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4LEME, Université de Paris-Nanterre, Ville d’Avray, France
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ABSTRACT

Robust calibration of next-generation radio-interferometers, as
the square kilometer array (SKA) for instance, is a crucial prepro-
cessing step for sky imaging. Recently, several robust calibration es-
timators based on the use of well known strong sources in the field of
view (FOV) have been proposed in the literature. For that, usually a
compound-Gaussian (CG) noise is considered since it can take into
account the presence of outliers, such that unknown weak sources
in the FOV, and remains mathematically tractable. Specifically, the
CG model is a zero-mean Gaussian process with a random variance,
usually called texture. Performance bounds provide the lowest mean
squared error (MSE) that an unbiased estimator can hope to reach.
To the best of our knowledge, there is a lack of practical bounds ded-
icated to the robust calibration of future radio interferometers as far
as they can be used as design tools for a given FOV. In this work,
the hybrid Cramér-Rao bound (HCRB) is derived for a propagation
model based on the Jones-matrix formalism corrupted by a CG noise
for several texture distributions (K-distribution, Student’s t, Cauchy,
and Inverse-Gaussian compound Gaussian distribution (IG-CG)). In
this standard physical model, the waveform propagation model is
parametrized by a set of deterministic physical parameters of interest
(complex gains, phases, DOA, etc.). In this work, we show that the
HCRB w.r.t. the physical deterministic parameters is in fact given
by the modified CRB (MCRB). The MCRB is easy to derive since
only the first-order moment of the inverse of the texture variable is
needed.

1 Introduction
Astronomical radio-waves cross different layers of the atmosphere
and are subject to various distortions before reaching earth. Hence,
sky imaging requires a robust estimation of the different parame-
ters deforming the signal (delay, phase, complex gain-attenuation,
etc.). The Jones-matrix formalism [12] is a widespread model of ra-
dio wave propagation, standing for all physical phenomena which
affect the signal, from the source until the receiver.

Typically, the calibration process is performed based on the so-
called calibration sources. It is worth mentioning that, in addition
to the distortion introduced by the layers of the ionosphere, ambi-
ent Gaussian noise is present as well a number of unknown non-
calibration sources interfering with known calibration sources, lead-
ing to unrealistic Gaussian noise assumption. Compound-Gaussian

(CG) noise model is, however, closer to reality taking in considera-
tion these non-calibration sources.

Many calibration algorithms are found in literature, giving dif-
ferent scenario dependent efficiencies. S. Kazemi and S. Yatawatta
[5] have first, introduced a student model to overcome the limita-
tions inherent to a Gaussian framework. Recently, we have shown
[8] that estimator based on compound Gaussian noise improves S.
Kazemi and S. Yatawatta results thanks to the use of a more power-
ful and flexible distribution. Thereby, a new performance-evaluation
reference is needed in order to convoy this improvement.

The Cramér-Rao bound (CRB) is commonly used as a reference
for evaluation of estimators. The classical CRB is a lower bound for
unbiased estimators’ variance. Other forms derived from the CRB
(the estimated Cramér-Rao Bound ECRB, the modified Cramér-Rao
Bound and the hybrid Cramér-Rao Bound) may be used as lower
bounds on the MSE of estimators, such as the maximum a posteriori
(MAP) used in [9] under a compound-Gaussian assumption of the
noise. In this case, the noise is modeled as a zero mean complex
Gaussian component with a positive random variable representing
the texture. Taking into account this nuisance random parameter
(texture) in the estimation process leads us to take it as well into
consideration in the definition of the lower bound.

The notations used in this paper are the following: (.)T , (.)H ,
(.)∗, stand, respectively, for the transpose, the transpose complex
conjugate and the complex conjugate operators with j denoting the
imaginary unit. <{.} and ={.} are, respectively, the real and the
imaginary parts of a complex value. E{.} stands for the expectation
while VAR(.) and COV(.) denote, respectively, the variance and the
covariance. The Kronecker product is represented by ⊗, the trace
operator by tr{.}, the determinant by |.| while vec(.) denotes the
vectorization (column stacking).

2 Model setup
The model setup given in [6] reduces to the use of a 2 × 2 Jones
matrix with the assumption of a plane-wave with two components of
the electric field in xy plane, perpendicular to the direction of prop-
agation z. The measured voltage at antenna p with a single source i
is given by

vi,p(θ) = Ji,p(θ)si. (1)

in which the 2×1 vector vi,p = [vxi,p, v
y
i,p]

T is the voltage measured
in the two polarization directions x and y, the calibration source sig-



nal is given by si = [sxi , s
y
i ] and the 2 × 2 Jones matrix Ji,p(θ)

models the propagation from source i to antenna p. Each Jones ma-
trix is parametrized by the unknown vector θ representing all the
distortions along the propagation path [12]. This standard waveform
propagation model, defined in [10], is given for the p-th antenna and
the i-th source by:

Ji,p(θ) = Gp(gp)Hi,pZi,p(φi,p)Fi(ϑi,p) (2)

where

• Gp(gp) = diag{gp} is a 2× 2 diagonal matrix that represents
the antenna complex gain, with gp = [[gp]1, [gp]2]

T .

• Zi,p(φi,p) = exp{jφi,p}I2 represents the ionospheric phase
with I2 the 2× 2 identity matrix.

• The Faraday rotation effect is represented by

Fi(ϑi,p) =

[
cosϑi,p − sinϑi,p
sinϑi,p cosϑi,p

]
.

• Finally, the known 2× 2 matrix Hi,p is obtained thanks to elec-
tromagnetic simulations and represents antenna response [9].

The ordered global output vector reads

x =
[
xT12 xT13 xT23 · · · xT(M−1)M

]T
. (3)

where M denotes the total number of antennas and L = M(M−1)
2

is the number of possible antenna pairs. Each 4× 1 subvector of x,
i.e., for a given antenna pair (p,q), is given by

xpq = vpq + npq (4)

where the signal and noise contributions denoted by vpq and npq ,
respectively, are described in the two next paragraphs.

2.1 Cross-correlations measurement
The deterministic physical parameters of interest for D sources are
collected in a K × 1 vector with K = 2MD + 4M given by

θ = [ϑT ,φT , gT ]T (5)

where the (MD) × 1 vector ϑ = [ϑT1 . . .ϑ
T
M ]T with ϑp =

[ϑ1,p . . . ϑD,p]
T (D × 1 vector) collect the Faraday angles per

source (index i) per antenna (index p) while φ = [φT1 . . .φ
T
M ] with

φp = [φ1,p . . . φD,p]
T is the ionospheric phase delay for the i-

th source and the p-th antenna. One assumes a D × M source
and receiver dependent ionospheric parameter vector. Finally,
gp = [<

{
[gp]1

}
,=
{
[gp]1

}
,<
{
[gp]2

}
,=
{
[gp]2

}
]T represents

direction independent antenna gain after vectorization of both real
and imaginary parts.

Interferometers measure the cross-correlations of antenna pairs
[6]. The correlation measurement for antennas p and q is written as

Vpq(θ) = E

{(
D∑
i=1

vi,p(θ)

)(
D∑
i=1

vHi,q(θ)

)}

=

D∑
i=1

Ji,p(θ)CiJ
H
i,q(θ)

(6)

where Ci = E
{
sis

H
i

}
is the 2 × 2 source coherency matrix [6].

Using [7, eq. 82], an equivalent vectorized expression of eq. (6) is
given by

vpq(θ) = vec(Vpq(θ)) =

D∑
i=1

(J∗i,q(θ)⊗ Ji,p(θ))ci (7)

where ci = vec(Ci) is the 4× 1 vector obtained by vectorizing the
ith source coherency matrix (column stacking).

2.2 Non-Gaussian noise modeling
The noise is assumed to follow a compound-Gaussian distribution
with two components: a zero mean complex Gaussian component
and a texture representing the effect of non-calibration sources inter-
ference [13]. Hence, npq =

√
τpqupq where τpq is a positive real

random variable representing the texture and upq is a 4 × 1 vector
following a zero-mean circular Gaussian distribution, i.e., upq ∼
CN (0,Ω) where Ω is the noise covariance matrix. The noise vector
(sorted accordingly with x in eq. (3)) is

n|τ ∼ CN (0,Γ) (8)

where
Γ = T⊗Ω (9)

in which T = diag(τ ) is the L × L texture matrix with τ =
[τ11 . . . τ(M−1)M ]T . Statistical priors on τ as K-distribution, Stu-
dent’s t, Cauchy, Laplace and Inverse-Gaussian Compound Gaussian
distribution (IG-CG) are considered in the sequel [9].

3 Hybrid set of parameters

3.1 Deterministic and random parameters
• The deterministic physical parameters of interest are collected

in θ defined in section 2.1.1.

• The unknown nuisance parameters are represented by the ran-
dom texture vector τ defined in section 2.1.2.

Let θ̂′ be an estimate vector of the hybrid parameter of interest
vector, i.e., θ′ = [τT ,θT ]T . A key fidelity measure for any estima-
tor is the MSE defined by

MSE(θ̂′) = EτEx|τ ||θ̂′(x)− θ′||2. (10)

3.2 Hybrid lower bound
In this part, we focus on the HCRB which is the most realistic, since
it is derived considering the deterministic and the random parame-
ters. The HCRB matrix, denoted by CH(θ

′), is a lower bound on
the MSE for any estimator θ̂′ according to the following inequality:

tr{CH(θ′)} ≤ MSE(θ̂′). (11)

Specifically, CH(θ
′) is defined as the inverse matrix of the Hy-

brid Information Matrix (HIM) [2] given by

FH(θ
′) = Fdet(θ

′) + Fprior(τ ) (12)

where

Fdet(θ
′) = Eτ

{
Ex|θ′

{
−∆θ′

θ′ logP (x|τ ;θ)
}}

(13)



in which [∆β
α g(·)]i,j = ∂2g(·)

∂[α]i[β]j
,

Fprior(τ ) =

[
F′prior(τ ) 0

0 0

]
(14)

and
F′prior(τ ) = Eτ {−∆τ

τ logP (τ )} . (15)

3.2.1 Link to the Modified CRB

A comparison and links between different forms of the CRB, among
which the HCRB and the MCRB, have been defined in [14]. In our
context, we provide in the following lemma a key technical result on
the HCRB.

Lemma 1 The HCRB matrix is block-diagonal, i.e., parameters θ
and τ are decoupled.

Proof 1 As x|τ ∼ CN (µ,Γ), the conditional log-likelihood func-
tion reads [9]:

logP (x|τ ;θ) = − log (|πΓ|)−wHΓ−1w (16)

where w = x− µ. The coupling terms between θ and τ , are given
by

∆τ
θ logP (x|τ ;θ) = ∂µ

∂θ

H ∂Γ

∂τ

−1

w + wH ∂Γ

∂τ

−1 ∂µ

∂θ
. (17)

Since Ex|τ (w) = 0, we have

Ex|τ {−∆τ
θ logP (x|τ ;θ}} = 0. (18)

Theorem 1 The lower bound on the parameters of interest θ can be
easily derived according to the well-known Modified CRB (MCRB)
[3].

Proof 2 As a consequence of lemma 1, eq. (13) can be written as

Fdet(θ) = EτEx|τ

{
−∆θ

θ logP (x|τ ,θ)
}

(19)

and its inverse matrix denoted by CM(θ) is the well-known MCRB
matrix [3]. Equivalently, the HCRB matrix is given by:

CH =

[
F′−1

prior 0
0 CM

]
. (20)

This result is important since closed-form expressions with re-
spect to the texture parameter would be easily obtained with the
MCRB. On the other hand, it is difficult to obtain closed-form ex-
pressions with the Expected CRB (ECRB) [4]. This bound is defined
as:

CE(θ) = Eτ

(
Ex|τ

{
−∆θ

θ logP (x|τ ,θ)
})−1

. (21)

Indeed, in the expression above, the derivation in a closed-form
of the expectation over τ is a delicate problem since this step is done
after a matrix inversion. More precisely, in the ECRB approach, the
generic form of the expressions involving the texture parameter is
Eτ (f(τ)) where function f(·) due to the matrix inversion is gen-
erally mathematically intractable. On the contrary, we show in the
following that the function f(·) is simple for the MCRB.

3.3 Closed-form expressions of the MCRB for
different texture priors

3.3.1 General expression

As x|τ ∼ CN (µ,Γ) or equivalently, the observation conditionally
to the texture vector follows a complex Gaussian distribution, the
Modified FIM is given by the expectation over the texture of the
Slepian-Bangs formula [11], i.e.,

Fdet(θ) = 2<{UHEτ

(
Γ−1)U} (22)

where U = ∂µ
∂θT and

Eτ

(
Γ−1) = Eτ (T

−1)⊗Ω−1. (23)

3.3.2 Texture priors

According to [9], it is realistic to assume that texture τpq follows
a distribution parametrized by a set of hyper-parameters indepen-
dent from the antenna pairs. Under this mild assumption, we are
interested by the first moment of the random variable Tpq = 1

τpq
,

denoted by m(1)
T . Thus the MCRB matrix is given by

CM(θ) =
1

2m
(1)
T

[
<{UH (I⊗Ω−1)U}

]−1

. (24)

As we see, the MCRB matrix is the product of two terms. The
first one 1

2m
(1)
T

is characterized by the choice of the texture prior and

the second one,
[
<{UH

(
I⊗Ω−1

)
U}
]−1

, is texture-independent.
Let us remark that regarding the ECRB, it is not possible to obtain a
“physically” interpretable characterization.

K-distribution If the noise follows a K-distribution then τpq ∼
Gamma(a, b). Thus, Tpq ∼ InvGamma(a, 1

b
) and thus

m
(1)
T =

1

b(a− 1)
. (25)

Student’s t distribution If the noise follows a Student’s t distri-
bution, the texture τpq ∼ InvGamma(a, b). This means that Tpq ∼
Gamma(a, 1

b
) and

m
(1)
T =

a

b
. (26)

Cauchy distribution If the noise follows a Cauchy distribution, in
this case, τpq ∼ InvGamma(1, b). The distribution of Tpq follows
an Exponential distribution of rate b (special case of Gamma) and

m
(1)
T =

1

b
. (27)

Inverse-Gaussian Compound-Gaussian In this case, the texture
τpq follows an Inverse Gaussian distribution (Wald distribution) with
a unit mean, i.e. τpq ∼ IG(1, λ). So, Tpq follows a reciprocal
inverse Gaussian distribution, i.e. Tpq ∼ RIG(1, λ) [1] and

m
(1)
T = 1 +

1

λ
. (28)



3.3.3 Simulation

In order to visualize the MCRB for the different texture priors, we
consider D = 3 calibration sources with M = 8 receivers. For K-
distribution, Student’s t and Cauchy cases, the shape and the scale
parameters of the texture distribution are a = 3 and b = 2 , re-
spectively, while we consider λ = 0.5 for the inverse-Gaussian
compound-Gaussian case.

The source signals as well as the parameters of the Jones-
matrices are randomly generated, with entries following the uniform
distribution, with respect to the physical nature of each parame-
ter,i.e. , for the Faraday rotation angles and the ionospheric phase,
a randomly generated number following the uniform distribution
is multiplied by π in order to get a radian angle in the gap [0, π].
Thus, the complex quantities, such as the complex gain, is generated
so that both the real and the imaginary parts follow the uniform
distribution.
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Fig. 1. Evolution of the trace of the MCRB in (dB) in function of the
signal to noise ratio (SNR) in (dB) for the different kinds of prior in
the Compound-Gaussian distribution.

In figure 1, we plot the trace of the MCRB (dB) in function of the
signal to noise ratio (dB) for the different priors on the texture, i.e.
for different kinds of compound-Gaussian distributions. The choice
of the prior can thus be easily discussed, depending only the first
moment m(1)

T of the random variable Tpq , that defines the tightness
of the bound for each prior.

4 Conclusion
In this paper, we defined the tractable lower bound on the MSE for a
model with non-Gaussian noise used in robust array calibration for
radio-interferometers. A compound-Gaussian (GC) assumption was
considered on the noise, consisting of a zero mean complex Gaus-
sian component and a random variable representing the texture, with
different priors on the texture. In order to define the lower bound, we
derived a hybrid form of the Cramér-Rao bound (HCRB) regarding
the deterministic physical parameters of interest as well as the ran-
dom parameters of nuisance (texture). The derivation of the HCRB
gave us, as a result, a decoupling between the deterministic and the
random parameters, leading to an equality between the HCRB and

the modified Cramér-Rao bound (MCRB) for the deterministic pa-
rameters of interest. This result allowed us to settle for the calcu-
lation of the MCRB, for the different priors on the texture, that we
simulated as well. Generally speaking, this paper opens the way to
the introduction of tractable minimal bounds for design tools in radio
astronomy.

References
[1] O. E. Barndorff-Nielsen and A. E. Koudou. Trees with Ran-

dom Conductivities and the (Reciprocal) Inverse Gaussian
Distribution. Northern Ireland: Applied Probability Trust,
1998.

[2] K. L. Bell and H. L. Van Trees. “Posterior Cramer-Rao
Bound For Tracking Target Bearing”. In: Wiley-IEEE Press
(2007).

[3] F. Gini, R. Reggiannini, and U. Mengali. “The Modified
Cramer–Rao Bound in Vector Parameter Estimation”. In:
IEEE Transactions on Communications (1998).

[4] Q. He and R. S. Blum. “The Significant Gains From Opti-
mally Processed Multiple Signals of Opportunity and Mul-
tiple Receive Stations in Passive Radar”. In: IEEE Signal
Processing Letters (2014).

[5] S. Kazemi and S. Yatawatta. “Robust radio interferometric
calibration using the t-distribution”. In: Monthly Notices of
the Royal Astronomical Society (2013).

[6] L. M. Ker. “Radio AGN Evolution with Low Frequency
Radio Surveys, Ph.D. thesis”. In: University of Edinburgh
(2012).

[7] H. D. Macedo and J. N. Oliveira. “Typing linear algebra: A
biproduct-oriented approach”. In: ELSEVIER (2012).

[8] V. Ollier, M. N. El Korso, R. Boyer, P. Larzabal, and M.
Pesavento. “Robust Calibration of Radio Interferometers in
Non-Gaussian Environment”. In: IEEE Transactions on Sig-
nal Processing (2017).

[9] V. Ollier, M. N. El Korso, A. Ferrari, R. Boyer, and P. Larz-
abal. “Bayesian Calibration Using Different Prior Distribu-
tions: An Iterative Maximum a Posteriori Approach for Ra-
dio Interferometers”. In: EUSIPCO (2018).

[10] O. M. Smirnov. “Revisiting the radio interferometer mea-
surement equation I. A full-sky Jones formalism”. In: As-
tronomy Astrophysics, vol. 527, no. A106 (2011).

[11] P. Stoica and R. Moses. SPECTRAL ANALYSIS OF SIG-
NALS. Upper Saddle River, New Jersey 07458: PRENTICE
HALL, 2004.

[12] A. R. Thompson, J. M. Moran, and G. W. Swenson Jr. In-
terferometry and Synthesis in Radio Astronomy. Second edi-
tion. New York: John Wiley Sons, New York, 2012.

[13] J. Wang, A. Dogandzic, and A. Nehorai. “Maximum Likeli-
hood Estimation of Compound-Gaussian Clutter and Target
Parameters”. In: IEEE Transactions on Signal Processing
(2006).

[14] X. Zhang, M. N. El Korso, and M. Pesavento. “MIMO radar
target localization and performance evaluation under SIRP
clutter”. In: Signal Processing Journal, Elsevier, Volume
130 (2017).


