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Résumé – Avec l’accroissement des moyens d’acquisition et de mesures, les données d’intérêt sont par essence de nature multidimensionnelle.
Ceci peut s’interpréter comme un accroissement de la dimension/ordre des modèles tensoriels associés. Il y a donc là un besoin crucial d’avoir
à notre disposition des représentations équivalentes d’un tenseur d’ordre élevé en un graphe de tenseurs d’ordre réduit. Dans ce travail nous
considérons un graphe de type “train”, c’est-à-dire, qu’un tenseur d’ordre Q sera représenté par un train de tenseur (TT) composé de Q − 2
coeurs tensoriels d’ordre 3 et deux coeurs matriciels. Dans ce cadre, il a été démontré qu’un modèle CPD/PARAFAC de rang canonique R
peut être toujours représenté de manière exacte par un modèle TT dont les coeurs sont eux-même CPD/PARAFAC de rang canonique R. Ce
modèle est nommé TT-CPD. Nous généralisons cette équivalence au modèle PARALIND afin de prendre en compte des potentielles dépendances
linéaires dans les facteurs. Nous donnons et discutons ici les conditions d’unicité dans le cas du modèle TT-PARALIND.

Abstract – With the increase in measurement/sensing technologies, the collected data are in intrinsically multidimensional in a large number
of applications. This can be interpreted as a growth of the dimensionality/order of the associated tensor. There exists therefore a crucial need to
derive equivalent and alternative models of a high-order tensor as a graph of low-order tensors. In this work we consider a “ train ” graph, i.e.,
a Q-order tensor will be represented as a Tensor Train (TT) composed of Q − 2 3-order core tensors and two core matrices. In this context, it
has been shown that a canonical rank-R CPD / PARAFAC model can always be represented exactly by a TT model whose cores are canonical
rank-R CPD/PARAFAC. This model is called TT-CPD. We generalize this equivalence to the PARALIND model in order to take into account
potential linear dependencies in factors. We derive and discuss here uniqueness conditions for the case of the TT-PARALIND model.

1 Introduction

Canonical Polyadic Decomposition (CPD) [6] is one of the
most used tensor decompositions in signal processing. The
CPD and its variants are attractive tools due to their ability
to decompose tensors into physically interpretable quantities,
called factors. Its uniqueness has been studied in several state-
of-art articles such as [7, 10, 5]. Uniqueness and compactness
are two of the advantages that make the CPD widespread. In-
deed, the CPD is usually unique under mild conditions and its
storage cost grows linearly with respect to the order. Recently,
tensor networks (TNs) [4] have been subject of increasing in-
terest, especially for high-order tensors, allowing more flexi-
ble tensor modelling. TNs split high-order (Q > 3) tensors
into a set of lower-order tensors. Tensor train decomposition
(TTD) [8] is one the most compact and simple TNs. Indeed,
TTD breaks a high Q-order tensor into a set of Q lower-order
tensors, called TT-cores. These TT-cores have orders at most
equal to 3. In this sense, TNs are able to break the “curse of
dimensionality”.

In a recent work [12], an equivalence between the CPD and
the TTD was proposed. In fact, it has been shown that a Q-
order CPD of rank-R is equivalent to a train of 3-order CPD(s)

of rank-R. This result makes it easier to jointly reduce the di-
mension and estimate the CPD factors using the TT-cores when
the original tensor has a high order. Otherwise, when Q is high,
the CPD factors estimation becomes a difficult task using ALS-
based techniques [2]. At the same time, the existing results on
the equivalence between CPD and TTD are based on assump-
tion that the CPD factor matrices are all full column rank, in
which case, estimating the factor matrices from the TT-cores is
straightforward.

In this work, we focus on the case where linear dependencies
are present between the columns on the factor matrices lead-
ing to high-order PARALIND (PARAllel profiles with LIN-
ear Dependences) model [3]. PARALIND is a variant of the
CPD with constrained factor/loading matrices, that models a
linearly dependent factor P as a product of a full column rank
matrix P̃ and an interaction matrix Φ. Matrix Φ introduces
the linear dependency and rank deficiency in P . Linear de-
pendencies in factor matrices are of great interest in real sce-
narios and can be encountered in chemometrics applications
[3] or in array signal processing [11], to mention a few. In
this work, some new equivalence results between the TTD and
PARALIND are presented. The TT-cores structure is exposed
when the Q-order PARALIND has only two full column rank



factor matrices. Partial and full uniqueness conditions for the
new TT-PARALIND model are also studied.

The notations used in this paper are as follows. Scalars, vec-
tors, matrices and tensors are represented by x, x, X and X ,
respectively. The symbols (·)T and (·)−1 denote, respectively,
the transpose and the inverse. Ik,R denotes the k-order iden-
tity tensor of size R × · · · × R, and I2,R = IR. The matrix
unfoldkX of size Nk×N1 · · ·Nk−1Nk+1 · · ·NQ refers to the
k-mode unfolding of X of size N1 × · · · × NQ. The n-mode
product is denoted by •

n
. The contraction

p
•
q

between two tensors

A and B of size N1 × · · · × NQ and M1 × · · · ×MP , with
Nq = Mp is a tensor of order (Q + P − 2) such that

[A
p
•
q
B]n1,...,nq−1,nq+1,...,nQ,m1,...,mp−1,mp+1,...,mP

=

Nq∑
k=1

[A]n1,...,nq−1,k,nq+1,...,nQ
[B]m1,...,mp−1,k,mp+1,...,mP

.

2 Equivalence between the PARALIND
and the TTD

2.1 Tensor-Train Decomposition (TTD)
Definition 1. A Q-order tensor of size N1 × . . . × NQ that
follows a Tensor Train decomposition (TTD) [8] of TT-ranks
{R1, . . . , RQ−1} admits the following definition:

X = G1
1•
2
G2

1•
3
G3

1•
4
. . .

1•
Q−1

GQ−1
1•
Q
GQ, (1)

where the TT-cores G1,Gq , and GQ are, respectively, of di-
mensions N1 × R1, Rq−1 × Nq × Rq , and RQ−1 × NQ, for
2 ≤ q ≤ Q− 1, and we have rank{G1} = R1, rank{GQ} =
RQ−1, rank{unfold1Gq} = Rq−1, and rank{unfold3Gq} =
Rq .

It is straightforward to see that the TTD of X in eq. (1) is
not unique since

X = A1
1•
2
A2

1•
3
A3

1•
4
. . .

1•
Q−1

AQ−1
1•
Q
AQ,

where

A1 = G1U
−1
1 ,

AQ = UQ−1GQ,

Aq = U q−1
1•
2
Gq

1•
3
U−1

q .

For 1 ≤ q ≤ Q − 1, U q are square nonsingular matrices of
dimension Rq ×Rq . In practice, the TTD is performed thanks
to the state-of-art TT-SVD algorithm [8]. It is a sequential al-
gorithm that recovers the TT-cores Gq based on (Q− 1) SVDs
applied to several matrix-based reshapings using the original
tensor X . This algorithm allows to recover the true TT-cores
up to a post and pre-multiplication by transformation (change-
of-basis) matrices due to the extraction of dominant subspaces
when using the SVD. In the next section, we will derive the

structure of the estimated TT-cores when the original tensor X
follows a CPD with linear dependencies between the columns
of the loading matrices.

2.2 PARALIND-TTD equivalence
Consider Q-order tensor X of size N1×· · ·×NQ that follows
a rank-R CPD:

X = IQ,R •
1
P 1 •

2
P 2 . . . •

Q
PQ, (2)

where the loading matrices P q are of size Nq×R. It was shown
in [12] that if the loading matrices P q are full-column rank for
1 ≤ q ≤ Q, then they can be recovered from the TT-cores by
order-3 CPD decompositions.

In this section we study the case where linear dependencies
are present between the columns of the loading matrices of (2).
Thus, a loading matrix P q can be expressed as:

P q = P̃ qΦq, (3)

where P̃ q is full column rank of size Nq × Rq (Rq ≤ R) and
Φq is a rank deficient matrix of size Rq × R containing the
dependency pattern between the columns of P̃ q . This CPD
model with linear dependencies is also known as PARALIND
(PARAllel profiles with LINear Dependences) [3].
Theorem 1 (PARALIND - TTD equivalence). Decomposing
tensor X in (2) into a TT format, where P 1 and PQ are full
column rank matrices, and P q (2 ≤ q ≤ Q − 1) follow (3),
recovers the estimated TT-cores such that

G1 = P 1U
−1
1 ,

Gq = I3,R •
1
U q−1 •

2
(P̃ qΦq) •

3
U−T

q , 2 ≤ q ≤ Q− 1

GQ = UQ−1P
T
Q,

where, for 1 ≤ q ≤ Q− 1, U q is a square R×R nonsingular
matrix. The TT-cores G1,Gq , and GQ are, respectively, of
dimensions N1×R,R×Nq×R, and R×NQ, given TT-ranks
all equal to R.

Proof. Note that tensor IQ,R in eq. (2) can be expressed as

IQ,R = IR
1•
2
I3,R

1•
3
· · · 1•

Q−1
I3,R

1•
Q

IR, (4)

replacing eq. (4) into eq. (2), we get

X = (IR
1•
2
I3,R

1•
3
· · · 1•

Q
IR) •

1
P 1 •

2
P 2 •

3
. . . •

Q
PQ

= (IR
1•
2
I3,R

1•
3
· · · 1•

Q
IR) •

1
P 1 •

2
P̃ 2Φ2 •

3
. . . •

Q
PQ

Before introducing the ambiguity matrices U q , tensor X can
then be expressed into a TT format as

X = P 1︸︷︷︸
A1

1•
2

(I3,R •
2
P̃ 2Φ2)︸ ︷︷ ︸

A2

1•
3
· · · 1•

Q−2
(I3,R •

2
P̃Q−2ΦQ−2)︸ ︷︷ ︸
AQ−2

1•
Q−1

(I3,R •
2
P̃Q−1ΦQ−1)︸ ︷︷ ︸
AQ−1

1•
Q
P T

Q︸︷︷︸
AQ

. (5)



One may note that for 2 ≤ q ≤ Q− 1, the considered TT-cores
A1, Aq and AQ verify the definition of the TTD given in Defi-
nition 1, i.e., rank{A1} = rank{AQ} = rank{unfold1Aq} =
rank{unfold3Aq} = R, which justify that matrices P 1 and
PQ must be of full column rank. By identifying the TT-cores
Aq in eq. (5), introducing the pre- and post-multiplication am-
biguity matrices U q presented in 2.1, and using the following
equivalence

Gq = U q−1
1•
2
Aq

1•
3
U−1

q = Aq •
1
U q−1 •

3
U−T

q ,

theorem 1 is proven.

3 Uniqueness of the PARALIND-TTD
One of the most popular condition for the uniqueness of the
CPD decomposition is the Kruskal’s condition [7] relying on
the concept of “Kruskal-rank”, or simply krank. The krank of
an N × R matrix P , denoted by krank{P }, is the maximum
value of ` ∈ N such that every ` columns of P are linearly
independent. By definition, the krank of a matrix is less than or
equal to its rank. Kruskal proved [7] that the condition

krank{P 1}+ krank{P 2}+ krank{P 3} ≥ 2R + 2 (6)

is sufficient for uniqueness of the CPD decomposition in (2),
with Q = 3. Furthermore, it becomes a necessary and suffi-
cient condition in the cases R = 2 or 3 (see [10]). Herein,
by uniqueness, we understand “essential uniqueness”, meaning
that if another set of matrices P̄ 1, P̄ 2 and P̄ 3 verify (6), then
there exists a permutation matrix Π and three invertible diag-
onal scaling matrices (∆1, ∆2, ∆3) satisfying ∆1∆2∆3 =
IR, where IR is the R-th-order identity matrix, such that

P̄ 1 = P 1Π∆1, P̄ 2 = P 2Π∆2, P̄ 3 = P 3Π∆3.

The uniqueness condition (6) has been generalised to Q-
order CPDs in [9]. It states that the loading matrices P q (q =
1, . . . , Q) in (2) can be uniquely estimated from X if

Q∑
q=1

krank{P q} ≥ 2R + (Q− 1). (7)

This condition is sufficient but not necessary for the uniqueness
of the CPD decomposition.

Based on Kruskal’s uniqueness condition as well as on the
results derived in [5], we formulate in the following a partial
and a full uniqueness condition for the PARALIND-TTD of a
Q-order tensor.

Theorem 2 (Partial uniqueness of TT-PARALIND). The load-
ing matrix P q can be uniquely recovered from the estimated
TT decomposition of X if there exist q1 and q2 (q1 6= q2 6= q),
such that: {

rank{P q1} = rank{P q2} = R,
rank{P q} ≥ 2.

Proof. In the CPD (2) the order of the factor matrices is ar-
bitrary and can be changed by a simple index permutation.
Thus, in the following we will suppose, without loss of gen-
erality, that q1 = 1 and q2 = Q. The fact that rank{P 1} =
rank{PQ} = R implies that the square matrices U q in the-
orem 1 are all full rank R. Therefore, the Gq tensor can be
uniquely recovered from X by the TT-SVD algorithm.

According to theorem 1, the tensor Gq can be expressed as:

Gq = I3,R •
1
U q−1 •

2
P q •

3
U−T

q . (8)

Following Kruskal’s uniqueness condition (6), the factor ma-
trices in (8) can be recovered from Gq if

krank{U q−1}+ krank{P q}+ krank{U−T
q } ≥ 2R+ 2. (9)

However, in our case we are only interested in recovering P q ,
which allows to relax Kruskal’s condition. It was proven in [5]
that the matrix P q can be be uniquely estimated from Gq if

krank{U q−1}+ rank{P q}+ krank{U−T
q } ≥ 2R+ 2. (10)

As U q−1 and U q are full rank square matrices, and rank{P q} ≥
2, (9) is verified, which completes the proof.

Theorem 3 (Full TT-PARALIND uniqueness). The loading
matrices P 1, . . . ,PQ can be uniquely recovered from the esti-
mated TT-cores G1,G2, . . . ,GQ−1,GQ if: rank{P 1} = rank{PQ} = R

rank{P q} ≥ 2, 2 < q < Q− 1
krank{P 2}, krank{PQ−1} ≥ 2.

Proof. This result is a consequence of theorem 2. The unique-
ness of factor matrices P 2, . . . ,PQ−1 can be proven by repeat-
edly applying theorem 2 to the different TT-cores Gq , 2 ≤ q ≤
Q − 1. Meanwhile, condition (10) does not guarantee unique-
ness of the change-of-basis matrices U q−1 and U q . In order to
guarantee this, Kruskal’s condition (9) must be verified.

Thus, the condition krank{P 2}, krank{PQ−1} ≥ 2 im-
plies uniqueness of the CPD decomposition of TT-cores G2

and GQ−1 and consequently, the uniqueness of the R×R non-
singular matrices U1 and UQ−1. From theorem 1 we get:

P 1 = G1U1 and PQ = GT
QU

−T
Q−1.

Thus, the unique recovery of G1 and GQ from X along with
uniqueness of U1 and UQ−1 implies uniqueness of factor ma-
trices P 1 and PQ, which completes the proof.

4 Discussion

4.1 More restrictive conditions
Compared to Kruskal’s condition (7) for order-Q CPD, the unique-
ness condition of theorem 3 is more restrictive. For example, in
the case of a fourth-order tensor (Q = 4), the condition of the-
orem 3 implies

∑4
q=1 krank{P q} ≥ 2R + 4, while Kruskal’s



condition requires
∑4

q=1 krank{P q} ≥ 2R + 3. This is a
direct consequence of imposing simultaneous (partial) unique-
ness on all the order-3 TT-cores. More restrictive uniqueness
conditions is the price to pay for having a numerically efficient
algorithm, that guarantees recovery of the loading matrices for
a wide variety of scenarios.

4.2 Estimation scheme architecture

It is worth noting that, from an algorithmic point of view, the
estimation of the loading matrices P q can be done either in
parallel or sequentially. For a parallel estimation scheme, the
conditions of theorem 3 are sufficient. In [12], a sequential
scheme was proposed, based on a sequential retrieval of both
matrices P q and U q . It requires at each step the knowledge of
U q−1 for decomposing Gq . To use a similar sequential scheme
for the TT-PARALIND model, it is necessary to also ensure
the uniqueness of matrices U q . This can be done by replacing
condition rank{P q} ≥ 2 (2 < q < Q − 1) in theorem 3 by a
stronger one, krank{P q} ≥ 2 (2 < q < Q− 1).

4.3 Perspectives

1. The condition rank{P 1} = rank{PQ} in theorem 1 re-
quires the knowledge of the indices of full-rank modes
of tensor X , which are then arbitrarily fixed to 1 and
Q; once these two modes are fixed, the order in which
the remaining modes are processed is arbitrary. It is cer-
tainly possible to obtain a condition involving only one
full rank matrix, but in this case the order in which the
other modes are processed must be carefully chosen to
guarantee the required rank conditions for the TT-SVD
algorithm. This aspect is currently under investigation.

2. A very promising application domain of these results is
the low-rank approximation of high-dimensional proba-
bility mass functions. In this case, these uniqueness re-
sults are of upmost importance as the linear dependen-
cies in the model could account for the random variables
correlations. A potential application is represented by
the flow cytometry data analysis, as shown in [1].

5 Conclusion

The factorisation of a high-order tensor into a collection of low-
order tensors, called cores, is an important research topic. In-
deed, this family of methods called tensor Networks is an effi-
cient way to mitigate the well-known “curse of dimentionality”
problem. In this work, we prove that a Q-order PARALIND of
rank R can be reformulated as a Q − 2 train of tensors possi-
bly column-deficiency and two full column rank matrices. The
condition of partial and full uniqueness are exposed and dis-
cussed.
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