LD document is being processed. One result of this rule is that properties which are not mapped to an IRI, a blank node, or keyword will be ignored.

Additionally, the JSON serialization format is internally represented using the JSON-LD internal representation, which uses the generic concepts of lists, maps, strings, numbers, booleans, and null to describe the data represented by a JSON document.

Figure 1 An illustration of a linked data dataset. A description of the linked data dataset diagram is available in the Appendix. Image available in SVG and PNG formats.

NOTE

Note the use of @graph at the outer-most level to describe three top-level resources (two of them named graphs). The named graphs use @graph in addition to @id to provide the name for each graph.

This section restates the syntactic conventions described in the previous sections more formally.

A JSON-LD document MUST be valid JSON text as described in [START_REF]The JavaScript Object Notation (JSON) Data Interchange Format[END_REF], or some format that can be represented in the JSON-LD internal representation that is equivalent to valid JSON text.

A JSON-LD document MUST be a single node object, a map consisting of only the entries @context and/or @graph, or an array of zero or more node objects.

In contrast to JSON, in JSON-LD the keys in objects MUST be unique.

Whenever a keyword is discussed in this grammar, the statements also apply to an alias for that keyword.

NOTE

JSON-LD allows keywords to be aliased (see § 4.1.6 Aliasing Keywords for details). For example, if the active context defines the term id as an alias for @id, that alias may be legitimately used as a substitution for @id. Note that keyword aliases are not expanded during context processing.

A term is a short-hand string that expands to an IRI, blank node identifier, or keyword.

A term MUST NOT equal any of the JSON-LD keywords, other than @type.

When used as the prefix in a Compact IRI, to avoid the potential ambiguity of a prefix being confused with an IRI scheme, terms SHOULD NOT come from the list of URI schemes as defined in [IANA-URI-SCHEMES]. Similarly, to 9. JSON-LD Grammar § 9.1 Terms § https://www.w3.org/TR/json-ld11/ avoid confusion between a Compact IRI and a term, terms SHOULD NOT include a colon (:) and SHOULD be restricted to the form of isegment-nz-nc as defined in [START_REF] Duerst | Internationalized Resource Identifiers[END_REF].

To avoid forward-compatibility issues, a term SHOULD NOT start with an @ character followed exclusively by one or more ALPHA characters (see [START_REF]RFC4288Media Type Specifications and Registration Procedures[END_REF]) as future versions of JSON-LD may introduce additional keywords. Furthermore, the term MUST NOT be an empty string ("") as not all programming languages are able to handle empty JSON keys.

See § 3. it is not the top-most map in the JSON-LD document consisting of no other entries than @graph and @context, it does not contain the @value, @list, or @set keywords, and it is not a graph object.

The properties of a node in a graph may be spread among different node objects within a document. When that happens, the keys of the different node objects need to be merged to create the properties of the resulting node.

A node object MUST be a map. All keys which are not IRIs, compact IRIs, terms valid in the active context, or one of the following keywords (or alias of such a keyword) MUST be ignored when processed:

@context, @id, @included, @graph, @nest, @type, @reverse, or @index 9.2 Node Objects § https://www.w3.org/TR/json-ld11/

If the node object contains the @context key, its value MUST be null, an IRI reference, a context definition, or an array composed of any of these.

If the node object contains the @id key, its value MUST be an IRI reference, or a compact IRI (including blank node identifiers). See § 3.3 Node Identifiers, § 4.1.5 Compact IRIs, and § 4.5.1 Identifying Blank Nodes for further discussion on @id values.

If the node object contains the @graph key, its value MUST be a node object or an array of zero or more node objects. If the node object also contains an @id keyword, its value is used as the graph name of a named graph. See § 4.9

Named Graphs for further discussion on @graph values. As a special case, if a map contains no keys other than @graph and @context, and the map is the root of the JSON-LD document, the map is not treated as a node object; this is used as a way of defining node objects that may not form a connected graph.

This allows a context to be defined which is shared by all of the constituent node objects.

If the node object contains the @type key, its value MUST be either an IRI reference, a compact IRI (including blank node identifiers), a term defined in the active context expanding into an IRI, or an array of any of these. See § 3.5

Specifying the Type for further discussion on @type values.

If the node object contains the @reverse key, its value MUST be a map containing entries representing reverse properties. Each value of such a reverse property MUST be an IRI reference, a compact IRI, a blank node identifier, a node object or an array containing a combination of these.

If the node object contains the @included key, its value MUST be an included block. See § 9.13 Included Blocks for further discussion on included blocks.

If the node object contains the @index key, its value MUST be a string. See § 4.6.1 Data Indexing for further discussion on @index values.

If the node object contains the @nest key, its value MUST be a map or an array of map which MUST NOT include a value object. See § 9.14 Property Nesting for further discussion on @nest values.

Keys in a node object that are not keywords MAY expand to an IRI using the active context. The values associated with keys that expand to an IRI MUST be one of the following: A frame object MAY include a default object as the value of any key which is not a keyword. Values of @default MAY include the value @null, or an array containing only @null, in addition to other values allowed in the grammar for values of entry keys expanding to IRIs.

The values of @id and @type MAY additionally be an empty map (wildcard), an array containing only an empty map, an empty array (match none) an array of IRIs.

A frame object MAY include an entry with the key @embed with any value from @always, @list, and @never.

A frame object MAY include entries with the boolean valued keys @explicit, @omitDefault, or @requireAll

In addition to other property values, a property of a frame object MAY include a value pattern (See § 9.6 Value Patterns).

See for a description of how frame objects are used. it contains an @graph entry (or an alias of that keyword), it is not the top-most map in the JSON-LD document, and it consists of no entries other than @graph, @index, @id and @context, or an alias of one of these keywords.

If the graph object contains the @context key, its value MUST be null, an IRI reference, a context definition, or an array composed of any of these.

If the graph object contains the @id key, its value is used as the identifier (graph name) of a named graph, and MUST be an IRI reference, or a compact IRI (including blank node identifiers). See § 3.3 Node Identifiers, § 4.1.5

Compact IRIs, and § 4.5.1 Identifying Blank Nodes for further discussion on @id values.

A graph object without an @id entry is also a simple graph object and represents a named graph without an explicit identifier, although in the data model it still has a graph name, which is an implicitly allocated blank node identifier.

The value of the @graph key MUST be a node object or an array of zero or more node objects. See § 4.9 Named Graphs for further discussion on @graph values..

A value object is used to explicitly associate a type or a language with a value to create a typed value or a language-tagged string and possibly associate a base direction.

A value object MUST be a map containing the @value key. It MAY also contain an @type, an @language, an @direction, an @index, or an @context key but MUST NOT contain both an @type and either @language or @direction keys at the same time. A value object MUST NOT contain any other keys that expand to an IRI or keyword.

The value associated with the @value key MUST be either a string, a number, true, false or null. If the value associated with the @type key is @json, the value MAY be either an array or an object.

The value associated with the @type key MUST be a term, an IRI, a compact A language map is used to associate a language with a value in a way that allows easy programmatic access. A language map may be used as a term value within a node object if the term is defined with @container set to @language, or an array containing both @language and @set . The keys of a language map MUST be strings representing [BCP47] language tags, the keyword @none, or a term which expands to @none, and the values MUST be any of the following types: An index map allows keys that have no semantic meaning, but should be preserved regardless, to be used in JSON-LD documents. An index map may be used as a term value within a node object if the term is defined with @container set to @index, or an array containing both @index and @set . The values of the entries of an index map MUST be one of the following types: Index Maps may also be used to map indexes to associated named graphs, if the term is defined with @container set to an array containing both @graph and @index, and optionally including @set. The value consists of the node objects contained within the named graph which is indexed using the referencing key, which can be represented as a simple graph object if the value does not include @id, or a named graph if it includes @id.

A property-based index map is a variant of index map were indexes are semantically preserved in the graph as property values. A property-based index map may be used as a term value within a node object if the term is defined with @container set to @index, or an array containing both @index and @set, and with @index set to a string. The values of a property-based index map MUST be node objects or strings which expand to node objects.

When expanding, if the active context contains a term definition for the value of @index, this term definition will be used to expand the keys of the index map. Otherwise, the keys will be expanded as simple value objects. Each node object in the expanded values of the index map will be added an additional property value, where the property is the expanded value of @index, and the value is the expanded referencing key.

See § 4.6. An id map is used to associate an IRI with a value that allows easy programmatic access. An id map may be used as a term value within a node object if the term is defined with @container set to @id, or an array containing both @id and @set. The keys of an id map MUST be IRIs (IRI references or compact IRIs (including blank node identifiers)), the keyword @none, or a term which expands to @none, and the values MUST be node objects.

If the value contains a property expanding to @id, its value MUST be equivalent to the referencing key. Otherwise, the property from the value is used as the @id of the node object value when expanding.

Id Maps may also be used to map graph names to their named graphs, if the term is defined with @container set to an array containing both @graph and @id, and optionally including @set. The value consists of the node objects contained within the named graph which is named using the referencing key.

A type map is used to associate an IRI with a value that allows easy programmatic access. A type map may be used as a term value within a node object if the term is defined with @container set to @type, or an array containing both @type and @set. The keys of a type map MUST be IRIs (IRI references or compact IRI (including blank node identifiers)), terms, or the keyword @none, and the values MUST be node objects or strings which expand to node objects.

If the value contains a property expanding to @type, and its value is contains the referencing key after suitable expansion of both the referencing key and the value, then the node object already contains the type. Otherwise, the property from the value is added as a @type of the node object value when expanding.

An included block is used to provide a set of node objects. An included block MAY appear as the value of a member of a node object with either the key of @included or an alias of @included. An included block is either a node object or an array of node objects.

When expanding, multiple included blocks will be coalesced into a single A context definition MUST be a map whose keys MUST be either terms, compact IRIs, IRIs, or one of the keywords @base, @import, @language, @propagate, @protected, @type, @version, or @vocab.

If the context definition has an @base key, its value MUST be an IRI reference, or null.

If the context definition has an @direction key, its value MUST be one of "ltr" or "rtl", or be null.

If the context definition contains the @import keyword, its value MUST be an IRI reference. When used as a reference from an @import, the referenced context definition MUST NOT include an @import key, itself.

If the context definition has an @language key, its value MUST have the lexical form described in [BCP47] or be null.

If the context definition has an @propagate key, its value MUST be true or false.

If the context definition has an @protected key, its value MUST be true or false.

If the context definition has an @type key, its value MUST be a map with only the entry @container set to @set, and optionally an entry @protected. If the context definition has an @vocab key, its value MUST be an IRI reference, a compact IRI, a blank node identifier, a term, or null.

The value of keys that are not keywords MUST be either an IRI, a compact IRI, a term, a blank node identifier, a keyword, null, or an expanded term definition.

An expanded term definition is used to describe the mapping between a term and its expanded identifier, as well as other properties of the value associated with the term when it is used as key in a node object.

An expanded term definition MUST be a map composed of zero or more keys from @id, @reverse, @type, @language, @container, @context, @prefix, @propagate, or @protected. An expanded term definition SHOULD NOT contain any other keys.

When the associated term is @type, the expanded term definition MUST NOT contain keys other than @container and @protected. The value of @container is limited to the single value @set.

If the term being defined is not an IRI or a compact IRI and the active context does not have an @vocab mapping, the expanded term definition MUST include the @id key.

Term definitions with keys which are of the form of an IRI or a compact IRI MUST NOT expand to an IRI other than the expansion of the key itself.

If the expanded term definition contains the @id keyword, its value MUST be null, an IRI, a blank node identifier, a compact IRI, a term, or a keyword.

If an expanded term definition has an @reverse entry, it MUST NOT have @id or @nest entries at the same time, its value MUST be an IRI, a blank node identifier, a compact IRI, or a term. If an @container entry exists, its value MUST be null, @set, or @index.

If the expanded term definition contains the @type keyword, its value MUST be an IRI, a compact IRI, a term, null, or one of the keywords @id, @json, @none, or @vocab.

Expanded term definition

If the expanded term definition contains the @language keyword, its value MUST have the lexical form described in [BCP47] or be null.

If the expanded term definition contains the @container keyword, its value MUST be either @list, @set, @language, @index, @id, @graph, @type, or be null or an array containing exactly any one of those keywords, or a combination of @set and any of @index, @id, @graph, @type, @language in any order . @container may also be an array containing @graph along with either @id or @index and also optionally including @set. If the value is @language, when the term is used outside of the @context, the associated value MUST be a language map. If the value is @index, when the is used outside of the @context, the associated value MUST be an index map.

If an expanded term definition has an @context entry, it MUST be a valid context definition.

If the expanded term definition contains the @nest keyword, its value MUST be either @nest, or a term which expands to @nest.

If the expanded term definition contains the @prefix keyword, its value MUST be true or false.

If the expanded term definition contains the @propagate keyword, its value MUST be true or false.

If the expanded term definition contains the @protected keyword, its value MUST be true or false.

Terms MUST NOT be used in a circular manner. That is, the definition of a term cannot depend on the definition of another term if that other term also depends on the first term.

See § 3. NOT used.

@base

The unaliased @base keyword MAY be used as a key in a context definition. Its value MUST be an IRI reference, or null.

@container

The unaliased @container keyword MAY be used as a key in an expanded term definition. Its value MUST be either @list, @set, @language, @index, @id, @graph, @type, or be null, or an array containing exactly any one of those keywords, or a combination of @set and any of @index, @id, @graph, @type, @language in any order. The value may also be an array containing @graph along with either @id or @index and also optionally including @set.

@context

The @context keyword MUST NOT be aliased, and MAY be used as a key in the following objects: The value of @context MUST be null, an IRI reference, a context definition, or an array composed of any of these.

@direction

The @direction keyword MAY be aliased and MAY be used as a key in a value object. Its value MUST be one of "ltr" or "rtl", or be null.

The unaliased @direction MAY be used as a key in a context definition.

See § 4.2.4.1 Base Direction for a further discussion.

@graph

The @graph keyword MAY be aliased and MAY be used as a key in a node object or a graph object, where its value MUST be a value object, node object, or an array of either value objects or node objects.

The unaliased @graph MAY be used as the value of the @container key within an expanded term definition.

See § 4.9 Named Graphs.

https://www.w3.org/TR/json-ld11/

@id

The @id keyword MAY be aliased and MAY be used as a key in a node object or a graph object.

The unaliased @id MAY be used as a key in an expanded term definition, or as the value of the @container key within an expanded term definition.

The value of the @id key MUST be an IRI or a compact IRI (including blank node identifiers).

See § 3.3 Node Identifiers, § 4.1.5 Compact IRIs, and § 4.5.1 Identifying

Blank Nodes for further discussion on @id values.

@import

The unaliased @import keyword MAY be used in a context definition. Its value MUST be an IRI reference. See § 4.1.10 Imported Contexts for a further discussion.

@included

The @included keyword MAY be aliased and its value MUST be an included block. This keyword is described further in § 4.7 Included Nodes, and § 9.13 Included Blocks.

@index

The @index keyword MAY be aliased and MAY be used as a key in a node object, value object, graph object, set object, or list object. Its value MUST be a string.

The unaliased @index MAY be used as the value of the @container key within an expanded term definition.

See § 9.9 Index Maps for a further discussion.

@json

The @json keyword MAY be aliased and MAY be used as the value of the @type key within a value object or an expanded term definition.

See § 4.2.2 JSON Literals.

@language

The @language keyword MAY be aliased and MAY be used as a key in a value object. Its value MUST be a string with the lexical form described in [BCP47] or be null.

The unaliased @language MAY be used as a key in a context definition, or as the value of the @container key within an expanded term definition.

See § 4.2.4 String Internationalization, § 9.8 Language Maps.

https://www.w3.org/TR/json-ld11/

@list

The @list keyword MAY be aliased and MUST be used as a key in a list object. The unaliased @list MAY be used as the value of the @container key within an expanded term definition.

@nest

The @nest keyword MAY be aliased and MAY be used as a key in a node object, where its value must be a map.

The unaliased @nest MAY be used as the value of a simple term definition, or as a key in an expanded term definition, where its value MUST be a string expanding to @nest.

See § 9.14 Property Nesting for a further discussion.

@none

The @none keyword MAY be aliased and MAY be used as a key in an index map, id map, language map, type map. See § 4.6.1 Data Indexing, § 4.6.2

Language Indexing, § 4.6.3 Node Identifier Indexing, § 4.6.4 Node Type Indexing, § 4.9.3 Named Graph Indexing, or § 4.9.2 Named Graph Data Indexing for a further discussion.

@prefix

The unaliased @prefix keyword MAY be used as a key in an expanded term definition. Its value MUST be true or false. See § 4.1.5 Compact IRIs and § 9.15 Context Definitions for a further discussion.

@propagate

The unaliased @propagate keyword MAY be used in a context definition. Its value MUST be true or false. See § 4.1.9 Context Propagation for a further discussion.

@protected https://www.w3.org/TR/json-ld11/

The unaliased @protected keyword MAY be used in a context definition, or an expanded term definition. Its value MUST be true or false. See § 4.1.11 Protected Term Definitions for a further discussion.

@reverse

The @reverse keyword MAY be aliased and MAY be used as a key in a node object.

The unaliased @reverse MAY be used as a key in an expanded term definition.

The value of the @reverse key MUST be an IRI reference, or a compact IRI (including blank node identifiers).

See § 4.8 Reverse Properties and § 9.15 Context Definitions for further discussion.

@set

The @set keyword MAY be aliased and MUST be used as a key in a set object. Its value MUST be one of the following: The unaliased @set MAY be used as the value of the @container key within an expanded term definition.

See § 4.3 Value Ordering for further discussion on sets and lists.

@type

The @type keyword MAY be aliased and MAY be used as a key in a node object or a value object, where its value MUST be a term, IRI reference, or a compact IRI (including blank node identifiers).

The unaliased @type MAY be used as a key in an expanded term definition, where its value may also be either @id or @vocab, or as the value of the @container key within an expanded term definition.

https://www.w3.org/TR/json-ld11/ Within a context, @type may be used as the key for an expanded term definition, whose entries are limited to @container and @protected.

This keyword is described further in § 3.5 Specifying the Type and § 4.2.1

Typed Values.

@value

The @value keyword MAY be aliased and MUST be used as a key in a value object. Its value key MUST be either a string, a number, true, false or null. This keyword is described further in § 9.5 Value Objects.

@version

The unaliased @version keyword MAY be used as a key in a context definition. Its value MUST be a number with the value 1.1. This keyword is described further in § 9.15 Context Definitions.

@vocab

The unaliased @vocab keyword MAY be used as a key in a context definition or as the value of @type in an expanded term definition. Its value MUST be an IRI reference, a compact IRI, a blank node identifier, a term, or null. This keyword is described further in § 9. Even though JSON-LD serializes RDF Datasets, it can also be used as a graph source. In that case, a consumer MUST only use the default graph and ignore all named graphs. This allows servers to expose data in languages such as Turtle and JSON-LD using HTTP content negotiation. The issue of properly representing base direction in RDF is not something that this Working Group can handle, as it is a limitation or the core RDF data model. This Working Group expects that a future RDF Working Group will consider the matter and add the ability to specify the base direction of language-tagged strings.

Until a more comprehensive solution can be addressed in a future version of this specification, publishers should consider this issue when representing strings where the base direction of the string cannot otherwise be correctly inferred based on the content of the string. See [string-meta] for a discussion best practices for identifying language and base direction for strings used on the Web.

This section is non-normative. EXAMPLE 157: Same embedding example in JSON-LD { "@context": { "foaf": "http://xmlns.com/foaf/0.1/" }, "@id": "http://manu.sporny.org/about#manu", "@type": "foaf:Person", "foaf:name": "Manu Sporny", "foaf:knows": { "@type": "foaf:Person", "foaf:name": "Gregg Kellogg" } }

B.1.3 Conversion of native data types §

https://www.w3.org/TR/json-ld11/ Both JSON-LD and [Turtle] can represent sequential lists of values.

EXAMPLE 158: JSON-LD using native data types for numbers and boolean values { "@context": { "ex": "http://example.com/vocab#" }, "@id": "http://example.com/", "ex:numbers": [14, 2.78], "ex:booleans": [true, false] } EXAMPLE 159: Same example in Turtle using typed literals @prefix ex: <http://example.com/vocab#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . <http://example.com/> ex:numbers "14"^^xsd:integer, "2.78E0"^^xsd:double ; ex:booleans "true"^^xsd:boolean, "false"^^xsd:boolean . [{ "@id": "http://purl.oreilly.com/works/45U8QJGZSQKDH8N", "@type": "http://purl.org/vocab/frbr/core#Work", "http://purl.org/dc/elements/1.1/title": "Just a Geek", "http://purl.org/dc/elements/1.1/creator": "Wil Wheaton", "http://purl.org/vocab/frbr/core#realization": [{"@id": "http://purl.oreilly.com/products/9780596007683.BOOK"}, {"@id": "http://purl.oreilly.com/products/9780596802189.EBOOK"}] }, { "@id": "http://purl.oreilly.com/products/9780596007683.BOOK", "@type": "http://purl.org/vocab/frbr/core#Expression", "http://purl.org/dc/elements/1.1/type": {"@id": "http://purl.oreilly.com/pr }, { "@id": "http://purl.oreilly.com/products/9780596802189.EBOOK", "@type": "http://purl.org/vocab/frbr/core#Expression", "http://purl.org/dc/elements/1.1/type": {"@id": "http://purl.oreilly. This specification defines six values for the profile parameter.

B.1.4 Lists

enclosed in quotes (") if it contains special characters such as whitespace, which is required when multiple profile URIs are combined.

When processing the "profile" media type parameter, it is important to note that its value contains one or more URIs and not IRIs. In some cases it might therefore be necessary to convert between IRIs and URIs as specified in section 3 Relationship between IRIs and URIs of [START_REF] Duerst | Internationalized Resource Identifiers[END_REF].

Encoding considerations:

See RFC 8259, section

Security considerations:

See RFC 8259, section 12 [START_REF]The JavaScript Object Notation (JSON) Data Interchange Format[END_REF] Since JSON-LD is intended to be a pure data exchange format for directed graphs, the serialization SHOULD NOT be passed through a code execution mechanism such as JavaScript's eval() function to be parsed. An (invalid) document may contain code that, when executed, could lead to unexpected side effects compromising the security of a system.

When processing JSON-LD documents, links to remote contexts and ISSUE 280: language-maps don't allow separate base direction Language-maps don't allow separate base direction.

This section is non-normative.

A context may contain a @version entry which is used to set the processing mode.

An expanded term definition can now have an @context property, which defines a context used for values of a property identified with such a term.

@container values within an expanded term definition may now include @id, @graph and @type, corresponding to id maps and type maps.

An expanded term definition can now have an @nest property, which identifies a term expanding to @nest which is used for containing properties using the same @nest mapping. When expanding, the values of a property expanding to @nest are treated as if they were contained within the enclosing node object directly.

The JSON syntax has been abstracted into an internal representation to allow for other serializations that are functionally equivalent to JSON.

Added § 4.6.3 Node Identifier Indexing and § 4.6.4 Node Type Indexing.

Both language maps and index maps may legitimately have an @none key,

 no knowledge of RDF [RDF11-CONCEPTS]. It is also designed to be usable as RDF in conjunction with other Linked Data technologies like SPARQL [SPARQL11-OVERVIEW]. Developers who require any of the facilities listed above or need 1. Introduction § https://www.w3.org/TR/json-ld11/

1. 1

 1 How to Read this Document § https://www.w3.org/TR/json-ld11/ technical communities, they do have important distinctions from one another and the specification goes to great lengths to try and use the proper terminology at all times.

 Terms imported from RDF 1.1 Concepts and Abstract Syntax [RDF11-CONCEPTS], RDF Schema 1.1 [RDF-SCHEMA], and Linked Data Design Issues [LINKED-DATA] base IRI The base IRI is an IRI established in the context, or is based on the JSON-LD document location. The base IRI is used to turn relative IRI references into IRIs.

 contextA set of rules for interpreting a JSON-LD document as described in theThe Context section of JSON-LD 1.1, and normatively specified in the Context Definitions section of.org/TR/json-ld11/

 local contexts. The active context refers to the accumulation of local contexts that are in scope at a specific point within the document. Setting a local context to null effectively resets the active context to an empty context, without term definitions, default language, or other things defined within previous contexts. The following example specifies an external context and then layers an embedded context on top of the external context:In JSON-LD 1.1, there are other mechanisms for introducing contexts, including scoped contexts and imported contexts, and there are new ways of protecting term definitions, so there are cases where the last defined inline context is not necessarily one which defines the scope of terms. See § 4.1.8 Scoped Contexts, § 4.1.9 Context Propagation, § 4.1.10 Imported Contexts, and § 4.1.11 Protected Term Definitions for further information.

 www.w3.org/TR/json-ld11/

}

 https://www.w3.org/TR/json-ld11/ Since JSON-LD 1.1, the vocabulary mapping in a local context can be set to the a relative IRI reference, which is concatenated to any vocabulary mapping in the active context (see § 4.1.4 Using the Document Base for the Default Vocabulary for how this applies if there is no vocabulary mapping in the active context).

 } 4.1.7 IRI Expansion within a Context § https://www.w3.org/TR/json-ld11/

Input

 EXAMPLE 46: Defining an @context within a term definition used on

 } } https://www.w3.org/TR/json-ld11/ NOTE Scoped Contexts are a new feature in JSON-LD 1.1.

 Scoped context only lasts in one node-object "term": "http://example.org/non-propagated-term" is the original "term": { ↑ This term is from the scoped context "term": "This term is from the first context" ↑ This term is the original again } } } https://www.w3.org/TR/json-ld11/ NOTE Contexts included within an array must all have the same value for @propagate due to the way that rollback is defined in JSON-LD 1.1 Processing Algorithms and API.

4. 1 .

 1 10 Imported Contexts § https://www.w3.org/TR/json-ld11/

 www.w3.org/TR/json-ld11/The modified key's value above is automatically interpreted as a dateTime value because of the information specified in the @context. The example tabs show how a JSON-LD processor will interpret the data.The second example uses the expanded form of setting the type information in the body of a JSON-LD document:Both examples above would generate the value 2010-05-29T14:17:39+02:00 with the type http://www.w3.org/2001/XMLSchema#dateTime. Note that it is also possible to use a term or a compact IRI to express the value of a type.

 ": "http://purl.org/dc/terms/modified" www.w3.org/TR/json-ld11/

JSON-

 LD supports the coercion of string values to particular data types. Type coercion allows someone deploying JSON-LD to use string property values and have those values be interpreted as typed values by associating an IRI with the value in the expanded value object representation. Using type coercion, string value representation can be used without requiring the data type to be specified explicitly with each piece of data.

 use xsd:integer within the same context definition. The example below demonstrates how a JSON-LD author can coerce values to typed values and IRIs. https://www.w3.org/TR/json-ld11/It is important to note that terms are only used in expansion for vocabularyrelative positions, such as for keys and values of map entries. Values of @id are considered to be document-relative, and do not use term definitions for expansion. For example, consider the following:

}

 https://www.w3.org/TR/json-ld11/ definition.

}

 https://www.w3.org/TR/json-ld11/ NOTE When viewed as statements, the values have no inherent order.

}

 https://www.w3.org/TR/json-ld11/For these examples, it's important that values expressed within bbox and coordinates maintain their order, which requires the use of embedded list structures. In JSON-LD 1.1, we can express this using recursive lists, by simply adding the appropriate context definition: www.w3.org/TR/json-ld11/ Note that coordinates includes three levels of lists.

 //example.com/posts/1/de": [{ "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von "words": 1204 }] } } https://www.w3.org/TR/json-ld11/ NOTE Id maps are a new feature in JSON-LD 1.1.

 of JSON-LD § https://www.w3.org/TR/json-ld11/

 //xmlns.com/foaf/0.1/homepage": [{ "@id": "http://manu.sporny.org/www.w3.org/TR/json-ld11/ information. By specifying this within a term definition, the semantics of a string value can be inferred from the definition of the term used as a property. See § 4.2 Describing Values for more details. https://www.w3.org/TR/json-ld11/ Input Context EXAMPLE 130: Coercing Values to Strings Given the following expanded document:

 § https://www.w3.org/TR/json-ld11/ Input Context EXAMPLE 136: Term Selection Given the following expanded document:

 §https://www.w3.org/TR/json-ld11/ Running the JSON-LD Flattening algorithm against the JSON-LD input document in the example above and using the same context would result in the following output:

 http://www.w3.org/ns/json-ld#context link relation. Other mechanisms for providing a JSON-LD Context MAY be described for other URI schemes. The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API] provides for an expandContext option for specifying a context to use 6.1 Interpreting JSON as JSON-LD § https://www.w3.org/TR/json-ld11/ when expanding JSON documents programmatically. The following example demonstrates the use of an external context with an ordinary JSON document over HTTP: Please note that JSON-LD documents served with the application/ld+json media type MUST have all context information, including references to external contexts, within the body of the document. Contexts linked via a http://www.w3.org/ns/json-ld#context HTTP Link Header MUST be ignored for such documents.

EXAMPLE 143 : 1 ====================================

 1431 Specifying an alternate location via an HTTP Link Header GET /index.html HTTP/1.1 Host: example.com Accept: application/ld+json,application/json,*/*;q=0.JSON-LD in HTML Documents § https://www.w3.org/TR/json-ld11/ HTML allows for Dynamic changes to base URLs. This specification does not require any specific behavior, and to ensure that all systems process the base IRI equivalently, authors SHOULD either use IRIs, or explicitly as defined in § 4.1.3 Base IRI. Implementations (particularly those natively operating in the [DOM]) MAY take into consideration Dynamic changes to base URLs. This section is non-normative. Due to the HTML Restrictions for contents of <script> elements additional encoding restrictions are placed on JSON-LD data contained in script elements. Authors should avoid using character sequences in scripts embedded in HTML which may be confused with a comment-open, script-open, commentclose, or script-close. Input EXAMPLE 146: Using the document base URL to establish the

 a frame object extends a node object to allow entries used specifically for framing.

 zero or more of the above possibilities

 is a concrete RDF syntax as described in [RDF11-CONCEPTS]. Hence, a JSON-LD document is both an RDF document and a JSON document and correspondingly represents an instance of an RDF data model. However, JSON-LD also extends the RDF data model to optionally allow JSON-LD to serialize generalized RDF Datasets. The JSON-LD extensions to the RDF data model are: In JSON-LD properties can be IRIs or blank nodes whereas in RDF properties (predicates) have to be IRIs. This means that JSON-LD serializes generalized RDF Datasets. In JSON-LD lists use native JSON syntax, either contained in a list object, or described as such within a context. Consequently, developers using the JSON representation can access list elements directly rather than using the vocabulary for collections described in [RDF-SCHEMA]. RDF values are either typed literals (typed values) or language-tagged strings whereas JSON-LD also supports JSON's native data types, i.e., number, strings, and the boolean values true and false. The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API] defines the 10. Relationship to RDF § https://www.w3.org/TR/json-ld11/ conversion rules between JSON's native data types and RDF's counterparts to allow round-tripping.As an extension to the RDF data model, literals without an explicit datatype MAY include a base direction. As there is currently no standardized mechanism for representing the base direction of RDF literals, the JSON-LD to standard RDF transformation loses the base direction. However, the Deserialize JSON-LD to RDF Algorithm provides a means of representing base direction using mechanisms which will preserve round-tripping through non-standard RDF.NOTEThe use of blank node identifiers to label properties is obsolete, and may be removed in a future version of JSON-LD, as is the support for generalized RDF Datasets.Summarized, these differences mean that JSON-LD is capable of serializing any RDF graph or dataset and most, but not all, JSON-LD documents can be directly interpreted as RDF as described in RDF 1.1 Concepts [RDF11-CONCEPTS]. Authors are strongly encouraged to avoid labeling properties using blank node identifiers, instead, consider one of the following mechanisms: a relative IRI reference, either relative to the document or the vocabulary (see § 4.1.4 Using the Document Base for the Default Vocabulary for a discussion on using the document base as part of the vocabulary mapping), a URN such as urn:example:1, see [URN], or a "Skolem IRI" as per Replacing Blank Nodes with IRIs of [RDF11-CONCEPTS]. The normative algorithms for interpreting JSON-LD as RDF and serializing RDF as JSON-LD are specified in the JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API].

 https://www.w3.org/TR/json-ld11/The retrieval of external contexts can expose the operation of a JSON-LD processor, allow intermediate nodes to fingerprint the client application through introspection of retrieved resources (see [fingerprinting-guidance]), and provide an opportunity for a man-in-the-middle attack. To protect against this, publishers should consider caching remote contexts for future use, or use the documentLoader to maintain a local version of such contexts.As JSON-LD uses the RDF data model, it is restricted by design in its ability to properly record JSON-LD Values which are strings with left-to-right or right-to-left direction indicators. Both JSON-LD and RDF provide a mechanism for specifying the language associated with a string (languagetagged string), but do not provide a means of indicating the base direction of the string.Unicode provides a mechanism for signaling direction within a string (see Unicode Bidirectional Algorithm[START_REF] Davis | Unicode Bidirectional Algorithm[END_REF]), however, when a string has an overall base direction which cannot be determined by the beginning of the string, an external indicator is required, such as the [HTML] dir attribute, which currently has no counterpart for RDF literals.

 frames are typically followed automatically, resulting in the transfer of files without the explicit request of the user for each one. If remote contexts are served by third parties, it may allow them to gather usage patterns or similar information leading to privacy concerns. Specific implementations, such as the API defined in the JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API], may provide finegrained mechanisms to control this behavior. JSON-LD contexts that are loaded from the Web over non-secure connections, such as HTTP, run the risk of being altered by an attacker such that they may modify the JSON-LD active context in a way that could compromise security. It is advised that any application that depends on a remote context for mission critical purposes vet and cache the remote context before allowing the system to use it. Given that JSON-LD allows the substitution of long IRIs with short terms, JSON-LD documents may expand considerably when processed and, in the worst case, the resulting data might consume all of the recipient's resources. Applications should treat any data with due skepticism. As JSON-LD places no limits on the IRI schemes that may be used, and https://www.w3.org/TR/json-ld11/ ISSUE 108: Consider context by reference with metadata Consider context by reference with metadata. ISSUE 191: Compact IRI expansion support for non-trivial prefix term definitions Compact IRI expansion support for non-trivial prefix term definitions.

 SimplicityNo extra processors or software libraries are necessary to use JSON-LD in its most basic form. The language provides developers with a very easy learning curve. Developers not concerned with Linked Data only need to understand JSON, and know to include but ignore the @context property, to use the basic functionality in JSON-LD.

	This section is non-normative.
	JSON-LD satisfies the following design goals:

null. See the Value https://www.w3.org/TR/json-ld11/ Objects section of JSON-LD 1.1 for a normative description.

Compatibility

A JSON-LD document is always a valid JSON document. This ensures that all of the standard JSON libraries work seamlessly with JSON-LD documents.

 Sporny" and that the homepage property contains the URL of that person's homepage. A machine doesn't have such an intuitive understanding and sometimes, even for humans, it is difficult to resolve ambiguities in such representations. This problem can be solved by using unambiguous identifiers to denote the different concepts instead of tokens such as "name", "homepage", etc. Linked Data, and the Web in general, uses IRIs (Internationalized Resource Identifiers as described in[START_REF] Duerst | Internationalized Resource Identifiers[END_REF]) for unambiguous identification. The idea is to use IRIs to assign unambiguous identifiers to data that may be of use to other developers. It is useful for terms, like name and homepage, to expand to IRIs so that developers don't accidentally step on each other's terms. Furthermore, developers and machines are able to use this IRI (by using a web browser, for instance) to go to the term and get a definition of what the term means. This process is known as IRI dereferencing.

			https://www.w3.org/TR/json-ld11/
	§	2. Conformance
		shown here.
		A JSON-LD document complies with this specification if it follows the
		normative statements in appendix § 9. JSON-LD Grammar. JSON documents
		can be interpreted as JSON-LD by following the normative statements in § 6.1
		Interpreting JSON as JSON-LD. For convenience, normative statements for
		documents are often phrased as statements on the properties of the
		document.
		Prefix	IRI

1.2 Default Vocabulary. All keys, keywords, and values in JSON-LD are case-sensitive. As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative.

Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, RECOMMENDED, SHOULD, and SHOULD NOT in this document are to be interpreted as described in BCP 14 [RFC2119]

[START_REF]Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words[END_REF]

when, and only when, they appear in all capitals, as This specification makes use of the following namespace prefixes:

Compacted (Input) Expanded (Result) Statements Turtle Open in playground { "@context": "https://json-ld.org/contexts/person.jsonld",

	EXAMPLE 5: Referencing a JSON-LD context
	"name": "Manu Sporny",
	"homepage": "http://manu.sporny.org/",
	EXAMPLE 6: Loading a relative context

{ "

@context": "context.jsonld",

	https://www.w3.org/TR/json-ld11/
	NOTE
	Resolution of relative references to context URLs also applies to remote
	context documents, as they may themselves contain references to other
	contexts.
	JSON documents can be interpreted as JSON-LD without having to be
	modified by referencing a context via an HTTP Link Header as described in
	§ 6.1 Interpreting JSON as JSON-LD. It is also possible to apply a custom
	context using the JSON-LD 1.1 API [JSON-LD11-API].
	In JSON-LD documents, contexts may also be specified inline. This has the
	advantage that documents can be processed even in the absence of a
	connection to the Web. Ultimately, this is a modeling decision and different
	use cases may require different handling. See Security Considerations in § C.
	IANA Considerations for a discussion on using remote contexts.
	EXAMPLE 7: In-line context definition
	Input
	"name": "Manu Sporny",
	"homepage": "http://manu.sporny.org/",
	This section only covers the most basic features of the JSON-LD Context. The
	Context can also be used to help interpret other more complex JSON data
	structures, such as indexed values, ordered values, and nested properties.
	More advanced features related to the JSON-LD Context are covered in § 4.
	Advanced Concepts.

Compacted (Input) Expanded (Result) Statements Turtle

Term expansion from context definition Compacted (Input) Expanded (Result) Statements Turtle

	EXAMPLE 9: IRIs can be relative
	{
	...
	"homepage": { "@id": "../" }
	...
	}
	EXAMPLE 10: IRI as a key
	{
	...
	"http://schema.org/name": "Manu Sporny",
	...
	}
	EXAMPLE 11:
	Input

Type coercion Compacted (Input) Expanded (Result) Statements Turtle Open in playground { "@context": { ... "homepage": { "@id": "http://schema.org/url", "@type": "@id" } ... },

		https://www.w3.org/TR/json-ld11/
		EXAMPLE 12: ...	Input
		"homepage": "http://manu.sporny.org/"
		...
		}
		This section only covers the most basic features associated with IRIs in JSON-
		LD. More advanced features related to IRIs are covered in section § 4.
		Advanced Concepts.
	§	3.3 Node Identifiers
		This section is non-normative.

@id": "http://me.markus-lanthaler.com/",

			https://www.w3.org/TR/json-ld11/
			values.
		The JSON-LD data model allows for a richer set of resources, based on the
		RDF data model. The data model is described more fully in § 8. Data Model.
		JSON-LD uses JSON objects to describe various resources, along with the
		relationships between these resources:
		Node objects
		Node objects are used to define nodes in the linked data graph which may EXAMPLE 13: Identifying a node Compacted (Input) Expanded (Result) Statements Turtle have both incoming and outgoing edges. Node objects are principle Open in playground structure for defining resources having properties. See § 9.2 Node
		{ Value objects Objects for the normative definition. "@context": {	Input
			... Value objects are used for describing literal nodes in a linked data graph
			"name": "http://schema.org/name" which may have only incoming edges. In JSON, some literal nodes may be
		}	}, described without the use of a JSON object (e.g., numbers, strings, and boolean values), but in the expanded form, all literal nodes are described ""name": "Markus Lanthaler", using value objects. See § 4.2 Describing Values for more information, ... and § 9.5 Value Objects for the normative definition.
		List Objects and Set objects
			List Objects are a special kind of JSON-LD maps, distinct from node
			objects and value objects, used to express ordered values by wrapping an
			array in a map under the key @list. Set Objects exist for uniformity, and
			are equivalent to the array value of the @set key. See § 4.3.1 Lists and
		§ 4.3.2 Sets for more detail. -LD. More advanced features related to node identifiers Map Objects are covered in section § 4. Advanced Concepts. JSON-LD uses various forms of maps as ways to more easily access values
			of a property.
	§	3.4 Uses of JSON Objects
		This section is non-normative.
		As a syntax, JSON has only a limited number of syntactic elements:
			Numbers, which describe literal numeric values,
			Strings, which may describe literal string values, or be used as the keys
			in a JSON object.
			Boolean true and false, which describe literal boolean values,
			null, which describes the absence of a value,
			Arrays, which describe an ordered set of values of any type, and
			JSON objects, which provide a set of map entries, relating keys with

Compacted (Input) Expanded (Result) Statements Turtle

	EXAMPLE 15: Specifying multiple types for a node
	Open in playground
	{
	...
	"@id": "http://me.markus-lanthaler.com/",
	"@type": [
	"http://schema.org/Person",
	"

http://xmlns.com/foaf/0.1/Person"],

	https://www.w3.org/TR/json-ld11/
	...
	}

Person": "http://schema.org/Person"

			https://www.w3.org/TR/json-ld11/
		default, unless defined using embedded structures or through a context EXAMPLE 16: Using a term to specify the type Compacted (Input) Expanded (Result) Statements Turtle Open in playground definition. See § 4.3 Value Ordering for a further discussion.
		{	"@context": {	Input
			...
			"},
			"@id": "http://example.org/places#BrewEats",
			"@type": "Person",
			...
		}	
	§	4. Advanced Concepts
			in JSON-LD do not convey any ordering of the contained elements by

 1 Advanced Context Usage §

https://www.w3.org/TR/json-ld11/ definition (other than as part of an expanded term definition). For example, a JSON-LD document may have the form of an array composed of one or more node objects, which use a context definition in each top-level node object:

Compacted (Input) Expanded (Result) Statements Turtle

				https://www.w3.org/TR/json-ld11/
	EXAMPLE 20: Describing disconnected nodes with @graph
		Compacted (Input)	Expanded (Result)	Statements	Turtle	Open in playground
	EXAMPLE 19: Using multiple contexts	Input
		Compacted (Input)	Expanded (Result)	Statements	Turtle	Open in playground
						}
],		
		"@graph": [{		
		"http://xmlns.com/foaf/0.1/name": "Manu Sporny",
		"homepage": "http://manu.sporny.org/",
		"depiction": "http://twitter.com/account/profile_image/manusporny"
		}, {		
		"title": "The Empire State Building",
		"description": "The Empire State Building is a 102-story landmark in New Yor
		"geo": {		
			"latitude": "40.75",	
			"longitude": "73.98"	
			}	98"	
		}]	}		
	}	}			
]				
	Duplicate context terms are overridden using a most-recently-defined-wins
	mechanism.		
	EXAMPLE 21: Embedded contexts within node objects
						Input

[

{ "@context": "https://json-ld.org/contexts/person.jsonld", "name": "Manu Sporny", "homepage": "http://manu.sporny.org/", "depiction": "http://twitter.com/account/profile_image/manusporny" }, { "@context": "https://json-ld.org/contexts/place.jsonld", "name": "The Empire State Building", "description": "The Empire State Building is a 102-story landmark in New Yor "geo": { "latitude": "40.75", "longitude": "73.{ "@context": ["https://json-ld.org/contexts/person.jsonld", "https://json-ld.org/contexts/place.jsonld", {"title": "http://purl.org/dc/terms/title"

 JSON to ensure interoperability between different processors. JSON EXAMPLE 62: Example demonstrating the context-sensitivity for @type (statements)

				https://www.w3.org/TR/json-ld11/
		canonicalization is described in Data Round Tripping in [JSON-LD11-API].
		Compacted (Input)	Turtle	Open in playground
		Subject		Property	Value
		http://example.org /posts#TripToWestVirginia	rdf:type	schema:BlogPosting
		http://example.org /posts#TripToWestVirginia	dcterms:modified 2010-05-29T14:17:39+02:00
	§	4.2.2 JSON Literals

.2.3 Type Coercion § https

 ://www.w3.org/TR/json-ld11/

	},
	"e": [
	56.0,
	{
	"d": true,
	"10": null,
	"1": []
	}
]
	}
	4

 EXAMPLE 111: Describing disconnected nodes with @included

	Compacted (Input)	Expanded (Result)	Flattened	Statements	Turtle

 1 Expanded Document Form § https://www.w3.org/TR/json-ld11/ Running the JSON-LD Expansion algorithm against the JSON-LD input document provided above would result in the following output: JSON-LD's media type defines a profile parameter which can be used to signal or request expanded document form. The profile URI identifying expanded document form is http://www.w3.org/ns/json-ld#expanded.

application/json Link: <https://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/js

		https://www.w3.org/TR/json-ld11/
		rel="alternate", and
		type="application/ld+json".
		GET /ordinary-json-document.json HTTP/1.1
		Host: example.com
		Accept: application/ld+json,application/json,*/*;q=0.1
		====================================
		HTTP/1.1 200 OK
		...
		Content-Type: {
		"name": "Markus Lanthaler",
		"homepage": "http://www.markus-lanthaler.com/",
		"image": "http://twitter.com/account/profile_image/markuslanthaler"
		}
	§	6.2 Alternate Document Location

 JSON-LD document. Blank node identifiers begin with _:. LD value is a typed value, a string (which is interpreted as a typed value with type xsd:string), a number (numbers with a non-zero fractional part, i.e., the result of a modulo-1 operation, or which are too large to represent as integers (see Data Round Tripping) in [JSON-LD11-API]), are interpreted as typed values with type xsd:double, all other numbers are interpreted as typed values with type xsd:integer), true or false (which are interpreted as typed values with type xsd:boolean), or a language-tagged string.

	https://www.w3.org/TR/json-ld11/
	A JSON-
	EXAMPLE 149: Illegal Unconnected Node
	{
	"@id": "http://example.org/1"
	}

 1 The Context and § 3.2 IRIs for further discussion on mapping terms to IRIs. A node object represents zero or more properties of a node in the graph serialized by the JSON-LD document. A map is a node object if it exists outside of a JSON-LD context and:

 graph object represents a named graph, which MAY include an explicit graph name. A map is a graph object if it exists outside of aJSON-LD context,

		https://www.w3.org/TR/json-ld11/
	§	9.3 Frame Objects

A

 In both cases, the value associated with the keys @list and @set MUST be one of the following types:

		https://www.w3.org/TR/json-ld11/
	§	9.4 Graph Objects
		string,
		number,
		true,
		false,
		null,
		node object,
		value object, or
		an array of zero or more of the above possibilities
		See § 4.3 Value Ordering for further discussion on sets and lists.
	§	9.5 Value Objects

 If the context definition has an @version key, its value MUST be a number with the value 1.1.

		https://www.w3.org/TR/json-ld11/
	§	9.14 Property Nesting
	§	9.15 Context Definitions

 1 The Context for further discussion on contexts.

	JSON-LD keywords are described in § 1.7 Syntax Tokens and Keywords, this
	section describes where each keyword may appear within different JSON-LD
	structures.

Within node objects, value objects, graph objects, list objects, set objects, and nested properties keyword aliases MAY be used instead of the corresponding keyword, except for @context. The @context keyword MUST NOT bee aliased. Within local contexts and expanded term definitions, keyword aliases MAY 9.16 Keywords § https://www.w3.org/TR/json-ld11/

 ://www.w3.org/TR/json-ld11/ In JSON-LD numbers and boolean values are native data types. While [Turtle] has a shorthand syntax to express such values, RDF's abstract syntax requires that numbers and boolean values are represented as typed literals. Thus, to allow full round-tripping, the JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API] defines conversion rules between JSON-LD's native data types and RDF's counterparts. Numbers without fractions are converted to xsd:integer-typed literals, numbers with fractions to xsd:double-typed literals and the two boolean values true and false to a xsd:boolean-typed literal. All typed literals are in canonical lexical form. EXAMPLE 156: Embedding in Turtle @prefix foaf: <http://xmlns.com/foaf/0.1/> .

		<http://manu.sporny.org/about#manu>
		a foaf:Person;
		foaf:name "Manu Sporny";
		foaf:knows [a foaf:Person; foaf:name "Gregg Kellogg"] .
	§	13. Internationalization Considerations
	§	A. Image Descriptions

A.1 Linked Data Dataset https

§

 EXAMPLE 160: A list of values in Turtle @prefix foaf: <http://xmlns.com/foaf/0.1/> . <http://example.org/people#joebob> a foaf:Person; foaf:name "Joe Bob";foaf:nick ("joe" "bob" "jaybee") . https://www.w3.org/TR/json-ld11/ Note that the JSON-LD representation of the Microdata information stays true to the desires of the Microdata community to avoid contexts and instead refer to items by their full IRI. EXAMPLE 164: HTML that describes a book using microdata <dl itemscope itemtype="http://purl.org/vocab/frbr/core#Work" itemid="http://purl.oreilly.com/works/45U8QJGZSQKDH8N"> <dt>Title</dt> <dd><cite itemprop="http://purl.org/dc/elements/1.1/title">Just a Geek <dt>By</dt> <dd>Wil Wheaton <dt>Format</dt> <dd itemprop="http://purl.org/vocab/frbr/core#realization" itemscope itemtype="http://purl.org/vocab/frbr/core#Expression" itemid="http://purl.oreilly.com/products/9780596007683.BOOK"> <link itemprop="http://purl.org/dc/elements/1.1/type" href="http://purl.oreil Print </dd> <dd itemprop="http://purl.org/vocab/frbr/core#realization" itemscope itemtype="http://purl.org/vocab/frbr/core#Expression" itemid="http://purl.oreilly.com/products/9780596802189.EBOOK"> <link itemprop="http://purl.org/dc/elements/1.1/type" href="http://purl.oreil ://www.w3.org/TR/json-ld11/ This section has been submitted to the Internet Engineering Steering Group (IESG) for review, approval, and registration with IANA.

	Ebook
	</dd>
	</dl>
	Type name:
	application
	Subtype name:
	ld+json
	Required parameters:
	None
	Optional parameters:

httpsprofile A non-empty list of space-separated URIs identifying specific EXAMPLE 165: Same book description in

JSON-LD (avoiding contexts)

 ://www.w3.org/TR/json-ld11/ constraints or conventions that apply to a JSON-LD document according to[RFC6906]. A profile does not change the semantics of the resource representation when processed without profile knowledge, so that clients both with and without knowledge of a profiled resource can safely use the same representation. The profile parameter MAY be used by clients to express their preferences in the content negotiation process. If the profile parameter is given, a server SHOULD return a document that honors the profiles in the list which it recognizes, and MUST ignore the profiles in the list which it does not recognize. It is RECOMMENDED that profile URIs are dereferenceable and provide useful documentation at that URI. For more information and background please refer to [RFC6906].

		com/pr
		}
]
	§	C. IANA Considerations
	§	application/ld+json

https

https://www.w3.org/TR/json-ld11/

§https://www.w3.org/TR/json-ld11/

Acknowledgements

latest revision of this technical report can be found in the W3C technical reports index at https://www.w3.org/TR/. This document has been developed by the JSON-LD Working Group and was derived from the JSON-LD Community Group's Final Report.

There is a live JSON-LD playground that is capable of demonstrating the features described comments to our mailing list. Please send them to public-jsonld-wg@w3.https://www.w3.org/TR/json-ld11/ https://www.w3.org/TR/json-ld11/ These are used within this document as part of a compact IRI as a shorthand for the resulting IRI, such as dcterms:title used to represent http://purl.org /"Manu Sporny", "http://schema.org@id": "http://manu.sporny.org/" schema.org/image": { } } https://www.w3.org/TR/json-ld11/

Compact IRIs and IRIs may be used on the left-hand side of a term definition.

In this example, the compact IRI form is used in two different ways. In the first approach, foaf:age declares both the IRI for the term (using short-form) as well as the @type associated with the term. In the second approach, only the @type associated with the term is specified. The full IRI for foaf:homepage EXAMPLE 40: Using a term to define the IRI of another term within a context { "@context": { "foaf": "http://xmlns.com/foaf/0.1/", "xsd": "http://www.w3.org/2001/XMLSchema#", "name": "foaf:name", "age": { "@id": "foaf:age", "@type": "xsd:integer" }, "homepage": { "@id": "foaf:homepage", "@type": "@id" } }, ... } EXAMPLE 41: Using a compact IRI as a term { "@context": { "foaf": "http://xmlns.com/foaf/0.1/", "xsd": "http://www.w3.org/2001/XMLSchema#", "name": "foaf:name", "foaf:age": { "@id": "http://xmlns.com/foaf/0.1/age", "@type": "xsd:integer" }, "foaf:homepage": { "@type": "@id" } }, ... } https://www.w3.org/TR/json-ld11/

A wrapping context could be used to source it and modify it:

The effect would be the same as if the entire imported context had been copied into the type-scoped context: EXAMPLE 50: A remote context to be imported in a type-scoped context { "@context": { "Type1": "http://example.com/vocab/Type1", "Type2": "http://example.com/vocab/Type2", "term1": "http://example.com/vocab#term1", "term2": "http://example.com/vocab#term2", ... } } EXAMPLE 51: Sourcing a context in a type-scoped context and setting it to propagate { "@context": { "@version": 1.1, "MyType": { "@id": "http://example.com/vocab#MyType", "@context": { "@version": 1.1, "@import": "https://json-ld.org/contexts/remote-context.jsonld", "@propagate": true } } } } https://www.w3.org/TR/json-ld11/ Second, it is possible to associate a base direction with a specific term using an expanded term definition:

The example above would create three properties:

NOTE

Base direction associations are only applied to plain strings and languagetagged strings. Typed values or values that are subject to type coercion are not given a base direction.

Third, it is possible to override the default base direction by using a value object:

EXAMPLE 76: Expanded term definition with language and direction { "@context": { ... "@version": 1.1, "@language": "ar-EG", "@direction": "rtl", "ex": "http://example.com/vocab/", "publisher": { "@id": "ex:publisher", "@direction": null }, "title": { "@id": "ex:title" }, "title_en": { "@id": "ex:title", "@language": "en", "@direction": "ltr" }, Open in playground { "@context": {"dcterms": "http://purl.org/dc/terms/"}, "@id": "http://example.org/articles/8", "dcterms:title": [{ "@value": "Das Kapital", "@language": "de" }, { "@value": "Capital", "@language": "en" }] } Open in playground { "@context": {"ex": "http://example.org/"}, "@id": "http://example.org/people#michael", "ex:name": ["Michael", {"@value": "Mike"}, {"@value": "Miguel", "@language": "es"}, { "@id": "https://www.wikidata.org/wiki/Q4927524" }, 42] } https://www.w3.org/TR/json-ld11/

Input

The implementation of lists in RDF depends on linking anonymous nodes together using the properties rdf:first and rdf:rest, with the end of the list defined as the resource rdf:nil, as the "statements" tab illustrates. This allows order to be represented within an unordered set of statements.

Both JSON-LD and Turtle provide shortcuts for representing ordered lists.

In JSON-LD 1.1, lists of lists, where the value of a list object, may itself be a list object, are fully supported.

Note that the "@container": "@list" definition recursively describes array values of lists as being, themselves, lists. For example, in The GeoJSON Format (see [START_REF] Geojson Format | W3C Recommendation[END_REF]), coordinates are an ordered list of positions, which are represented as an array of two or more numbers:

Input EXAMPLE 82: Specifying that a collection is ordered in the context

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { ... "nick": { "@id": "http://xmlns.com/foaf/0.1/nick", "@container": "@list" } }, ... "@id": "http://example.org/people#joebob", "nick": ["joe", "bob", "jaybee"],

... } https://www.w3.org/TR/json-ld11/ ⚠ Warning As data indexes are not preserved when round-tripping to RDF; this feature should be used judiciously. Often, other indexing mechanisms, which are preserved, are more appropriate.

The value of @container can also be an array containing both @index and @set.

When compacting, this ensures that a JSON-LD Processor will use the array form for all values of indexes.

Unless the processing mode is set to json-ld-1.0, the special index @none is used for indexing data which does not have an associated index, which is useful to maintain a normalized representation.

https://www.w3.org/TR/json-ld11/ NOTE When using property-based data indexing, index maps can only be used on node objects, not value objects or graph objects. Value objects are restricted to have only certain keys and do not support arbitrary properties.

This section is non-normative.

JSON which includes string values in multiple languages may be represented using a language map to allow for easily indexing property values by language tag. This enables direct access to language values instead of having to scan an array in search of a specific item. In JSON-LD such data can be specified by associating the @language keyword with a @container declaration in the context:

In the example above, the label term has been marked as a language map. The en and de keys are implicitly associated with their respective values by the JSON-LD Processor. This allows a developer to access the German version of the label using the following code snippet: obj.label.de, which, again, is only appropriate when languages are limited to the primary language sub-tag Open in playground { "@context": { "vocab": "http://example.com/vocab/", "label": { "@id": "vocab:label", "@container": "@language" } }, "@id": "http://example.com/queen", "label": { "en": "The Queen", "de": ["Die Königin", "Ihre Majestät"] } } https://www.w3.org/TR/json-ld11/ and do not depend on other sub-tags, such as "de-at".

The value of @container can also be an array containing both @language and @set. When compacting, this ensures that a JSON-LD Processor will use the array form for all values of language tags. Unless the processing mode is set to json-ld-1.0, the special index @none is used for indexing strings which do not have a language; this is useful to maintain a normalized representation for string values not having a datatype. Open in playground { "@context": { "@version": 1.1, "vocab": "http://example.com/vocab/", "label": { "@id": "vocab:label", "@container": ["@language", "@set"] } }, "@id": "http://example.com/queen", "label": { "en": ["The Queen"], "de": ["Die Königin", "Ihre Majestät"] } } https://www.w3.org/TR/json-ld11/ In the example above, the post term has been marked as an id map. The http://example.com/posts/1/en and http://example.com/posts/1/de keys will be interpreted as the @id property of the node object value.

Input

The interpretation of the data above exactly the same as that in § 4.6.1 Data Indexing using a JSON-LD processor.

The value of @container can also be an array containing both @id and @set.

When compacting, this ensures that a JSON-LD processor will use the array form for all values of node identifiers.

Input

EXAMPLE 103: Indexing data in JSON-LD by node identifiers

Compacted (Input) Expanded (Result) Statements Turtle

Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "words": "schema:wordCount", "post": { "@id": "schema:blogPost", "@container": "@id", "@context": { "@base": "http://example.com/posts/" } } }, "@id": "http://example.com/", "@type": "schema:Blog", "name": "World Financial News", "post": { "1/en": { "body": "World commodities were up today with heavy trading of crude oil.. In addition to id and index maps, JSON-LD introduces the notion of type maps for structuring data. The type indexing feature allows an author to structure data using a simple key-value map where the keys map to IRIs. This enables data to be structured based on the @type of specific node objects. In JSON-LD such data can be specified by associating the @type keyword with a @container declaration in the context:

In the example above, the affiliation term has been marked as a type map.

The schema:Corporation and schema:ProfessionalService keys will be interpreted as the @type property of the node object value.

The value of @container can also be an array containing both @type and @set.

When compacting, this ensures that a JSON-LD processor will use the array form for all values of types.

Input

EXAMPLE 106: Indexing data in JSON-LD by type

Open in playground { "@context": { "@version": 1.1, "schema": "http://schema.org/", "name": "schema:name", "affiliation": { "@id": "schema:affiliation", "@container": "@type" } }, "name": "Manu Sporny", "affiliation": { "schema:Corporation": { "@id": "https://digitalbazaar.com/", "name": "Digital Bazaar" }, "schema:ProfessionalService": { "@id": "https://spec-ops.io", "name": "Spec-Ops" } } } https://www.w3.org/TR/json-ld11/

The example above expresses a named graph that is identified by the IRI http://example.org/foaf-graph. That graph is composed of the statements about Manu and Gregg. Metadata about the graph itself is expressed via the generatedAt property, which specifies when the graph was generated.

When a JSON-LD document's top-level structure is a map that contains no other keys than @graph and optionally @context (properties that are not mapped to an IRI or a keyword are ignored), @graph is considered to express the otherwise implicit default graph. This mechanism can be useful when a number of nodes exist at the document's top level that share the same context, which is, e.g., the case when a document is flattened. The @graph keyword collects such nodes in an array and allows the use of a shared context. Open in playground { "@context": { "generatedAt": { "@id": "http://www.w3.org/ns/prov#generatedAtTime", "@type": "http://www.w3.org/2001/XMLSchema#dateTime" }, "Person": "http://xmlns.com/foaf/0.1/Person", "name": "http://xmlns.com/foaf/0.1/name", "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"} }, "@id": "http://example.org/foaf-graph", "generatedAt": "2012-04-09T00:00:00", "@graph": [{ "@id": "http://manu.sporny.org/about#manu", "@type": "Person", "name": "Manu Sporny", "knows": "https://greggkellogg.net/foaf#me" }, { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg", "knows": "http://manu.sporny.org/about#manu" }] } https://www.w3.org/TR/json-ld11/ In this case, embedding can not be used as the graph contains unrelated nodes. This is equivalent to using multiple node objects in array and defining the @context within each node object:

Input

Input EXAMPLE 116: Using @graph to explicitly express the default graph

Compacted (Input) Expanded (Result) Statements TriG

Open in playground { "@context": { "@vocab": "http://xmlns.com/foaf/0.1/" }, "@graph": [{ "@id": "http://manu.sporny.org/about#manu", "@type": "Person", "name": "Manu Sporny" }, { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg" }] } https://www.w3.org/TR/json-ld11/ Note, however, that if multiple graphs are represented without an @id, they will be merged on expansion. To prevent this, use @none judiciously, and consider giving graphs their own distinct identifier. Open in playground { "@context": { "@version": 1.1, "generatedAt": { "@id": "http://www.w3.org/ns/prov#generatedAtTime", "@type": "http://www.w3.org/2001/XMLSchema#dateTime" }, "Person": "http://xmlns.com/foaf/0.1/Person", "name": "http://xmlns.com/foaf/0.1/name", "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"}, "graphMap": { "@id": "http://example.org/graphMap", "@container": ["@graph", "@id"] } }, "@id": "http://example.org/foaf-graph", "generatedAt": "2012-04-09T00:00:00", "graphMap": { "@none": [{ "@id": "http://manu.sporny.org/about#manu", "@type": "Person", "name": "Manu Sporny", "knows": "https://greggkellogg.net/foaf#me" }, { "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg", "knows": "http://manu.sporny.org/about#manu" }] } } https://www.w3.org/TR/json-ld11/ the process of applying a developer-supplied context to shorten IRIs to terms or compact IRIs and JSON-LD values expressed in expanded form to simple values such as strings or numbers. Often this makes it simpler to work with document as the data is expressed in application-specific terms. Compacted documents are also typically easier to read for humans. The details of Compaction are described in the Compaction algorithm in . This section provides a short description of how the algorithm operates as a guide to authors creating contexts to be used for compacting JSON-LD documents.

NOTE

The purpose of compaction is to apply the term definitions, vocabulary mapping, default language, and base IRI to an existing JSON-LD document to cause it to be represented in a form that is tailored to the use of the JSON-LD document directly as JSON. This includes representing values as strings, rather than value objects, where possible, shortening the use of list objects into simple arrays, reversing the relationship between nodes, and using data maps to index into multiple values instead of representing them as an array of values.

This section is non-normative.

In an expanded { "@context": { "name": "http://xmlns.com/foaf/0.1/name", "homepage": { "@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id" } }, "name": "Manu Sporny", "homepage": "http://manu.sporny.org/" }

Shortening IRIs §

https://www.w3.org/TR/json-ld11/ Default Vocabulary, § 4. 1.3 Base IRI,and § 4.1.5 Compact IRIs for more details.

The vocabulary mapping can be used to shorten IRIs that may be vocabulary relative by removing the IRI prefix that matches the vocabulary mapping. This is done whenever an IRI is determined to be vocabulary relative, i.e., used as a property, or a value of @type, or as the value of a term described as "@type": "@vocab".

Input Context

Result EXAMPLE 128: Compacting using a default vocabulary Given the following expanded document:

[{ "@id": "http://example.org/places#BrewEats", "@type": ["http://example.org/Restaurant"],

"http://example.org/name": [{"@value": "Brew Eats"}] }]

And the following context: { "@context": { "@vocab": "http://example.org/" } }

The compaction algorithm will shorten all vocabulary-relative IRIs that begin with http://xmlns.com/foaf/0.1/: { "@context": { "@vocab": "http://example.org/" }, "@id": "http://example.org/places#BrewEats", "@type": "Restaurant", "name": "Brew Eats" [{ "@id": "http://example.com/document.jsonld", "http://www.w3.org/2000/01/rdf-schema#label": [{"@value": "Just a simple docu }]

And the following context:

{ "@context": { "@base": "http://example.com/", "label": "http://www.w3.org/2000/01/rdf-schema#label" }

}

The compaction algorithm will shorten all document-relative IRIs that begin with http://example.com/: { "@context": { "@base": "http://example.com/", "label": "http://www.w3.org/2000/01/rdf-schema#label" }, "@id": "document.jsonld", "label": "Just a simple document" }

Representing Values as Strings §

https://www.w3.org/TR/json-ld11/ This section is non-normative.

As described in § 4.3.1 Lists, JSON-LD has an expanded syntax for representing ordered values, using the @list keyword. To simplify the representation in JSON-LD, a term can be defined with "@container": "@list" which causes all values of a property using such a term to be considered ordered.

{ "@context": { "@vocab": "http://example.com/", "date": {"@type": "http://www.w3.org/2001/XMLSchema#date"}, "en": {"@language": "en"}, "iri": {"@type": "@id"} }, "plain": ["string", true, 1], "date": "2018-02-16", "en": "English", "iri": "http://example.com/some-location" }

Representing Lists as Arrays §

https://www.w3.org/TR/json-ld11/ This section is non-normative.

In some cases, the property used to relate two nodes may be better expressed if the nodes have a reverse direction, for example, when describing a Input Context EXAMPLE 131: Using Arrays for Lists Given the following expanded document:

[{ "http://xmlns.com/foaf/0.1/nick": [{ "@list": [{"@value": "joe"}, {"@value": "bob"}, {"@value": "jaybee

And the following context:

{ "@context": { "nick": { "@id": "http://xmlns.com/foaf/0.1/nick", "@container": "@list"

The compacted version eliminates the explicit list object.

{ "@context": { "nick": { "@id": "http://xmlns.com/foaf/0.1/nick", "@container": "@list" } }, "nick": ["joe", "bob", "jaybee"] }

Reversing Node Relationships §

https://www.w3.org/TR/json-ld11/ Reverse properties can be even more useful when combined with framing,

Input

Context EXAMPLE 132: Reversing Node Relationships Given the following expanded document:

[{ "@id": "http://example.org/#homer", "http://example.com/vocab#name": [{"@value": "Homer"}], "@reverse": { "http://example.com/vocab#parent": [{ "@id": "http://example.org/#bart", "http://example.com/vocab#name": [{"@value": "Bart"}] }, { "@id": "http://example.org/#lisa", "http://example.com/vocab#name": [{"@value":

And the following context: { "@context": { "name": "http://example.com/vocab#name", "children": { "@reverse": "http://example.com/vocab#parent"

} }

The compacted version eliminates the @reverse property by describing "children" as the reverse of "parent".

{ "@context": { "name": "http://example.com/vocab#name", "children": { "@reverse": "http://example.com/vocab#parent" } }, "@id": "#homer", "name": "Homer", "children": [{ "@id": "#bart", "name": "Bart"}, { "@id": "#lisa", "name": "Lisa"}] } https://www.w3.org/TR/json-ld11/

Input

Context EXAMPLE 133: Indexing language-tagged strings Given the following expanded document:

[{ "@id": "http://example.com/queen", "http://example.com/vocab/label": [{"@value": "The Queen", "@language": "en"}, {"@value": "Die Königin", "@language": "de"}, {"@value": "Ihre Majestät", "@language": "de"}] }]

And the following context: { "@context": { "vocab": "http://example.com/vocab/", "label": { "@id": "vocab:label", "@container": "@language" } } }

The compacted version uses a map value for "label", with the keys representing the language tag and the values are the strings associated with the relevant language tag.

{ "@context": { "vocab": "http://example.com/vocab/", "label": { "@id": "vocab:label", "@container": "@language" } }, "@id": "http://example.com/queen", "label": { "en": "The Queen", "de": ["Die Königin", "Ihre Majestät"] } } https://www.w3.org/TR/json-ld11/ Data can be indexed on a number of different keys, including @id, @type, @language, @index and more. See § 4.6 Indexed Values and § 4.9 Named Graphs for more details. This section is non-normative. Sometimes it's useful to compact a document, but keep the node object and value object representations. For this, a term definition can set "@type": "@none". This causes the Value Compaction algorithm to always use the object form of values, although components of that value may be compacted. {"@value": "string"}, {"@value": true}, {"@value": false}, {"@value": 1}, {"@value": 10.0}, {"@value": "plain"}, {"@value": "false", "@type": "http://www.w3.org/2001/XMLSchema#boolean"}, {"@value": "english", "@language": "en"}, {"@value": "2018-02-17", "@type": "http://www.w3.org/2001/XMLSchema#date"}, {"@id": "http://example.com/iri"}] }]

Normalizing Values as

And the following context: { "@context": { "@version": 1.1, "xsd": "http://www.w3.org/2001/XMLSchema#", "notype": {"@id": "http://example.com/notype", "@type": "@none"} } }

The compacted version will use string values for the defined terms when the values match the term definition. Also, the other native values, 1 and true, can be represented without defining a specific type mapping.

https://www.w3.org/TR/json-ld11/

Input

Context

Result EXAMPLE 135: Indexing language-tagged strings and @set Given the following expanded document:

[{ "@id": "http://example.com/queen", "http://example.com/vocab/label": [{"@value": "The Queen", "@language": "en"}, {"@value": "Die Königin", "@language": "de"}, {"@value": "Ihre Majestät", "@language": "de"}] }]

And the following context: { "@context": { "@version": 1.1, "@vocab": "http://example.com/vocab/", "label": { "@container": ["@language", "@set"]

} } }

The compacted version uses a map value for "label" as before. and the values are the relevant strings but always represented using an array.

{ "@context": { "@version": 1.1, "@vocab": "http://example.com/vocab/", "label": { "@container": ["@language", "@set"] } }, "@id": "http://example.com/queen", "label": { "en": ["The Queen"], "de": ["Die Königin", "Ihre Majestät"] } } https://www.w3.org/TR/json-ld11/ This section is non-normative.

When compacting, the Compaction algorithm will compact using a term for a property only when the values of that property match the @container, @type, and @language specifications for that term definition. This can actually split values between different properties, all of which have the same IRI. In case there is no matching term definition, the compaction algorithm will compact using the absolute IRI of the property.

Term Selection

{

"@context": { "name": "http://xmlns.com/foaf/0.1/name", "knows": "http://xmlns.com/foaf/0.1/knows" }, "@graph": [{ "@id": "http://me.markus-lanthaler.com/", "name": "Markus Lanthaler", "knows": [{ "@id": "http://manu.sporny.org/about#manu" }, { "@id": "_:b0" }] }, { "@id": "http://manu.sporny.org/about#manu", "name": "Manu Sporny" }, { "@id": "_:b0", "name": "Dave Longley" }] } Input EXAMPLE 140: Flattened library objects { "@context": { "@vocab": "http://example.org/", "contains": {"@type": "@id"} }, "@graph": [{ "@id": "http://example.org/library", "@type": "Library", "contains": "http://example.org/library/the-republic" }, { "@id": "http://example.org/library/the-republic", "@type": "Book", "creator": "Plato", "title": "The Republic", "contains": "http://example.org/library/the-republic#introduction" }, { "@id": "http://example.org/library/the-republic#introduction", "@type": "Chapter", "description": "An introductory chapter on The Republic.", "title": "The Introduction" }] } https://www.w3.org/TR/json-ld11/ JSON-LD's media type defines a profile parameter which can be used to signal or request framed document form. The profile URI identifying framed document form is http://www.w3.org/ns/json-ld#framed.

Framed Document Form

JSON-LD's media type also defines a profile parameter which can be used to identify a script element in an HTML document containing a frame. The first script element of type application/ld+json;profile=http://www.w3.org /ns/json-ld#frame will be used to find a frame.. Certain aspects of JSON-LD processing can be modified using HTTP Link Headers [START_REF] Nottingham | Proposed Standard[END_REF]. These can be used when retrieving resources that are not, themselves, JSON-LD, but can be interpreted as JSON-LD by using information in a Link Relation.

When processing normal JSON documents, a link relation can be specified using the HTTP Link Header returned when fetching a remote document, as described in § 6.1 Interpreting JSON as JSON-LD.

EXAMPLE 141: Framed library objects Open in playground { "@context": { "@version": 1.1, "@vocab": "http://example.org/" }, "@id": "http://example.org/library", "@type": "Library", "contains": { "@id": "http://example.org/library/the-republic", "@type": "Book", "contains": { "@id": "http://example.org/library/the-republic#introduction", "@type": "Chapter", "description": "An introductory chapter on The Republic.", "title": "The Introduction" }, "creator": "Plato", "title": "The Republic" } } Defining how such data may be used is beyond the scope of this specification.

Modifying Behavior with Link Relationships

The embedded JSON-LD document might be extracted as is or, e.g., be interpreted as RDF.

If JSON-LD content <p>Data describing Dave</p> <script type="application/ld+json"> { "@context": "http://schema.org/", "@id": "https://digitalbazaar.com/author/dlongley/", "@type": "Person", "name": "Dave Longley" } </script> <p>Data describing Gregg</p> <script type="application/ld+json"> { "@context": "http://schema.org/", "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg" } </script> A specific script element within an HTML document may be located using a fragment identifier matching the unique identifier of the script element within the HTML document located by a URL (see [DOM]). A JSON-LD processor MUST extract only the specified data block's contents parsing it as a standalone JSON-LD document and MUST NOT merge the result with any other markup from the same HTML document.

For example, given an HTML document located at http://example.com /document, a script element identified by "dave" can be targeted using the URL http://example.com/document#dave.

Input

EXAMPLE 147: Embedding JSON-LD containing HTML in HTML

Compacted (Input) Expanded (Result) Turtle

<script type="application/ld+json"> { "@context": "http://schema.org/", "@type": "WebPageElement", "name": "Encoding Issues", "description": "Issues list such as unescaped </script> or -->" } </script> To ease understanding for developers unfamiliar with the RDF model, the following summary is provided:

which is a collection of graphs that comprises exactly one default graph and zero or more named graphs.

The default graph does not have a name and MAY be empty.

Each named graph is a pair consisting of an IRI or blank node identifier (the graph name) and a graph. Whenever practical, the graph name Input EXAMPLE 148: Targeting a specific script element by id

Compacted (Input) Statements Turtle

Targeting a script element with id "gregg" <p>Data describing Dave</p> <script id="dave" type="application/ld+json"> { "@context": "http://schema.org/", "@id": "https://digitalbazaar.com/author/dlongley/", "@type": "Person", "name": "Dave Longley" } </script> <p>Data describing Gregg</p> <script id="gregg" type="application/ld+json"> { "@context": "http://schema.org/", "@id": "https://greggkellogg.net/foaf#me", "@type": "Person", "name": "Gregg Kellogg" } </script> { "@context": ["http://schema.org/", {"@base": "http://example.com/"}], "@graph": [{ "@id": "people/alice", "gender": [{"@value": "weiblich", "@language": "de"}, {"@value": "female", "@language": "en"}], "knows": {"@id": "people/bob"}, "name": "Alice" }, { "@id": "graphs/1", "@graph": { "@id": "people/alice", "parent": { "@id": "people/bob", "name": "Bob" } } }, { "@id": "graphs/2", "@graph": { "@id": "people/bob", "sibling": { "name": "Mary", "sibling": {"@id": "people/bob"} } } }] } https://www.w3.org/TR/json-ld11/ IRI, a string which can be turned into an IRI using the vocabulary mapping, @json, or null.

The value associated with the @language key MUST have the lexical form described in [BCP47], or be null.

The value associated with the @direction key MUST be one of "ltr" or "rtl", or be null.

The value associated with the @index key MUST be a string. See § 4.2.1 Typed Values and § 4.2.4 String Internationalization for more information on value objects.

When framing, a value pattern extends a value object to allow entries used specifically for framing.

The values of @value, @language, @direction and @type MAY additionally be an empty map (wildcard), an array containing only an empty map, an empty array (match none), an array of strings.

A list represents an ordered set of values. A set represents an unordered set of values. Unless otherwise specified, arrays are unordered in JSON-LD. As such, the @set keyword, when used in the body of a JSON-LD document, represents just syntactic sugar which is optimized away when processing the document. However, it is very helpful when used within the context of a document. Values of terms associated with an @set or @list container will always be represented in the form of an array when a document is processed-even if there is just a single value that would otherwise be optimized to a non-array form in compacted document form. This simplifies post-processing of the data as the data is always in a deterministic form.

A list object MUST be a map that contains no keys that expand to an IRI or keyword other than @list and @index.

A set object MUST be a map that contains no keys that expand to an IRI or keyword other than @set and @index. Please note that the @index key will be ignored when being processed. Deserializing this to RDF now is a straightforward process of turning each EXAMPLE 151: Sample JSON-LD document { "@context": { "name": "http://xmlns.com/foaf/0.1/name", "knows": "http://xmlns.com/foaf/0.1/knows" }, "@id": "http://me.markus-lanthaler.com/", "name": "Markus Lanthaler", "knows": [{ "@id": "http://manu.sporny.org/about#manu", "name": "Manu Sporny" }, { "name": "Dave Longley" }] } EXAMPLE 152: Flattened and expanded form for the previous example [{ "@id": "_:b0", "http://xmlns.com/foaf/0.1/name": "Dave Longley" }, { "@id": "http://manu.sporny.org/about#manu", "http://xmlns.com/foaf/0.1/name": "Manu Sporny" }, { "@id": "http://me.markus-lanthaler.com/", "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler", "http://xmlns.com/foaf/0.1/knows": [{ "@id": "http://manu.sporny.org/about#manu" }, { "@id": "_:b0" }] }] https://www.w3.org/TR/json-ld11/ node object into one or more triples. This can be expressed in Turtle as follows:

The process of serializing RDF as JSON-LD can be thought of as the inverse of this last step, creating an expanded JSON-LD document closely matching the triples from RDF, using a single node object for all triples having a common subject, and a single property for those triples also having a common predicate. The result may then be framed by using the Framing Algorithm described in to create the desired object embedding.

RDF provides for JSON content as a possible literal value. This allows markup in literal values. Such content is indicated in a graph using a literal whose datatype is set to rdf:JSON.

The rdf:JSON datatype is defined as follows:

The IRI denoting this datatype is http://www.w3.org/1999/02/22-rdf-syntax-ns#JSON.

The lexical space is the set of UNICODE [UNICODE] strings which conform to the JSON Grammar as described in Section 2 JSON Grammar of [START_REF]The JavaScript Object Notation (JSON) Data Interchange Format[END_REF]. The canonical mapping is non-normative, as a normative recommendation for JSON canonicalization is not yet defined. Implementations SHOULD use the following guidelines when creating the lexical representation of a JSON literal:

Serialize JSON using no unnecessary whitespace, Keys in objects SHOULD be ordered lexicographically, Native Numeric values SHOULD be serialized according to Section 7.1.12.1 of [ECMASCRIPT],

Strings SHOULD be serialized with Unicode codepoints from U+0000 through U+001F using lower case hexadecimal Unicode notation (\uhhhh) unless in the set of predefined JSON control characters U+0008, U+0009, U+000A, U+000C or U+000D which SHOULD be serialized as \b, \t, \n, \f and \r respectively. All other Unicode characters SHOULD be serialized "as is", other than U+005C (\) and U+0022 (") which SHOULD be serialized as \\ and \" respectively.

A B https://www.w3.org/TR/json-ld11/

ISSUE

The JSON Canonicalization Scheme [JCS] is an emerging standard for JSON canonicalization not yet ready to be referenced. When a JSON canonicalization standard becomes available, this specification will likely be updated to require such a canonical representation. Users are cautioned from depending on the JSON literal lexical representation as an RDF literal, as the specifics of serialization may change in a future revision of this document.

This section is non-normative.

The i18n namespace is used for describing combinations of language tag and base direction in RDF literals. It is used as an alternative mechanism for describing the [BCP47] language tag and base direction of RDF literals that would otherwise use the xsd:string or rdf:langString datatypes.

Datatypes based on this namespace allow round-tripping of JSON-LD documents using base direction, although the mechanism is not otherwise standardized.

The Deserialize JSON-LD to RDF Algorithm can be used with the rdfDirection option set to i18n-datatype to generate RDF literals using the i18n base to create an IRI encoding the base direction along with optional language tag from value objects containing @direction by appending to https://www.w3.org/ns/i18n# the value of @language, if any, followed by an underscore ("_") followed by the value of @direction.

(FEATURE AT RISK) ISSUE

This feature is experimental, as RDF does not have a standard way to represent base direction in RDF literals. A future RDF Working Group may support base direction differently. The JSON-LD Working Group solicits feedback from the community on the usefulness of these transformations.

The following example shows two statements with literal values of i18n:ar-EG_rtl, which encodes the language tag ar-EG and the base direction rtl. See § 4.2.4.1 Base Direction for more details on using base direction for strings.

This section is non-normative. This specification defines the rdf:CompoundLiteral class, which is in the domain of rdf:language and rdf:direction to be used for describing RDF literal values containing base direction and a possible language tag to be associated with the string value of rdf:value on the same subject.

rdf:CompoundLiteral

A class representing a compound literal.

rdf:language

An RDF property. The range of the property is an rdfs:Literal, whose value MUST be a well-formed [BCP47] language tag. The domain of the property is rdf:CompoundLiteral.

rdf:direction

An RDF property. The range of the property is an rdfs:Literal, whose value MUST be either "ltr" or "rtl". The domain of the property is rdf:CompoundLiteral.

The Deserialize JSON-LD to RDF Algorithm can be used with the rdfDirection option set to compound-literal to generate RDF literals using these properties to describe the base direction and optional language tag from value objects containing @direction and optionally @language.

10.4 The rdf:CompoundLiteral class and the rdf:language and rdf:direction properties § https://www.w3.org/TR/json-ld11/ (FEATURE AT RISK) ISSUE This feature is experimental, as RDF does not have a standard way to represent base direction in RDF literals. A future RDF Working Group may support base direction differently. The JSON-LD Working Group solicits feedback from the community on the usefulness of these transformations.

The following example shows two statements with compoud literals representing strings with the language tag ar-EG and base direction rtl. @prefix ex: <http://example.org/> . # Note that this version preserves the base direction using a bnode structure. The first box is titled "default graph: <no name>" describes two resources: http://example.com/people/alice and http://example.com/people/bob (denoting "Alice" and "Bob" respectively), which are connected by an arrow labeled schema:knows which describes the knows relationship between the two resources. Additionally, the "Alice" resource is related to three different literals:

Alice

an RDF literal with no datatype or language.

weiblich | de an language-tagged string with the value "weiblich" and language tag "de".

female | en

an language-tagged string with the value "female" and language tag "en".

The second and third boxes describe two named graphs, with the graph names "http://example.com/graphs/1" and "http://example.com/graphs/1", respectively.

The second box consists of two resources: http://example.com/people/alice and http://example.com/people/bob related by the schema:parent relationship, and names the http://example.com/people/bob "Bob".

The third box consists of two resources, one named http://example.com /people/bob and the other unnamed. The two resources related to each other using schema:sibling relationship with the second named "Mary".

This section is non-normative.

The JSON-LD examples approaches.

This section is non-normative.

The following are examples of transforming RDF expressed in [Turtle] into JSON-LD.

The JSON-LD context has direct equivalents for the Turtle @prefix declaration:

Both [Turtle] and JSON-LD allow embedding, although [Turtle] { "@context": { "foaf": "http://xmlns.com/foaf/0.1/", "foaf:homepage": {"@type": "@id"} }, "@graph": [{ "@type": "foaf:Person", "foaf:homepage": "http://example.com/bob/", "foaf:name": "Bob" }, { "@type": "foaf:Person", "foaf:homepage": "http://example.com/eve/", "foaf:name": "Eve" }, { "@type": "foaf:Person", "foaf:homepage": "http: Requests the server to return the requested resource as JSON-LD in expanded document form.

Requests the server to return the requested resource as JSON-LD in compacted document form. As no explicit context resource is specified, the server compacts using an application-specific default context.

Requests the server to return the requested resource as JSON-LD in both compacted document form and flattened document form. Note that as whitespace is used to separate the two URIs, they are enclosed in double quotes (").

This section is non-normative. but JSON-LD 1.0 only allowed string keys. This has been updated to allow @none keys.

The value for @container in an expanded term definition can also be an array containing any appropriate container keyword along with @set (other than @list). This allows a way to ensure that such property values will always be expressed in array form.

In JSON-LD 1.1, terms will be chosen as compact IRI prefixes when compacting only if a simple term definition is used where the value ends with a URI gen-delim character, or if their expanded term definition contains a @prefix entry with the value true. The 1.0 algorithm has been updated to only consider terms that map to a value that ends with a URI gen-delim character.

Values of properties where the associated term definition has @container set to @graph are interpreted as implicitly named graphs, where the associated graph name is assigned from a new blank node identifier.

Other combinations include ["@container", "@id"], ["@container", "@index"] each also may include "@set", which create maps from the graph identifier or index value similar to index maps and id maps.

Additionally, see § F. Changes since JSON-LD Community Group Final Report.

This section is non-normative.

Lists may now have items which are themselves lists.

Values of @type, or an alias of @type, may now have their @container set to @set to ensure that @type entries are always represented as an array. This also allows a term to be defined for @type, where the value MUST be a map with @container set to @set.

The use of blank node identifiers to label properties is obsolete, and may be removed in a future version of JSON-LD, as is the support for generalized RDF Datasets.

The vocabulary mapping can be a relative IRI reference, which is evaluated either against an existing default vocabulary, or against the document base. This allows vocabulary-relative IRIs, such as the keys of node objects, are expanded or compacted relative to the document base.

(See Security Considerations in § C. IANA Considerations for a discussion F. Changes since JSON-LD Community Group Final Report § https://www.w3.org/TR/json-ld11/ on how string vocabulary-relative IRI resolution via concatenation.)

Added support for "@type": "@none" in a term definition to prevent value compaction. Define the rdf:JSON datatype.

Term definitions with keys which are of the form of an IRI reference or a compact IRI MUST NOT expand to an IRI other than the expansion of the key itself.

A frame may also be located within an HTML document, identified using type application/ld+json;profile=http://www.w3.org/ns/json-ld#frame.

Term definitions can now be protected, to limit the ability of other contexts to override them.

A context defined in an expanded term definition may also be used for values of @type, which defines a context to use for node objects including the associated type.

By default, all contexts are propagated when traversing node objects, other than type-scoped contexts. This can be controlled using the @propagate entry in a local context.

A context may contain an @import entry used to reference a remote context within a context, allowing JSON-LD 1.1 features to be added to contexts originally authored for JSON-LD 1.0.

A node object may include an included block, which is used to contain a set of node objects which are treated exactly as if they were node objects defined in an array including the containing node object. This allows the use of the object form of a JSON-LD document when there is more than one node object being defined, and where those node objects are not embedded as values of the containing node object.

The alternate link relation can be used to supply an alternate location for retrieving a JSON-LD document when the returned document is not JSON.

Value objects, and associated context and term definitions have been updated to support @direction for setting the base direction of strings.

The processing mode is now implicitly json-ld-1.1, unless set explicitly to json-ld-1.0.

Improve notation using IRI, IRI reference, and relative IRI reference.

Allow further structured subtypes of application/ld+json by using +ld+json as a suffix for a new base type.

Warn about forward-compatibility issues for terms of the form ("@"1*ALPHA).